亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Implementing accurate Distribution System State Estimation (DSSE) faces several challenges, among which the lack of observability and the high density of the distribution system. While data-driven alternatives based on Machine Learning models could be a choice, they suffer in DSSE because of the lack of labeled data. In fact, measurements in the distribution system are often noisy, corrupted, and unavailable. To address these issues, we propose the Deep Statistical Solver for Distribution System State Estimation (DSS$^2$), a deep learning model based on graph neural networks (GNNs) that accounts for the network structure of the distribution system and for the physical governing power flow equations. DSS$^2$ leverages hypergraphs to represent the heterogeneous components of the distribution systems and updates their latent representations via a node-centric message-passing scheme. A weakly supervised learning approach is put forth to train the DSS$^2$ in a learning-to-optimize fashion w.r.t. the Weighted Least Squares loss with noisy measurements and pseudomeasurements. By enforcing the GNN output into the power flow equations and the latter into the loss function, we force the DSS$^2$ to respect the physics of the distribution system. This strategy enables learning from noisy measurements, acting as an implicit denoiser, and alleviating the need for ideal labeled data. Extensive experiments with case studies on the IEEE 14-bus, 70-bus, and 179-bus networks showed the DSS$^2$ outperforms by a margin the conventional Weighted Least Squares algorithm in accuracy, convergence, and computational time, while being more robust to noisy, erroneous, and missing measurements. The DSS$^2$ achieves a competing, yet lower, performance compared with the supervised models that rely on the unrealistic assumption of having all the true labels.

相關內容

決策支持系統(Decision Support Systems)期刊中發表的文章的共同主線是它們與支持增強決策制定的理論和技術問題的相關性。所涉及的領域可能包括基礎、功能、接口、實現、影響和決策支持系統(DSS)的評估。手稿可以從不同的方法和方法學中獲得,包括決策理論、經濟學、計量經濟學、統計學、計算機支持的協作工作、數據庫管理、語言學、管理科學、數學建模、運營管理、認知科學、心理學、用戶界面管理等。但是,一份側重于對任何這些相關領域的直接貢獻的手稿應提交給適合于特定領域的機構。 官網地址:

Learning in MDPs with highly complex state representations is currently possible due to multiple advancements in reinforcement learning algorithm design. However, this incline in complexity, and furthermore the increase in the dimensions of the observation came at the cost of volatility that can be taken advantage of via adversarial attacks (i.e. moving along worst-case directions in the observation space). To solve this policy instability problem we propose a novel method to detect the presence of these non-robust directions via local quadratic approximation of the deep neural policy loss. Our method provides a theoretical basis for the fundamental cut-off between safe observations and adversarial observations. Furthermore, our technique is computationally efficient, and does not depend on the methods used to produce the worst-case directions. We conduct extensive experiments in the Arcade Learning Environment with several different adversarial attack techniques. Most significantly, we demonstrate the effectiveness of our approach even in the setting where non-robust directions are explicitly optimized to circumvent our proposed method.

A critical obstacle preventing NeRF models from being deployed broadly in the wild is their reliance on accurate camera poses. Consequently, there is growing interest in extending NeRF models to jointly optimize camera poses and scene representation, which offers an alternative to off-the-shelf SfM pipelines which have well-understood failure modes. Existing approaches for unposed NeRF operate under limited assumptions, such as a prior pose distribution or coarse pose initialization, making them less effective in a general setting. In this work, we propose a novel approach, LU-NeRF, that jointly estimates camera poses and neural radiance fields with relaxed assumptions on pose configuration. Our approach operates in a local-to-global manner, where we first optimize over local subsets of the data, dubbed mini-scenes. LU-NeRF estimates local pose and geometry for this challenging few-shot task. The mini-scene poses are brought into a global reference frame through a robust pose synchronization step, where a final global optimization of pose and scene can be performed. We show our LU-NeRF pipeline outperforms prior attempts at unposed NeRF without making restrictive assumptions on the pose prior. This allows us to operate in the general SE(3) pose setting, unlike the baselines. Our results also indicate our model can be complementary to feature-based SfM pipelines as it compares favorably to COLMAP on low-texture and low-resolution images.

Network data, commonly used throughout the physical, social, and biological sciences, consists of nodes (individuals) and the edges (interactions) between them. One way to represent network data's complex, high-dimensional structure is to embed the graph into a low-dimensional geometric space. The curvature of this space, in particular, provides insights about the structure in the graph, such as the propensity to form triangles or present tree-like structures. We derive an estimating function for curvature based on triangle side lengths and the length of the midpoint of a side to the opposing corner. We construct an estimator where the only input is a distance matrix and also establish asymptotic normality. We next introduce a novel latent distance matrix estimator for networks and an efficient algorithm to compute the estimate via solving iterative quadratic programs. We apply this method to the Los Alamos National Laboratory Unified Network and Host dataset and show how curvature estimates can be used to detect a red-team attack faster than naive methods, as well as discover non-constant latent curvature in co-authorship networks in physics. The code for this paper is available at //github.com/SteveJWR/netcurve, and the methods are implemented in the R package //github.com/SteveJWR/lolaR.

When introducing physics-constrained deep learning solutions to the volumetric super-resolution of scientific data, the training is challenging to converge and always time-consuming. We propose a new hierarchical sampling method based on octree to solve these difficulties. In our approach, scientific data is preprocessed before training, and a hierarchical octree-based data structure is built to guide sampling on the latent context grid. Each leaf node in the octree corresponds to an indivisible subblock of the volumetric data. The dimensions of the subblocks are different, making the number of sample points in each randomly cropped training data block to be adaptive. We reconstruct the octree at intervals according to loss distribution to perform the multi-stage training. With the Rayleigh-B\'enard convection problem, we deploy our method to state-of-the-art models. We constructed adequate experiments to evaluate the training performance and model accuracy of our method. Experiments indicate that our sampling optimization improves the convergence performance of physics-constrained deep learning super-resolution solutions. Furthermore, the sample points and training time are significantly reduced with no drop in model accuracy. We also test our method in training tasks of other deep neural networks, and the results show our sampling optimization has extensive effectiveness and applicability. The code is publicly available at //github.com/xinjiewang/octree-based_sampling.

Personalized recommender systems fulfill the daily demands of customers and boost online businesses. The goal is to learn a policy that can generate a list of items that matches the user's demand or interest. While most existing methods learn a pointwise scoring model that predicts the ranking score of each individual item, recent research shows that the listwise approach can further improve the recommendation quality by modeling the intra-list correlations of items that are exposed together. This has motivated the recent list reranking and generative recommendation approaches that optimize the overall utility of the entire list. However, it is challenging to explore the combinatorial space of list actions and existing methods that use cross-entropy loss may suffer from low diversity issues. In this work, we aim to learn a policy that can generate sufficiently diverse item lists for users while maintaining high recommendation quality. The proposed solution, GFN4Rec, is a generative method that takes the insight of the flow network to ensure the alignment between list generation probability and its reward. The key advantages of our solution are the log scale reward matching loss that intrinsically improves the generation diversity and the autoregressive item selection model that captures the item mutual influences while capturing future reward of the list. As validation of our method's effectiveness and its superior diversity during active exploration, we conduct experiments on simulated online environments as well as an offline evaluation framework for two real-world datasets.

We propose a novel $K$-nearest neighbor resampling procedure for estimating the performance of a policy from historical data containing realized episodes of a decision process generated under a different policy. We focus on feedback policies that depend deterministically on the current state in environments with continuous state-action spaces and system-inherent stochasticity effected by chosen actions. Such settings are common in a wide range of high-stake applications and are actively investigated in the context of stochastic control. Our procedure exploits that similar state/action pairs (in a metric sense) are associated with similar rewards and state transitions. This enables our resampling procedure to tackle the counterfactual estimation problem underlying off-policy evaluation (OPE) by simulating trajectories similarly to Monte Carlo methods. Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization and does not explicitly assume a parametric model for the environment's dynamics. These properties make the proposed resampling algorithm particularly useful for stochastic control environments. We prove that our method is statistically consistent in estimating the performance of a policy in the OPE setting under weak assumptions and for data sets containing entire episodes rather than independent transitions. To establish the consistency, we generalize Stone's Theorem, a well-known result in nonparametric statistics on local averaging, to include episodic data and the counterfactual estimation underlying OPE. Numerical experiments demonstrate the effectiveness of the algorithm in a variety of stochastic control settings including a linear quadratic regulator, trade execution in limit order books and online stochastic bin packing.

Distributional robustness is a promising framework for training deep learning models that are less vulnerable to adversarial examples and data distribution shifts. Previous works have mainly focused on exploiting distributional robustness in data space. In this work, we explore an optimal transport-based distributional robustness framework on model spaces. Specifically, we examine a model distribution in a Wasserstein ball of a given center model distribution that maximizes the loss. We have developed theories that allow us to learn the optimal robust center model distribution. Interestingly, through our developed theories, we can flexibly incorporate the concept of sharpness awareness into training a single model, ensemble models, and Bayesian Neural Networks by considering specific forms of the center model distribution, such as a Dirac delta distribution over a single model, a uniform distribution over several models, and a general Bayesian Neural Network. Furthermore, we demonstrate that sharpness-aware minimization (SAM) is a specific case of our framework when using a Dirac delta distribution over a single model, while our framework can be viewed as a probabilistic extension of SAM. We conduct extensive experiments to demonstrate the usefulness of our framework in the aforementioned settings, and the results show remarkable improvements in our approaches to the baselines.

Data is a precious resource in today's society, and is generated at an unprecedented and constantly growing pace. The need to store, analyze, and make data promptly available to a multitude of users introduces formidable challenges in modern software platforms. These challenges radically transformed all research fields that gravitate around data management and processing, with the introduction of distributed data-intensive systems that offer new programming models and implementation strategies to handle data characteristics such as its volume, the rate at which it is produced, its heterogeneity, and its distribution. Each data-intensive system brings its specific choices in terms of data model, usage assumptions, synchronization, processing strategy, deployment, guarantees in terms of consistency, fault tolerance, ordering. Yet, the problems data-intensive systems face and the solutions they propose are frequently overlapping. This paper proposes a unifying model that dissects the core functionalities of data-intensive systems, and precisely discusses alternative design and implementation strategies, pointing out their assumptions and implications. The model offers a common ground to understand and compare highly heterogeneous solutions, with the potential of fostering cross-fertilization across research communities and advancing the field. We apply our model by classifying tens of systems: an exercise that brings to interesting observations on the current trends in the domain of data-intensive systems and suggests open research directions.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.

北京阿比特科技有限公司