Point clouds are versatile representations of 3D objects and have found widespread application in science and engineering. Many successful deep-learning models have been proposed that use them as input. The domain of chemical and materials modeling is especially challenging because exact compliance with physical constraints is highly desirable for a model to be usable in practice. These constraints include smoothness and invariance with respect to translations, rotations, and permutations of identical atoms. If these requirements are not rigorously fulfilled, atomistic simulations might lead to absurd outcomes even if the model has excellent accuracy. Consequently, dedicated architectures, which achieve invariance by restricting their design space, have been developed. General-purpose point-cloud models are more varied but often disregard rotational symmetry. We propose a general symmetrization method that adds rotational equivariance to any given model while preserving all the other requirements. Our approach simplifies the development of better atomic-scale machine-learning schemes by relaxing the constraints on the design space and making it possible to incorporate ideas that proved effective in other domains. We demonstrate this idea by introducing the Point Edge Transformer (PET) architecture, which is not intrinsically equivariant but achieves state-of-the-art performance on several benchmark datasets of molecules and solids. A-posteriori application of our general protocol makes PET exactly equivariant, with minimal changes to its accuracy.
The first-principles-based effective Hamiltonian is widely used to predict and simulate the properties of ferroelectrics and relaxor ferroelectrics. However, the parametrization method of the effective Hamiltonian is complicated and hardly can resolve the systems with complex interactions and/or complex components. Here, we developed an on-the-fly active machine learning approach to parametrize the effective Hamiltonian based on Bayesian linear regression. The parametrization is completed in molecular dynamics simulations, with the energy, forces and stress predicted at each step along with their uncertainties. First-principles calculations are executed when the uncertainties are large to retrain the parameters. This approach provides a universal and automatic way to compute the effective Hamiltonian parameters for any considered systems including complex systems which previous methods can not handle. The form of the effective Hamiltonian is also revised to include some complex terms. BaTiO3, CsPbI3 and SrTiO3/PbTiO3 surface are taken as examples to show the accurateness of this approach comparing with conventional first-principles parametrization method.
The dielectric response function and its inverse are crucial physical quantities in materials science. We propose an accurate and efficient strategy to invert the dielectric function matrix. The GW approximation, a powerful approach to accurately describe many-body excited states, is taken as an application to demonstrate accuracy and efficiency. We incorporate the interpolative separable density fitting (ISDF) algorithm with Sherman--Morrison--Woodbury (SMW) formula to accelerate the inversion process by exploiting low-rank properties of dielectric function in plane-wave GW calculations. Our ISDF--SMW strategy produces accurate quasiparticle energies with $O(N_{\mathrm{r}}N_{\mathrm{e}}^2)$ computational cost $(N_{\mathrm{e}}$ is the number of electrons and $N_{\mathrm{r}}=100$--$1000N_{\mathrm{e}}$ is the number of grid points) with negligible small error of $0.03$~eV for both complex molecules and solids. This new strategy for inverting the dielectric matrix can be \(50\times\) faster than the current state-of-the-art implementation in BerkeleyGW, resulting in two orders of magnitude speedup for total GW calculations.
We propose a new Riemannian gradient descent method for computing spherical area-preserving mappings of topological spheres using a Riemannian retraction-based framework with theoretically guaranteed convergence. The objective function is based on the stretch energy functional, and the minimization is constrained on a power manifold of unit spheres embedded in 3-dimensional Euclidean space. Numerical experiments on several mesh models demonstrate the accuracy and stability of the proposed framework. Comparisons with two existing state-of-the-art methods for computing area-preserving mappings demonstrate that our algorithm is both competitive and more efficient. Finally, we present a concrete application to the problem of landmark-aligned surface registration of two brain models.
Recent progress in research on Deep Graph Networks (DGNs) has led to a maturation of the domain of learning on graphs. Despite the growth of this research field, there are still important challenges that are yet unsolved. Specifically, there is an urge of making DGNs suitable for predictive tasks on realworld systems of interconnected entities, which evolve over time. With the aim of fostering research in the domain of dynamic graphs, at first, we survey recent advantages in learning both temporal and spatial information, providing a comprehensive overview of the current state-of-the-art in the domain of representation learning for dynamic graphs. Secondly, we conduct a fair performance comparison among the most popular proposed approaches on node and edge-level tasks, leveraging rigorous model selection and assessment for all the methods, thus establishing a sound baseline for evaluating new architectures and approaches
Symplectic integrators are widely implemented numerical integrators for Hamiltonian mechanics, which preserve the Hamiltonian structure (symplecticity) of the system. Although the symplectic integrator does not conserve the energy of the system, it is well known that there exists a conserving modified Hamiltonian, called the shadow Hamiltonian. For the Nambu mechanics, which is one of the generalized Hamiltonian mechanics, we can also construct structure-preserving integrators by the same procedure used to construct the symplectic integrators. In the structure-preserving integrator, however, the existence of shadow Hamiltonians is non-trivial. This is because the Nambu mechanics is driven by multiple Hamiltonians and it is non-trivial whether the time evolution by the integrator can be cast into the Nambu mechanical time evolution driven by multiple shadow Hamiltonians. In the present paper we construct structure-preserving integrators for a simple Nambu mechanical system, and derive the shadow Hamiltonians in two ways. This is the first attempt to derive shadow Hamiltonians of structure-preserving integrators for Nambu mechanics. We show that the fundamental identity, which corresponds to the Jacobi identity in Hamiltonian mechanics, plays an important role to calculate the shadow Hamiltonians using the Baker-Campbell-Hausdorff formula. It turns out that the resulting shadow Hamiltonians have indefinite forms depending on how the fundamental identities are used. This is not a technical artifact, because the exact shadow Hamiltonians obtained independently have the same indefiniteness.
The elastic energy of a bending-resistant interface depends both on its geometry and its material composition. We consider such a heterogeneous interface in the plane, modeled by a curve equipped with an additional density function. The resulting energy captures the complex interplay between curvature and density effects, resembling the Canham-Helfrich functional. We describe the curve by its inclination angle, so that the equilibrium equations reduce to an elliptic system of second order. After a brief variational discussion, we investigate the associated nonlocal $L^2$-gradient flow evolution, a coupled quasilinear parabolic problem. We analyze the (non)preservation of quantities such as convexity, positivity, and symmetry, as well as the asymptotic behavior of the system. The results are illustrated by numerical experiments.
The standard approach to tackling computer vision problems is to train deep convolutional neural network (CNN) models using large-scale image datasets which are representative of the target task. However, in many scenarios, it is often challenging to obtain sufficient image data for the target task. Data augmentation is a way to mitigate this challenge. A common practice is to explicitly transform existing images in desired ways so as to create the required volume and variability of training data necessary to achieve good generalization performance. In situations where data for the target domain is not accessible, a viable workaround is to synthesize training data from scratch--i.e., synthetic data augmentation. This paper presents an extensive review of synthetic data augmentation techniques. It covers data synthesis approaches based on realistic 3D graphics modeling, neural style transfer (NST), differential neural rendering, and generative artificial intelligence (AI) techniques such as generative adversarial networks (GANs) and variational autoencoders (VAEs). For each of these classes of methods, we focus on the important data generation and augmentation techniques, general scope of application and specific use-cases, as well as existing limitations and possible workarounds. Additionally, we provide a summary of common synthetic datasets for training computer vision models, highlighting the main features, application domains and supported tasks. Finally, we discuss the effectiveness of synthetic data augmentation methods. Since this is the first paper to explore synthetic data augmentation methods in great detail, we are hoping to equip readers with the necessary background information and in-depth knowledge of existing methods and their attendant issues.
A wide range of applications in science and engineering involve a PDE model in a domain with perforations, such as perforated metals or air filters. Solving such perforated domain problems suffers from computational challenges related to resolving the scale imposed by the geometries of perforations. We propose a neural network-based mesh-free approach for perforated domain problems. The method is robust and efficient in capturing various configuration scales, including the averaged macroscopic behavior of the solution that involves a multiscale nature induced by small perforations. The new approach incorporates the derivative-free loss method that uses a stochastic representation or the Feynman-Kac formulation. In particular, we implement the Neumann boundary condition for the derivative-free loss method to handle the interface between the domain and perforations. A suite of stringent numerical tests is provided to support the proposed method's efficacy in handling various perforation scales.
Adaptiveness is a key principle in information processing including statistics and machine learning. We investigate the usefulness of adaptive methods in the framework of asymptotic binary hypothesis testing, when each hypothesis represents asymptotically many independent instances of a quantum channel, and the tests are based on using the unknown channel and observing outputs. Unlike the familiar setting of quantum states as hypotheses, there is a fundamental distinction between adaptive and non-adaptive strategies with respect to the channel uses, and we introduce a number of further variants of the discrimination tasks by imposing different restrictions on the test strategies. The following results are obtained: (1) We prove that for classical-quantum channels, adaptive and non-adaptive strategies lead to the same error exponents both in the symmetric (Chernoff) and asymmetric (Hoeffding, Stein) settings. (2) The first separation between adaptive and non-adaptive symmetric hypothesis testing exponents for quantum channels, which we derive from a general lower bound on the error probability for non-adaptive strategies; the concrete example we analyze is a pair of entanglement-breaking channels. (3)We prove, in some sense generalizing the previous statement, that for general channels adaptive strategies restricted to classical feed-forward and product state channel inputs are not superior in the asymptotic limit to non-adaptive product state strategies. (4) As an application of our findings, we address the discrimination power of an arbitrary quantum channel and show that adaptive strategies with classical feedback and no quantum memory at the input do not increase the discrimination power of the channel beyond non-adaptive tensor product input strategies.
Graph-based approximation methods are of growing interest in many areas, including transportation, biological and chemical networks, financial models, image processing, network flows, and more. In these applications, often a basis for the approximation space is not available analytically and must be computed. We propose perturbations of Lagrange bases on graphs, where the Lagrange functions come from a class of functions analogous to classical splines. The basis functions we consider have local support, with each basis function obtained by solving a small energy minimization problem related to a differential operator on the graph. We present $\ell_\infty$ error estimates between the local basis and the corresponding interpolatory Lagrange basis functions in cases where the underlying graph satisfies a mild assumption on the connections of vertices where the function is not known, and the theoretical bounds are examined further in numerical experiments. Included in our analysis is a mixed-norm inequality for positive definite matrices that is tighter than the general estimate $\|A\|_{\infty} \leq \sqrt{n} \|A\|_{2}$.