亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, deep learning-based methods achieved promising performance in nuclei detection and classification applications. However, training deep learning-based methods requires a large amount of pixel-wise annotated data, which is time-consuming and labor-intensive, especially in 3D images. An alternative approach is to adapt weak-annotation methods, such as labeling each nucleus with a point, but this method does not extend from 2D histopathology images (for which it was originally developed) to 3D immunofluorescent images. The reason is that 3D images contain multiple channels (z-axis) for nuclei and different markers separately, which makes training using point annotations difficult. To address this challenge, we propose the Label-efficient Contrastive learning-based (LECL) model to detect and classify various types of nuclei in 3D immunofluorescent images. Previous methods use Maximum Intensity Projection (MIP) to convert immunofluorescent images with multiple slices to 2D images, which can cause signals from different z-stacks to falsely appear associated with each other. To overcome this, we devised an Extended Maximum Intensity Projection (EMIP) approach that addresses issues using MIP. Furthermore, we performed a Supervised Contrastive Learning (SCL) approach for weakly supervised settings. We conducted experiments on cardiovascular datasets and found that our proposed framework is effective and efficient in detecting and classifying various types of nuclei in 3D immunofluorescent images.

相關內容

Multiobjective evolutionary algorithms (MOEAs) are major methods for solving multiobjective optimization problems (MOPs). Many MOEAs have been proposed in the past decades, of which the search operators need a carefully handcrafted design with domain knowledge. Recently, some attempts have been made to replace the manually designed operators in MOEAs with learning-based operators (e.g., neural network models). However, much effort is still required for designing and training such models, and the learned operators might not generalize well on new problems. To tackle the above challenges, this work investigates a novel approach that leverages the powerful large language model (LLM) to design MOEA operators. With proper prompt engineering, we successfully let a general LLM serve as a black-box search operator for decomposition-based MOEA (MOEA/D) in a zero-shot manner. In addition, by learning from the LLM behavior, we further design an explicit white-box operator with randomness and propose a new version of decomposition-based MOEA, termed MOEA/D-LO. Experimental studies on different test benchmarks show that our proposed method can achieve competitive performance with widely used MOEAs. It is also promising to see the operator only learned from a few instances can have robust generalization performance on unseen problems with quite different patterns and settings. The results reveal the potential benefits of using pre-trained LLMs in the design of MOEAs.

We study the multiplicative hazards model with intermittently observed longitudinal covariates and time-varying coefficients. For such models, the existing {\it ad hoc} approach, such as the last value carried forward, is biased. We propose a kernel weighting approach to get an unbiased estimation of the non-parametric coefficient function and establish asymptotic normality for any fixed time point. Furthermore, we construct the simultaneous confidence band to examine the overall magnitude of the variation. Simulation studies support our theoretical predictions and show favorable performance of the proposed method. A data set from cerebral infarction is used to illustrate our methodology.

Simultaneous machine translation (SiMT) models are trained to strike a balance between latency and translation quality. However, training these models to achieve high quality while maintaining low latency often leads to a tendency for aggressive anticipation. We argue that such issue stems from the autoregressive architecture upon which most existing SiMT models are built. To address those issues, we propose non-autoregressive streaming Transformer (NAST) which comprises a unidirectional encoder and a non-autoregressive decoder with intra-chunk parallelism. We enable NAST to generate the blank token or repetitive tokens to adjust its READ/WRITE strategy flexibly, and train it to maximize the non-monotonic latent alignment with an alignment-based latency loss. Experiments on various SiMT benchmarks demonstrate that NAST outperforms previous strong autoregressive SiMT baselines.

The video-language (VL) pretraining has achieved remarkable improvement in multiple downstream tasks. However, the current VL pretraining framework is hard to extend to multiple modalities (N modalities, N>=3) beyond vision and language. We thus propose LanguageBind, taking the language as the bind across different modalities because the language modality is well-explored and contains rich semantics. Specifically, we freeze the language encoder acquired by VL pretraining, then train encoders for other modalities with contrastive learning. As a result, all modalities are mapped to a shared feature space, implementing multi-modal semantic alignment. While LanguageBind ensures that we can extend VL modalities to N modalities, we also need a high-quality dataset with alignment data pairs centered on language. We thus propose VIDAL-10M with Video, Infrared, Depth, Audio and their corresponding Language, naming as VIDAL-10M. In our VIDAL-10M, all videos are from short video platforms with complete semantics rather than truncated segments from long videos, and all the video, depth, infrared, and audio modalities are aligned to their textual descriptions. After pretraining on VIDAL-10M, we outperform ImageBind by 5.8% R@1 on the MSR-VTT dataset with only 15% of the parameters in the zero-shot video-text retrieval task. Beyond this, our LanguageBind has greatly improved in the zero-shot video, audio, depth, and infrared understanding tasks. For instance, LanguageBind surpassing InterVideo by 1.9% on MSR-VTT, 8.8% on MSVD, 6.3% on DiDeMo, and 4.4% on ActivityNet. On the LLVIP and NYU-D datasets, LanguageBind outperforms ImageBind with 23.8% and 11.1% top-1 accuracy. Code address: //github.com/PKU-YuanGroup/LanguageBind.

The solution of inverse problems is central to a wide range of applications including medicine, biology, and engineering. These problems require finding a desired solution in the presence of noisy observations. A key feature of inverse problems is their ill-posedness, which leads to unstable behavior under noise when standard solution methods are used. For this reason, regularization methods have been developed that compromise between data fitting and prior structure. Recently, data-driven variational regularization methods have been introduced, where the prior in the form of a regularizer is derived from provided ground truth data. However, these methods have mainly been analyzed for Tikhonov regularization, referred to as Network Tikhonov Regularization (NETT). In this paper, we propose and analyze Morozov regularization in combination with a learned regularizer. The regularizers, which can be adapted to the training data, are defined by neural networks and are therefore non-convex. We give a convergence analysis in the non-convex setting allowing noise-dependent regularizers, and propose a possible training strategy. We present numerical results for attenuation correction in the context of photoacoustic tomography.

This paper studies a class of convolution quadratures, well-known numerical methods for calculation of convolution integrals. In contrast to the existing counterpart, which uses the linear multistep formula or Runge-Kutta method, we employ the block generalized Adams method to discretize the underlying initial value problem. Similar to the convolution quadrature method based on the linear multistep formula, the proposed method can also be implemented on an equispaced grid. In addition, the proposed approach is as stable as the convolution quadrature based on the Runge-Kutta method, which indicates that it can accurately solve a wide range of problems without becoming unstable. We provide a detailed convergence analysis for the proposed convolution quadrature method and numerically illustrate our theoretical findings for convolution integrals with smooth and weakly singular kernels.

The digitization of manufacturing processes enables promising applications for machine learning-assisted quality assurance. A widely used manufacturing process that can strongly benefit from data-driven solutions is gas metal arc welding (GMAW). The welding process is characterized by complex cause-effect relationships between material properties, process conditions and weld quality. In non-laboratory environments with frequently changing process parameters, accurate determination of weld quality by destructive testing is economically unfeasible. Deep learning offers the potential to identify the relationships in available process data and predict the weld quality from process observations. In this paper, we present a concept for a deep learning based predictive quality system in GMAW. At its core, the concept involves a pipeline consisting of four major phases: collection and management of multi-sensor data (e.g. current and voltage), real-time processing and feature engineering of the time series data by means of autoencoders, training and deployment of suitable recurrent deep learning models for quality predictions, and model evolutions under changing process conditions using continual learning. The concept provides the foundation for future research activities in which we will realize an online predictive quality system for running production.

We propose a neural network-based meta-learning method to efficiently solve partial differential equation (PDE) problems. The proposed method is designed to meta-learn how to solve a wide variety of PDE problems, and uses the knowledge for solving newly given PDE problems. We encode a PDE problem into a problem representation using neural networks, where governing equations are represented by coefficients of a polynomial function of partial derivatives, and boundary conditions are represented by a set of point-condition pairs. We use the problem representation as an input of a neural network for predicting solutions, which enables us to efficiently predict problem-specific solutions by the forwarding process of the neural network without updating model parameters. To train our model, we minimize the expected error when adapted to a PDE problem based on the physics-informed neural network framework, by which we can evaluate the error even when solutions are unknown. We demonstrate that our proposed method outperforms existing methods in predicting solutions of PDE problems.

While deep learning strategies achieve outstanding results in computer vision tasks, one issue remains. The current strategies rely heavily on a huge amount of labeled data. In many real-world problems it is not feasible to create such an amount of labeled training data. Therefore, researchers try to incorporate unlabeled data into the training process to reach equal results with fewer labels. Due to a lot of concurrent research, it is difficult to keep track of recent developments. In this survey we provide an overview of often used techniques and methods in image classification with fewer labels. We compare 21 methods. In our analysis we identify three major trends. 1. State-of-the-art methods are scaleable to real world applications based on their accuracy. 2. The degree of supervision which is needed to achieve comparable results to the usage of all labels is decreasing. 3. All methods share common techniques while only few methods combine these techniques to achieve better performance. Based on all of these three trends we discover future research opportunities.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

北京阿比特科技有限公司