We present a distributed quasi-Newton (DQN) method, which enables a group of agents to compute an optimal solution of a separable multi-agent optimization problem locally using an approximation of the curvature of the aggregate objective function. Each agent computes a descent direction from its local estimate of the aggregate Hessian, obtained from quasi-Newton approximation schemes using the gradient of its local objective function. Moreover, we introduce a distributed quasi-Newton method for equality-constrained optimization (EC-DQN), where each agent takes Karush-Kuhn-Tucker-like update steps to compute an optimal solution. In our algorithms, each agent communicates with its one-hop neighbors over a peer-to-peer communication network to compute a common solution. We prove convergence of our algorithms to a stationary point of the optimization problem. In addition, we demonstrate the competitive empirical convergence of our algorithm in both well-conditioned and ill-conditioned optimization problems, in terms of the computation time and communication cost incurred by each agent for convergence, compared to existing distributed first-order and second-order methods. Particularly, in ill-conditioned problems, our algorithms achieve a faster computation time for convergence, while requiring a lower communication cost, across a range of communication networks with different degrees of connectedness.
The partial observability and stochasticity in multi-agent settings can be mitigated by accessing more information about others via communication. However, the coordination problem still exists since agents cannot communicate actual actions with each other at the same time due to the circular dependencies. In this paper, we propose a novel multi-level communication scheme, Sequential Communication (SeqComm). SeqComm treats agents asynchronously (the upper-level agents make decisions before the lower-level ones) and has two communication phases. In the negotiation phase, agents determine the priority of decision-making by communicating hidden states of observations and comparing the value of intention, obtained by modeling the environment dynamics. In the launching phase, the upper-level agents take the lead in making decisions and then communicate their actions with the lower-level agents. Theoretically, we prove the policies learned by SeqComm are guaranteed to improve monotonically and converge. Empirically, we show that SeqComm outperforms existing methods in various cooperative multi-agent tasks.
A common way to numerically solve Fokker-Planck equations is the Chang-Cooper method in space combined with one of the Euler methods in time. However, the explicit Euler method is only conditionally positive, leading to severe restrictions on the time step to ensure positivity. On the other hand, the implicit Euler method is robust but nonlinearly implicit. Instead, we propose to combine the Chang-Cooper method with unconditionally positive Patankar-type time integration methods, since they are unconditionally positive, robust for stiff problems, only linearly implicit, and also higher-order accurate. We describe the combined approach, analyse it, and present a relevant numerical example demonstrating advantages compared to schemes proposed in the literature.
Inferring causal relationships in the decision-making processes of machine learning algorithms is a crucial step toward achieving explainable Artificial Intelligence (AI). In this research, we introduce a novel causality measure and a distance metric derived from Lempel-Ziv (LZ) complexity. We explore how the proposed causality measure can be used in decision trees by enabling splits based on features that most strongly \textit{cause} the outcome. We further evaluate the effectiveness of the causality-based decision tree and the distance-based decision tree in comparison to a traditional decision tree using Gini impurity. While the proposed methods demonstrate comparable classification performance overall, the causality-based decision tree significantly outperforms both the distance-based decision tree and the Gini-based decision tree on datasets generated from causal models. This result indicates that the proposed approach can capture insights beyond those of classical decision trees, especially in causally structured data. Based on the features used in the LZ causal measure based decision tree, we introduce a causal strength for each features in the dataset so as to infer the predominant causal variables for the occurrence of the outcome.
Extensive-Form Game (EFG) represents a fundamental model for analyzing sequential interactions among multiple agents and the primary challenge to solve it lies in mitigating sample complexity. Existing research indicated that Double Oracle (DO) can reduce the sample complexity dependence on the information set number $|S|$ to the final restricted game size $X$ in solving EFG. This is attributed to the early convergence of full-game Nash Equilibrium (NE) through iteratively solving restricted games. However, we prove that the state-of-the-art Extensive-Form Double Oracle (XDO) exhibits \textit{exponential} sample complexity of $X$, due to its exponentially increasing restricted game expansion frequency. Here we introduce Adaptive Double Oracle (AdaDO) to significantly alleviate sample complexity to \textit{polynomial} by deploying the optimal expansion frequency. Furthermore, to comprehensively study the principles and influencing factors underlying sample complexity, we introduce a novel theoretical framework Regret-Minimizing Double Oracle (RMDO) to provide directions for designing efficient DO algorithms. Empirical results demonstrate that AdaDO attains the more superior approximation of NE with less sample complexity than the strong baselines including Linear CFR, MCCFR and existing DO. Importantly, combining RMDO with warm starting and stochastic regret minimization further improves convergence rate and scalability, thereby paving the way for addressing complex multi-agent tasks.
Consider a principal who wants to search through a space of stochastic solutions for one maximizing their utility. If the principal cannot conduct this search on their own, they may instead delegate this problem to an agent with distinct and potentially misaligned utilities. This is called delegated search, and the principal in such problems faces a mechanism design problem in which they must incentivize the agent to find and propose a solution maximizing the principal's expected utility. Following prior work in this area, we consider mechanisms without payments and aim to achieve a multiplicative approximation of the principal's utility when they solve the problem without delegation. In this work, we investigate a natural and recently studied generalization of this model to multiple agents and find nearly tight bounds on the principal's approximation as the number of agents increases. As one might expect, this approximation approaches 1 with increasing numbers of agents, but, somewhat surprisingly, we show that this is largely not due to direct competition among agents.
The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
We introduce a generic framework that reduces the computational cost of object detection while retaining accuracy for scenarios where objects with varied sizes appear in high resolution images. Detection progresses in a coarse-to-fine manner, first on a down-sampled version of the image and then on a sequence of higher resolution regions identified as likely to improve the detection accuracy. Built upon reinforcement learning, our approach consists of a model (R-net) that uses coarse detection results to predict the potential accuracy gain for analyzing a region at a higher resolution and another model (Q-net) that sequentially selects regions to zoom in. Experiments on the Caltech Pedestrians dataset show that our approach reduces the number of processed pixels by over 50% without a drop in detection accuracy. The merits of our approach become more significant on a high resolution test set collected from YFCC100M dataset, where our approach maintains high detection performance while reducing the number of processed pixels by about 70% and the detection time by over 50%.