This work proposes a wavelet shrinkage rule under asymmetric LINEX loss function and a mixture of a point mass function at zero and the logistic distribution as prior distribution to the wavelet coefficients in a nonparametric regression model with gaussian error. Underestimation of a significant wavelet coefficient can lead to a bad detection of features of the unknown function such as peaks, discontinuities and oscillations. It can also occur under asymmetrically distributed wavelet coefficients. Thus the proposed rule is suitable when overestimation and underestimation have asymmetric losses. Statistical properties of the rule such as squared bias, variance, frequentist and bayesian risks are obtained. Simulation studies are conducted to evaluate the performance of the rule against standard methods and an application in a real dataset involving infrared spectra is provided.
Leverage score sampling is crucial to the design of randomized algorithms for large-scale matrix problems, while the computation of leverage scores is a bottleneck of many applications. In this paper, we propose a quantum algorithm to accelerate this useful method. The speedup is at least quadratic and could be exponential for well-conditioned matrices. We also prove some quantum lower bounds, which suggest that our quantum algorithm is close to optimal. As an application, we propose a new quantum algorithm for rigid regression problems with vector solution outputs. It achieves polynomial speedups over the best classical algorithm known. In this process, we give an improved randomized algorithm for rigid regression.
We introduce a family of high-order time semi-discretizations for semilinear wave equations of Klein--Gordon type with arbitrary smooth nonlinerities that are uniformly accurate in the non-relativistic limit where the speed of light goes to infinity. Our schemes do not require pre-computations that are specific to the nonlinearity and have no restrictions in step size. Instead, they rely upon a general oscillatory quadrature rule developed in a previous paper (Mohamad and Oliver, arXiv:1909.04616).
Online speech recognition, where the model only accesses context to the left, is an important and challenging use case for ASR systems. In this work, we investigate augmenting neural encoders for online ASR by incorporating structured state-space sequence models (S4), which are a family of models that provide a parameter-efficient way of accessing arbitrarily long left context. We perform systematic ablation studies to compare variants of S4 models and propose two novel approaches that combine them with convolutions. We find that the most effective design is to stack a small S4 using real-valued recurrent weights with a local convolution, allowing them to work complementarily. Our best model achieves WERs of 4.01%/8.53% on test sets from Librispeech, outperforming Conformers with extensively tuned convolution.
A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semi-linear problems with trilinear non-linearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space, and more importantly, modifies the trilinear term in the stream-function vorticity formulation of the incompressible 2D Navier-Stokes and the von K\'{a}rm\'{a}n equations. This enables the first efficient and reliable a posteriori error estimates for the 2D Navier-Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, $C^0$ interior penalty, and WOPSIP discretizations with piecewise quadratic polynomials.
This paper addresses the problem of end-effector formation control for a mixed group of two-link manipulators moving in a horizontal plane that comprises of fully-actuated manipulators and underactuated manipulators with only the second joint being actuated (referred to as the passive-active (PA) manipulators). The problem is solved by extending the distributed end-effector formation controller for the fully-actuated manipulator to the PA manipulator moving in a horizontal plane by using its integrability. This paper presents stability analysis of the closed-loop systems under a given necessary condition, and we prove that the manipulators' end-effector converge to the desired formation shape. The proposed method is validated by simulations.
This work proposes the extended functional tensor train (EFTT) format for compressing and working with multivariate functions on tensor product domains. Our compression algorithm combines tensorized Chebyshev interpolation with a low-rank approximation algorithm that is entirely based on function evaluations. Compared to existing methods based on the functional tensor train format, our approach often reduces the required storage, sometimes considerably, while achieving the same accuracy. In particular, we reduce the number of function evaluations required to achieve a prescribed accuracy by up to over 96% compared to the algorithm from [Gorodetsky, Karaman and Marzouk, Comput. Methods Appl. Mech. Eng., 347 (2019)] .
This paper introduces novel bulk-surface splitting schemes of first and second order for the wave equation with kinetic and acoustic boundary conditions of semi-linear type. For kinetic boundary conditions, we propose a reinterpretation of the system equations as a coupled system. This means that the bulk and surface dynamics are modeled separately and connected through a coupling constraint. This allows the implementation of splitting schemes, which show first-order convergence in numerical experiments. On the other hand, acoustic boundary conditions naturally separate bulk and surface dynamics. Here, Lie and Strang splitting schemes reach first- and second-order convergence, respectively, as we reveal numerically.
Invariant finite-difference schemes for the one-dimensional shallow water equations in the presence of a magnetic field for various bottom topographies are constructed. Based on the results of the group classification recently carried out by the authors, finite-difference analogues of the conservation laws of the original differential model are obtained. Some typical problems are considered numerically, for which a comparison is made between the cases of a magnetic field presence and when it is absent (the standard shallow water model). The invariance of difference schemes in Lagrangian coordinates and the energy preservation on the obtained numerical solutions are also discussed.
We study a finite volume scheme approximating a parabolic-elliptic Keller-Segel system with power law diffusion with exponent $\gamma \in [1,3]$ and periodic boundary conditions. We derive conditional a posteriori bounds for the error measured in the $L^\infty(0,T;H^1(\Omega))$ norm for the chemoattractant and by a quasi-norm-like quantity for the density. These results are based on stability estimates and suitable conforming reconstructions of the numerical solution. We perform numerical experiments showing that our error bounds are linear in mesh width and elucidating the behaviour of the error estimator under changes of $\gamma$.
Partial differential equations (PDEs) are used to describe a variety of physical phenomena. Often these equations do not have analytical solutions and numerical approximations are used instead. One of the common methods to solve PDEs is the finite element method. Computing derivative information of the solution with respect to the input parameters is important in many tasks in scientific computing. We extend JAX automatic differentiation library with an interface to Firedrake finite element library. High-level symbolic representation of PDEs allows bypassing differentiating through low-level possibly many iterations of the underlying nonlinear solvers. Differentiating through Firedrake solvers is done using tangent-linear and adjoint equations. This enables the efficient composition of finite element solvers with arbitrary differentiable programs. The code is available at github.com/IvanYashchuk/jax-firedrake.