Recent research in self-supervised contrastive learning of music representations has demonstrated remarkable results across diverse downstream tasks. However, a prevailing trend in existing methods involves representing equally-sized music clips in either waveform or spectrogram formats, often overlooking the intrinsic part-whole hierarchies within music. In our quest to comprehend the bottom-up structure of music, we introduce MART, a hierarchical music representation learning approach that facilitates feature interactions among cropped music clips while considering their part-whole hierarchies. Specifically, we propose a hierarchical part-whole transformer to capture the structural relationships between music clips in a part-whole hierarchy. Furthermore, a hierarchical contrastive learning objective is crafted to align part-whole music representations at adjacent levels, progressively establishing a multi-hierarchy representation space. The effectiveness of our music representation learning from part-whole hierarchies has been empirically validated across multiple downstream tasks, including music classification and cover song identification.
We present a stereo-matching method for depth estimation from high-resolution images using visual hulls as priors, and a memory-efficient technique for the correlation computation. Our method uses object masks extracted from supplementary views of the scene to guide the disparity estimation, effectively reducing the search space for matches. This approach is specifically tailored to stereo rigs in volumetric capture systems, where an accurate depth plays a key role in the downstream reconstruction task. To enable training and regression at high resolutions targeted by recent systems, our approach extends a sparse correlation computation into a hybrid sparse-dense scheme suitable for application in leading recurrent network architectures. We evaluate the performance-efficiency trade-off of our method compared to state-of-the-art methods, and demonstrate the efficacy of the visual hull guidance. In addition, we propose a training scheme for a further reduction of memory requirements during optimization, facilitating training on high-resolution data.
Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to $\sim$16$\times$ speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.
The majority of existing speech bandwidth extension (BWE) methods operate under the constraint of fixed source and target sampling rates, which limits their flexibility in practical applications. In this paper, we propose a multi-stage speech BWE model named MS-BWE, which can handle a set of source and target sampling rate pairs and achieve flexible extensions of frequency bandwidth. The proposed MS-BWE model comprises a cascade of BWE blocks, with each block featuring a dual-stream architecture to realize amplitude and phase extension, progressively painting the speech frequency bands stage by stage. The teacher-forcing strategy is employed to mitigate the discrepancy between training and inference. Experimental results demonstrate that our proposed MS-BWE is comparable to state-of-the-art speech BWE methods in speech quality. Regarding generation efficiency, the one-stage generation of MS-BWE can achieve over one thousand times real-time on GPU and about sixty times on CPU.
In singing voice synthesis (SVS), generating singing voices from musical scores faces challenges due to limited data availability. This study proposes a unique strategy to address the data scarcity in SVS. We employ an existing singing voice synthesizer for data augmentation, complemented by detailed manual tuning, an approach not previously explored in data curation, to reduce instances of unnatural voice synthesis. This innovative method has led to the creation of two expansive singing voice datasets, ACE-Opencpop and ACE-KiSing, which are instrumental for large-scale, multi-singer voice synthesis. Through thorough experimentation, we establish that these datasets not only serve as new benchmarks for SVS but also enhance SVS performance on other singing voice datasets when used as supplementary resources. The corpora, pre-trained models, and their related training recipes are publicly available at ESPnet-Muskits (\url{//github.com/espnet/espnet})
Existing one-shot 4D head synthesis methods usually learn from monocular videos with the aid of 3DMM reconstruction, yet the latter is evenly challenging which restricts them from reasonable 4D head synthesis. We present a method to learn one-shot 4D head synthesis via large-scale synthetic data. The key is to first learn a part-wise 4D generative model from monocular images via adversarial learning, to synthesize multi-view images of diverse identities and full motions as training data; then leverage a transformer-based animatable triplane reconstructor to learn 4D head reconstruction using the synthetic data. A novel learning strategy is enforced to enhance the generalizability to real images by disentangling the learning process of 3D reconstruction and reenactment. Experiments demonstrate our superiority over the prior art.
Chinese grammatical error correction (CGEC) faces serious overcorrection challenges when employing autoregressive generative models such as sequence-to-sequence (Seq2Seq) models and decoder-only large language models (LLMs). While previous methods aim to address overcorrection in Seq2Seq models, they are difficult to adapt to decoder-only LLMs. In this paper, we propose an alignment-enhanced corrector for the overcorrection problem that applies to both Seq2Seq models and decoder-only LLMs. Our method first trains a correction model to generate an initial correction of the source sentence. Then, we combine the source sentence with the initial correction and feed it through an alignment model for another round of correction, aiming to enforce the alignment model to focus on potential overcorrection. Moreover, to enhance the model's ability to identify nuances, we further explore the reverse alignment of the source sentence and the initial correction. Finally, we transfer the alignment knowledge from two alignment models to the correction model, instructing it on how to avoid overcorrection. Experimental results on three CGEC datasets demonstrate the effectiveness of our approach in alleviating overcorrection and improving overall performance. Our code has been made publicly available.
Recent advancements in generative modeling have significantly enhanced the reconstruction of audio waveforms from various representations. While diffusion models are adept at this task, they are hindered by latency issues due to their operation at the individual sample point level and the need for numerous sampling steps. In this study, we introduce RFWave, a cutting-edge multi-band Rectified Flow approach designed to reconstruct high-fidelity audio waveforms from Mel-spectrograms or discrete tokens. RFWave uniquely generates complex spectrograms and operates at the frame level, processing all subbands simultaneously to boost efficiency. Leveraging Rectified Flow, which targets a flat transport trajectory, RFWave achieves reconstruction with just 10 sampling steps. Our empirical evaluations show that RFWave not only provides outstanding reconstruction quality but also offers vastly superior computational efficiency, enabling audio generation at speeds up to 97 times faster than real-time on a GPU. An online demonstration is available at: //rfwave-demo.github.io/rfwave/.
Video-to-audio (V2A) generation aims to synthesize content-matching audio from silent video, and it remains challenging to build V2A models with high generation quality, efficiency, and visual-audio temporal synchrony. We propose Frieren, a V2A model based on rectified flow matching. Frieren regresses the conditional transport vector field from noise to spectrogram latent with straight paths and conducts sampling by solving ODE, outperforming autoregressive and score-based models in terms of audio quality. By employing a non-autoregressive vector field estimator based on a feed-forward transformer and channel-level cross-modal feature fusion with strong temporal alignment, our model generates audio that is highly synchronized with the input video. Furthermore, through reflow and one-step distillation with guided vector field, our model can generate decent audio in a few, or even only one sampling step. Experiments indicate that Frieren achieves state-of-the-art performance in both generation quality and temporal alignment on VGGSound, with alignment accuracy reaching 97.22%, and 6.2% improvement in inception score over the strong diffusion-based baseline. Audio samples are available at //frieren-v2a.github.io .
Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as similar 2D projections can correspond to multiple 3D interpretations. Nevertheless, most HMR methods overlook this ambiguity and make a single prediction without accounting for the associated uncertainty. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. MEGA enables us to propose multiple outputs and to evaluate the uncertainty of the predictions. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.
The ability to edit 3D assets from natural language presents a compelling paradigm to aid in the democratization of 3D content creation. However, while natural language is often effective at communicating general intent, it is poorly suited for specifying precise manipulation. To address this gap, we introduce ParSEL, a system that enables controllable editing of high-quality 3D assets from natural language. Given a segmented 3D mesh and an editing request, ParSEL produces a parameterized editing program. Adjusting the program parameters allows users to explore shape variations with a precise control over the magnitudes of edits. To infer editing programs which align with an input edit request, we leverage the abilities of large-language models (LLMs). However, while we find that LLMs excel at identifying initial edit operations, they often fail to infer complete editing programs, and produce outputs that violate shape semantics. To overcome this issue, we introduce Analytical Edit Propagation (AEP), an algorithm which extends a seed edit with additional operations until a complete editing program has been formed. Unlike prior methods, AEP searches for analytical editing operations compatible with a range of possible user edits through the integration of computer algebra systems for geometric analysis. Experimentally we demonstrate ParSEL's effectiveness in enabling controllable editing of 3D objects through natural language requests over alternative system designs.