We study a non standard mixed formulation of the Poisson problem, sometimes known as dual mixed formulation. For reasons related to the equilibration of the flux, we use finite elements that are conforming in H(div) for the approximation of the gradients, even if the formulation would allow for discontinuous finite elements. The scheme is not uniformly inf-sup stable, but we can show existence and uniqueness of the solution, as well as optimal error estimates for the gradient variable when suitable regularity assumptions are made. Several additional remarks complete the paper, shedding some light on the sources of instability for mixed formulations.
Linear systems occur throughout engineering and the sciences, most notably as differential equations. In many cases the forcing function for the system is unknown, and interest lies in using noisy observations of the system to infer the forcing, as well as other unknown parameters. In differential equations, the forcing function is an unknown function of the independent variables (typically time and space), and can be modelled as a Gaussian process (GP). In this paper we show how the adjoint of a linear system can be used to efficiently infer forcing functions modelled as GPs, using a truncated basis expansion of the GP kernel. We show how exact conjugate Bayesian inference for the truncated GP can be achieved, in many cases with substantially lower computation than would be required using MCMC methods. We demonstrate the approach on systems of both ordinary and partial differential equations, and show that the basis expansion approach approximates well the true forcing with a modest number of basis vectors. Finally, we show how to infer point estimates for the non-linear model parameters, such as the kernel length-scales, using Bayesian optimisation.
We consider an optimal control problem constrained by a parabolic partial differential equation (PDE) with Robin boundary conditions. We use a well-posed space-time variational formulation in Lebesgue--Bochner spaces with minimal regularity. The abstract formulation of the optimal control problem yields the Lagrange function and Karush--Kuhn--Tucker (KKT) conditions in a natural manner. This results in space-time variational formulations of the adjoint and gradient equation in Lebesgue--Bochner spaces with minimal regularity. Necessary and sufficient optimality conditions are formulated and the optimality system is shown to be well-posed. Next, we introduce a conforming uniformly stable simultaneous space-time (tensorproduct) discretization of the optimality system in these Lebesgue--Boch\-ner spaces. Using finite elements of appropriate orders in space and time for trial and test spaces, this setting is known to be equivalent to a Crank--Nicolson time-stepping scheme for parabolic problems. Differences to existing methods are detailed. We show numerical comparisons with time-stepping methods. The space-time method shows good stability properties and requires fewer degrees of freedom in time to reach the same accuracy.
Derived from spiking neuron models via the diffusion approximation, the moment activation (MA) faithfully captures the nonlinear coupling of correlated neural variability. However, numerical evaluation of the MA faces significant challenges due to a number of ill-conditioned Dawson-like functions. By deriving asymptotic expansions of these functions, we develop an efficient numerical algorithm for evaluating the MA and its derivatives ensuring reliability, speed, and accuracy. We also provide exact analytical expressions for the MA in the weak fluctuation limit. Powered by this efficient algorithm, the MA may serve as an effective tool for investigating the dynamics of correlated neural variability in large-scale spiking neural circuits.
The problem of low rank approximation is ubiquitous in science. Traditionally this problem is solved in unitary invariant norms such as Frobenius or spectral norm due to existence of efficient methods for building approximations. However, recent results reveal the potential of low rank approximations in Chebyshev norm, which naturally arises in many applications. In this paper we tackle the problem of building optimal rank-1 approximations in the Chebyshev norm. We investigate the properties of alternating minimization algorithm for building the low rank approximations and demonstrate how to use it to construct optimal rank-1 approximation. As a result we propose an algorithm that is capable of building optimal rank-1 approximations in Chebyshev norm for small matrices.
Discrete ordinate ($S_N$) and filtered spherical harmonics ($FP_N$) based schemes have been proven to be robust and accurate in solving the Boltzmann transport equation but they have their own strengths and weaknesses in different physical scenarios. We present a new method based on a finite element approach in angle that combines the strengths of both methods and mitigates their disadvantages. The angular variables are specified on a spherical geodesic grid with functions on the sphere being represented using a finite element basis. A positivity-preserving limiting strategy is employed to prevent non-physical values from appearing in the solutions. The resulting method is then compared with both $S_N$ and $FP_N$ schemes using four test problems and is found to perform well when one of the other methods fail.
Many applications, such as system identification, classification of time series, direct and inverse problems in partial differential equations, and uncertainty quantification lead to the question of approximation of a non-linear operator between metric spaces $\mathfrak{X}$ and $\mathfrak{Y}$. We study the problem of determining the degree of approximation of such operators on a compact subset $K_\mathfrak{X}\subset \mathfrak{X}$ using a finite amount of information. If $\mathcal{F}: K_\mathfrak{X}\to K_\mathfrak{Y}$, a well established strategy to approximate $\mathcal{F}(F)$ for some $F\in K_\mathfrak{X}$ is to encode $F$ (respectively, $\mathcal{F}(F)$) in terms of a finite number $d$ (repectively $m$) of real numbers. Together with appropriate reconstruction algorithms (decoders), the problem reduces to the approximation of $m$ functions on a compact subset of a high dimensional Euclidean space $\mathbb{R}^d$, equivalently, the unit sphere $\mathbb{S}^d$ embedded in $\mathbb{R}^{d+1}$. The problem is challenging because $d$, $m$, as well as the complexity of the approximation on $\mathbb{S}^d$ are all large, and it is necessary to estimate the accuracy keeping track of the inter-dependence of all the approximations involved. In this paper, we establish constructive methods to do this efficiently; i.e., with the constants involved in the estimates on the approximation on $\mathbb{S}^d$ being $\mathcal{O}(d^{1/6})$. We study different smoothness classes for the operators, and also propose a method for approximation of $\mathcal{F}(F)$ using only information in a small neighborhood of $F$, resulting in an effective reduction in the number of parameters involved.
Computing empirical Wasserstein distance in the independence test is an optimal transport (OT) problem with a special structure. This observation inspires us to study a special type of OT problem and propose a modified Hungarian algorithm to solve it exactly. For an OT problem involving two marginals with $m$ and $n$ atoms ($m\geq n$), respectively, the computational complexity of the proposed algorithm is $O(m^2n)$. Computing the empirical Wasserstein distance in the independence test requires solving this special type of OT problem, where $m=n^2$. The associated computational complexity of the proposed algorithm is $O(n^5)$, while the order of applying the classic Hungarian algorithm is $O(n^6)$. In addition to the aforementioned special type of OT problem, it is shown that the modified Hungarian algorithm could be adopted to solve a wider range of OT problems. Broader applications of the proposed algorithm are discussed -- solving the one-to-many and the many-to-many assignment problems. Numerical experiments are conducted to validate our theoretical results. The experiment results demonstrate that the proposed modified Hungarian algorithm compares favorably with the Hungarian algorithm and the well-known Sinkhorn algorithm.
Tests for structural breaks in time series should ideally be sensitive to breaks in the parameter of interest, while being robust to nuisance changes. Statistical analysis thus needs to allow for some form of nonstationarity under the null hypothesis of no change. In this paper, estimators for integrated parameters of locally stationary time series are constructed and a corresponding functional central limit theorem is established, enabling change-point inference for a broad class of parameters under mild assumptions. The proposed framework covers all parameters which may be expressed as nonlinear functions of moments, for example kurtosis, autocorrelation, and coefficients in a linear regression model. To perform feasible inference based on the derived limit distribution, a bootstrap variant is proposed and its consistency is established. The methodology is illustrated by means of a simulation study and by an application to high-frequency asset prices.
Deep learning shows great potential in generation tasks thanks to deep latent representation. Generative models are classes of models that can generate observations randomly with respect to certain implied parameters. Recently, the diffusion Model becomes a raising class of generative models by virtue of its power-generating ability. Nowadays, great achievements have been reached. More applications except for computer vision, speech generation, bioinformatics, and natural language processing are to be explored in this field. However, the diffusion model has its natural drawback of a slow generation process, leading to many enhanced works. This survey makes a summary of the field of the diffusion model. We firstly state the main problem with two landmark works - DDPM and DSM. Then, we present a diverse range of advanced techniques to speed up the diffusion models - training schedule, training-free sampling, mixed-modeling, and score & diffusion unification. Regarding existing models, we also provide a benchmark of FID score, IS, and NLL according to specific NFE. Moreover, applications with diffusion models are introduced including computer vision, sequence modeling, audio, and AI for science. Finally, there is a summarization of this field together with limitations & further directions.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.