亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose an approach for synthesizing novel view images from a single RGBD (Red Green Blue-Depth) input. Novel view synthesis (NVS) is an interesting computer vision task with extensive applications. Methods using multiple images has been well-studied, exemplary ones include training scene-specific Neural Radiance Fields (NeRF), or leveraging multi-view stereo (MVS) and 3D rendering pipelines. However, both are either computationally intensive or non-generalizable across different scenes, limiting their practical value. Conversely, the depth information embedded in RGBD images unlocks 3D potential from a singular view, simplifying NVS. The widespread availability of compact, affordable stereo cameras, and even LiDARs in contemporary devices like smartphones, makes capturing RGBD images more accessible than ever. In our method, we convert an RGBD image into a point cloud and render it from a different viewpoint, then formulate the NVS task into an image translation problem. We leveraged generative adversarial networks to style-transfer the rendered image, achieving a result similar to a photograph taken from the new perspective. We explore both unsupervised learning using CycleGAN and supervised learning with Pix2Pix, and demonstrate the qualitative results. Our method circumvents the limitations of traditional multi-image techniques, holding significant promise for practical, real-time applications in NVS.

相關內容

In this paper, we propose a novel model called SGFormer, Semantic Graph TransFormer for point cloud-based 3D scene graph generation. The task aims to parse a point cloud-based scene into a semantic structural graph, with the core challenge of modeling the complex global structure. Existing methods based on graph convolutional networks (GCNs) suffer from the over-smoothing dilemma and can only propagate information from limited neighboring nodes. In contrast, SGFormer uses Transformer layers as the base building block to allow global information passing, with two types of newly-designed layers tailored for the 3D scene graph generation task. Specifically, we introduce the graph embedding layer to best utilize the global information in graph edges while maintaining comparable computation costs. Furthermore, we propose the semantic injection layer to leverage linguistic knowledge from large-scale language model (i.e., ChatGPT), to enhance objects' visual features. We benchmark our SGFormer on the established 3DSSG dataset and achieve a 40.94% absolute improvement in relationship prediction's R@50 and an 88.36% boost on the subset with complex scenes over the state-of-the-art. Our analyses further show SGFormer's superiority in the long-tail and zero-shot scenarios. Our source code is available at //github.com/Andy20178/SGFormer.

This paper introduces Structured Noise Space GAN (SNS-GAN), a novel approach in the field of generative modeling specifically tailored for class-conditional generation in both image and time series data. It addresses the challenge of effectively integrating class labels into generative models without requiring structural modifications to the network. The SNS-GAN method embeds class conditions within the generator's noise space, simplifying the training process and enhancing model versatility. The model's efficacy is demonstrated through qualitative validations in the image domain and superior performance in time series generation compared to baseline models. This research opens new avenues for the application of GANs in various domains, including but not limited to time series and image data generation.

In this paper, we investigate the vulnerability of MDE to adversarial patches. We propose a novel \underline{S}tealthy \underline{A}dversarial \underline{A}ttacks on \underline{M}DE (SAAM) that compromises MDE by either corrupting the estimated distance or causing an object to seamlessly blend into its surroundings. Our experiments, demonstrate that the designed stealthy patch successfully causes a DNN-based MDE to misestimate the depth of objects. In fact, our proposed adversarial patch achieves a significant 60\% depth error with 99\% ratio of the affected region. Importantly, despite its adversarial nature, the patch maintains a naturalistic appearance, making it inconspicuous to human observers. We believe that this work sheds light on the threat of adversarial attacks in the context of MDE on edge devices. We hope it raises awareness within the community about the potential real-life harm of such attacks and encourages further research into developing more robust and adaptive defense mechanisms.

This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring Starchat, all LLMs consistently outperform the original documentation. Notably, closed-source models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/source-available LLMs, namely LLama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration, followed by Llama2, Bard, with ChatGPT and Starchat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.

In this paper, we propose a novel approach for solving linear numeric planning problems, called Symbolic Pattern Planning. Given a planning problem $\Pi$, a bound $n$ and a pattern -- defined as an arbitrary sequence of actions -- we encode the problem of finding a plan for $\Pi$ with bound $n$ as a formula with fewer variables and/or clauses than the state-of-the-art rolled-up and relaxed-relaxed-$\exists$ encodings. More importantly, we prove that for any given bound, it is never the case that the latter two encodings allow finding a valid plan while ours does not. On the experimental side, we consider 6 other planning systems -- including the ones which participated in this year's International Planning Competition (IPC) -- and we show that our planner Patty has remarkably good comparative performances on this year's IPC problems.

In this paper, we apply transformer-based Natural Language Generation (NLG) techniques to the problem of text simplification. Currently, there are only a few German datasets available for text simplification, even fewer with larger and aligned documents, and not a single one with narrative texts. In this paper, we explore to which degree modern NLG techniques can be applied to German narrative text simplifications. We use Longformer attention and a pre-trained mBART model. Our findings indicate that the existing approaches for German are not able to solve the task properly. We conclude on a few directions for future research to address this problem.

In this paper, we introduce Neural Information Retrieval resources for 11 widely spoken Indian Languages (Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, and Telugu) from two major Indian language families (Indo-Aryan and Dravidian). These resources include (a) INDIC-MARCO, a multilingual version of the MSMARCO dataset in 11 Indian Languages created using Machine Translation, and (b) Indic-ColBERT, a collection of 11 distinct Monolingual Neural Information Retrieval models, each trained on one of the 11 languages in the INDIC-MARCO dataset. To the best of our knowledge, IndicIRSuite is the first attempt at building large-scale Neural Information Retrieval resources for a large number of Indian languages, and we hope that it will help accelerate research in Neural IR for Indian Languages. Experiments demonstrate that Indic-ColBERT achieves 47.47% improvement in the MRR@10 score averaged over the INDIC-MARCO baselines for all 11 Indian languages except Oriya, 12.26% improvement in the NDCG@10 score averaged over the MIRACL Bengali and Hindi Language baselines, and 20% improvement in the MRR@100 Score over the Mr.Tydi Bengali Language baseline. IndicIRSuite is available at //github.com/saifulhaq95/IndicIRSuite

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

This work addresses a novel and challenging problem of estimating the full 3D hand shape and pose from a single RGB image. Most current methods in 3D hand analysis from monocular RGB images only focus on estimating the 3D locations of hand keypoints, which cannot fully express the 3D shape of hand. In contrast, we propose a Graph Convolutional Neural Network (Graph CNN) based method to reconstruct a full 3D mesh of hand surface that contains richer information of both 3D hand shape and pose. To train networks with full supervision, we create a large-scale synthetic dataset containing both ground truth 3D meshes and 3D poses. When fine-tuning the networks on real-world datasets without 3D ground truth, we propose a weakly-supervised approach by leveraging the depth map as a weak supervision in training. Through extensive evaluations on our proposed new datasets and two public datasets, we show that our proposed method can produce accurate and reasonable 3D hand mesh, and can achieve superior 3D hand pose estimation accuracy when compared with state-of-the-art methods.

北京阿比特科技有限公司