亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cell-free massive multiple-input multiple-output (MIMO) employs a large number of distributed access points (APs) to serve a small number of user equipments (UEs) via the same time/frequency resource. Due to the strong macro diversity gain, cell-free massive MIMO can considerably improve the achievable sum-rate compared to conventional cellular massive MIMO. However, the performance of cell-free massive MIMO is upper limited by inter-user interference (IUI) when employing simple maximum ratio combining (MRC) at receivers. To harness IUI, the expanded compute-and-forward (ECF) framework is adopted. In particular, we propose power control algorithms for the parallel computation and successive computation in the ECF framework, respectively, to exploit the performance gain and then improve the system performance. Furthermore, we propose an AP selection scheme and the application of different decoding orders for the successive computation. Finally, numerical results demonstrate that ECF frameworks outperform the conventional CF and MRC frameworks in terms of achievable sum-rate.

相關內容

ACM IUI 2020是智能界面社區的第25屆年會,是報告智能用戶界面杰出研究和開發的首要國際論壇。ACM-IUI是人機交互(HCI)社區與人工智能(AI)社區的交匯點。官網鏈接: · INFORMS · 模型評估 · 極小點 · Pair ·
2022 年 1 月 25 日

The novel concept of non-orthogonal multiple access (NOMA) aided joint radar and multicast-unicast communication (Rad-MU-Com) is investigated. Employing the same spectrum resource, a multi-input-multi-output (MIMO) dual-functional radar-communication (DFRC) base station detects the radar-centric users (R-user), while transmitting mixed multicast-unicast messages both to the R-user and to the communication-centric user (C-user). In particular, the multicast information is intended for both the R- and C-users, whereas the unicast information is only intended for the C-user. More explicitly, NOMA is employed to facilitate this double spectrum sharing, where the multicast and unicast signals are superimposed in the power domain and the superimposed communication signals are also exploited as radar probing waveforms. First, a beamformer-based NOMA-aided joint Rad-MU-Com framework is proposed for the system having a single R-user and a single C-user. Based on this framework, the unicast rate maximization problem is formulated by optimizing the beamformers employed, while satisfying the rate requirement of multicast and the predefined accuracy of the radar beam pattern. The resultant non-convex optimization problem is solved by a penalty-based iterative algorithm to find a high-quality near-optimal solution. Next, the system is extended to the scenario of multiple pairs of R- and C-users, where a cluster-based NOMA-aided joint Rad-MU-Com framework is proposed. A joint beamformer design and power allocation optimization problem is formulated for the maximization of the sum of the unicast rate at each C-user, subject to the constraints on both the minimum multicast rate for each R&C pair and on accuracy of the radar beam pattern for detecting multiple R-users. The resultant joint optimization problem is efficiently solved by another penalty-based iterative algorithm developed.

Several studies have shown the ability of natural gradient descent to minimize the objective function more efficiently than ordinary gradient descent based methods. However, the bottleneck of this approach for training deep neural networks lies in the prohibitive cost of solving a large dense linear system corresponding to the Fisher Information Matrix (FIM) at each iteration. This has motivated various approximations of either the exact FIM or the empirical one. The most sophisticated of these is KFAC, which involves a Kronecker-factored block diagonal approximation of the FIM. With only a slight additional cost, a few improvements of KFAC from the standpoint of accuracy are proposed. The common feature of the four novel methods is that they rely on a direct minimization problem, the solution of which can be computed via the Kronecker product singular value decomposition technique. Experimental results on the three standard deep auto-encoder benchmarks showed that they provide more accurate approximations to the FIM. Furthermore, they outperform KFAC and state-of-the-art first-order methods in terms of optimization speed.

Deterministic IP (DIP) networking is a promising technique that can provide delay-bounded transmission in large-scale networks. Nevertheless, DIP faces several challenges in the mixed traffic scenarios, including (i) the capability of ultra-low latency communications, (ii) the simultaneous satisfaction of diverse QoS requirements, and (iii) the network efficiency. The problems are more formidable in the dynamic surroundings without prior knowledge of traffic demands. To address the above-mentioned issues, this paper designs a flexible DIP (FDIP) network. In the proposed network, we classify the queues at the output port into multiple groups. Each group operates with different cycle lengths. FDIP can assign the time-sensitive flows with different groups, hence delivering diverse QoS requirements, simultaneously. The ultra-low latency communication can be achieved by specific groups with short cycle lengths. Moreover, the flexible scheduling with diverse cycle lengths improves resource utilization, hence increasing the throughput (i.e., the number of acceptable time-sensitive flows). We formulate a throughput maximization problem that jointly considers the admission control, transmission path selection, and cycle length assignment. A branch and bound (BnB)-based heuristic is developed. Simulation results show that the proposed FDIP significantly outperforms the standard DIP in terms of both the throughput and the latency guarantees.

Modern wireless cellular networks use massive multiple-input multiple-output (MIMO) technology. This technology involves operations with an antenna array at a base station that simultaneously serves multiple mobile devices which also use multiple antennas on their side. For this, various precoding and detection techniques are used, allowing each user to receive the signal intended for him from the base station. There is an important class of linear precoding called Regularized Zero-Forcing (RZF). In this work, we propose Adaptive RZF (ARZF) with a special kind of regularization matrix with different coefficients for each layer of multi-antenna users. These regularization coefficients are defined by explicit formulas based on SVD decompositions of user channel matrices. We study the optimization problem, which is solved by the proposed algorithm, with the connection to other possible problem statements. We also compare the proposed algorithm with state-of-the-art linear precoding algorithms on simulations with the Quadriga channel model. The proposed approach provides a significant increase in quality with the same computation time as in the reference methods.

High-speed train (HST) communications with orthogonal frequency division multiplexing (OFDM) techniques have received significant attention in recent years. Besides, cell-free (CF) massive multiple-input multiple-output (MIMO) is considered a promising technology to achieve the ultimate performance limit. In this paper, we focus on the performance of CF massive MIMO-OFDM systems with both matched filter and large-scale fading decoding (LSFD) receivers in HST communications. HST communications with small cell and cellular massive MIMO-OFDM systems are also analyzed for comparison. Considering the bad effect of Doppler frequency offset (DFO) on system performance, exact closed-form expressions for uplink spectral efficiency (SE) of all systems are derived. According to the simulation results, we find that the CF massive MIMO-OFDM system with LSFD achieves both larger SE and lower SE drop percentages than other systems. In addition, increasing the number of access points (APs) and antennas per AP can effectively compensate for the performance loss from the DFO. Moreover, there is an optimal vertical distance between APs and HST to achieve the maximum SE.

Cell-free (CF) massive multiple-input multiple-output (MIMO) systems are expected to implement advanced cooperative communication techniques to let geographically distributed access points jointly serve user equipments. Building on the \emph{Team Theory}, we design the uplink team minimum mean-squared error (TMMSE) combining under limited data and flexible channel state information (CSI) sharing. Taking into account the effect of both channel estimation errors and pilot contamination, a minimum MSE problem is formulated to derive unidirectional TMMSE, centralized TMMSE and statistical TMMSE combining functions, where CF massive MIMO systems operate in unidirectional CSI, centralized CSI and statistical CSI sharing schemes, respectively. We then derive the uplink spectral efficiency (SE) of the considered system. The results show that, compared to centralized TMMSE, the unidirectional TMMSE only needs nearly half the cost of CSI sharing burden with neglectable SE performance loss. Moreover, the performance gap between unidirectional and centralized TMMSE combining schemes can be effectively reduced by increasing the number of APs and antennas per AP.

The paper studies the multi-user precoding problem as a non-convex optimization problem for wireless multiple input and multiple output (MIMO) systems. In our work, we approximate the target Spectral Efficiency function with a novel computationally simpler function. Then, we reduce the precoding problem to an unconstrained optimization task using a special differential projection method and solve it by the Quasi-Newton L-BFGS iterative procedure to achieve gains in capacity. We are testing the proposed approach in several scenarios generated using Quadriga~-- open-source software for generating realistic radio channel impulse response. Our method shows monotonic improvement over heuristic methods with reasonable computation time. The proposed L-BFGS optimization scheme is novel in this area and shows a significant advantage over the standard approaches. The proposed method has a simple implementation and can be a good reference for other heuristic algorithms in this field.

In this paper, we investigate the secure rate-splitting for the two-user multiple-input multiple-output (MIMO) broadcast channel with imperfect channel state information at the transmitter (CSIT) and a multiple-antenna jammer, where each receiver has equal number of antennas and the jammer has perfect channel state information (CSI). Specifically, we design the secure rate-splitting multiple-access in this scenario, where the security of splitted private and common messages is ensured by precoder design with joint nulling and aligning the leakage information, regarding to different antenna configurations. As a result, we show that the sum-secure degrees-of-freedom (SDoF) achieved by secure rate-splitting outperforms that by conventional zero-forcing. Therefore, we validate the superiority of rate-splitting for the secure purpose in the two-user MIMO broadcast channel with imperfect CSIT and a jammer.

In this paper, we investigate the performance of an RIS-aided wireless communication system subject to outdated channel state information that may operate in both the near- and far-field regions. In particular, we take two RIS deployment strategies into consideration: (i) the centralized deployment, where all the reflecting elements are installed on a single RIS and (ii) the distributed deployment, where the same number of reflecting elements are placed on multiple RISs. For both deployment strategies, we derive accurate closed-form approximations for the ergodic capacity, and we introduce tight upper and lower bounds for the ergodic capacity to obtain useful design insights. From this analysis, we unveil that an increase of the transmit power, the Rician-K factor, the accuracy of the channel state information and the number of reflecting elements help improve the system performance. Moreover, we prove that the centralized RIS-aided deployment may achieve a higher ergodic capacity as compared with the distributed RIS-aided deployment when the RIS is located near the base station or near the user. In different setups, on the other hand, we prove that the distributed deployment outperforms the centralized deployment. Finally, the analytical results are verified by using Monte Carlo simulations.

As investigations on physical layer security evolve from point-to-point systems to multi-user scenarios, multi-user interference (MUI) is introduced and becomes an unavoidable issue. Different from treating MUI totally as noise in conventional secure communications, in this paper, we propose a rate-splitting multiple access (RSMA)-based secure beamforming design, where user messages are split and encoded into common and private streams. Each user not only decodes the common stream and the intended private stream, but also tries to eavesdrop the private streams of other users. We formulate a weighted sum-rate (WSR) maximization problem subject to the secrecy rate requirements of all users. To tackle the non-convexity of the formulated problem, a successive convex approximation (SCA)-based approach is adopted to convert the original non-convex and intractable problem into a low-complexity suboptimal iterative algorithm. Numerical results demonstrate that the proposed secure beamforming scheme outperforms the conventional multi-user linear precoding (MULP) technique in terms of the WSR performance while ensuring user secrecy rate requirements.

北京阿比特科技有限公司