亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper develops asymptotic normality results for individual coordinates of robust M-estimators with convex penalty in high-dimensions, where the dimension $p$ is at most of the same order as the sample size $n$, i.e, $p/n\le\gamma$ for some fixed constant $\gamma>0$. The asymptotic normality requires a bias correction and holds for most coordinates of the M-estimator for a large class of loss functions including the Huber loss and its smoothed versions regularized with a strongly convex penalty. The asymptotic variance that characterizes the width of the resulting confidence intervals is estimated with data-driven quantities. This estimate of the variance adapts automatically to low ($p/n\to0)$ or high ($p/n \le \gamma$) dimensions and does not involve the proximal operators seen in previous works on asymptotic normality of M-estimators. For the Huber loss, the estimated variance has a simple expression involving an effective degrees-of-freedom as well as an effective sample size. The case of the Huber loss with Elastic-Net penalty is studied in details and a simulation study confirms the theoretical findings. The asymptotic normality results follow from Stein formulae for high-dimensional random vectors on the sphere developed in the paper which are of independent interest.

相關內容

We introduce a new methodology for two-sample testing of high-dimensional linear regression coefficients without assuming that those coefficients are individually estimable. The procedure works by first projecting the matrices of covariates and response vectors along directions that are complementary in sign in a subset of the coordinates, a process which we call 'complementary sketching'. The resulting projected covariates and responses are aggregated to form two test statistics. We show that our procedure has essentially optimal asymptotic power under Gaussian designs with a general class of design covariance matrices when the difference between the two regression coefficients is sparse and dense respectively. Simulations confirm that our methods perform well in a broad class of settings.

This paper develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series. We introduce a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of a locally stationary functional time series. Subsequently, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions. We also establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss the prediction of locally stationary functional time series and methods for testing the equality of time-varying mean functions in two functional samples.

This paper addresses the task of estimating a covariance matrix under a patternless sparsity assumption. In contrast to existing approaches based on thresholding or shrinkage penalties, we propose a likelihood-based method that regularizes the distance from the covariance estimate to a symmetric sparsity set. This formulation avoids unwanted shrinkage induced by more common norm penalties and enables optimization of the resulting non-convex objective by solving a sequence of smooth, unconstrained subproblems. These subproblems are generated and solved via the proximal distance version of the majorization-minimization principle. The resulting algorithm executes rapidly, gracefully handles settings where the number of parameters exceeds the number of cases, yields a positive definite solution, and enjoys desirable convergence properties. Empirically, we demonstrate that our approach outperforms competing methods by several metrics across a suite of simulated experiments. Its merits are illustrated on an international migration dataset and a classic case study on flow cytometry. Our findings suggest that the marginal and conditional dependency networks for the cell signalling data are more similar than previously concluded.

We propose in this paper New Q-Newton's method. The update rule is very simple conceptually, for example $x_{n+1}=x_n-w_n$ where $w_n=pr_{A_n,+}(v_n)-pr_{A_n,-}(v_n)$, with $A_n=\nabla ^2f(x_n)+\delta _n||\nabla f(x_n)||^2.Id$ and $v_n=A_n^{-1}.\nabla f(x_n)$. Here $\delta _n$ is an appropriate real number so that $A_n$ is invertible, and $pr_{A_n,\pm}$ are projections to the vector subspaces generated by eigenvectors of positive (correspondingly negative) eigenvalues of $A_n$. The main result of this paper roughly says that if $f$ is $C^3$ (can be unbounded from below) and a sequence $\{x_n\}$, constructed by the New Q-Newton's method from a random initial point $x_0$, {\bf converges}, then the limit point is a critical point and is not a saddle point, and the convergence rate is the same as that of Newton's method. The first author has recently been successful incorporating Backtracking line search to New Q-Newton's method, thus resolving the convergence guarantee issue observed for some (non-smooth) cost functions. An application to quickly finding zeros of a univariate meromorphic function will be discussed. Various experiments are performed, against well known algorithms such as BFGS and Adaptive Cubic Regularization are presented.

The rapid finding of effective therapeutics requires the efficient use of available resources in clinical trials. The use of covariate adjustment can yield statistical estimates with improved precision, resulting in a reduction in the number of participants required to draw futility or efficacy conclusions. We focus on time-to-event and ordinal outcomes. A key question for covariate adjustment in randomized studies is how to fit a model relating the outcome and the baseline covariates to maximize precision. We present a novel theoretical result establishing conditions for asymptotic normality of a variety of covariate-adjusted estimators that rely on machine learning (e.g., l1-regularization, Random Forests, XGBoost, and Multivariate Adaptive Regression Splines), under the assumption that outcome data is missing completely at random. We further present a consistent estimator of the asymptotic variance. Importantly, the conditions do not require the machine learning methods to converge to the true outcome distribution conditional on baseline variables, as long as they converge to some (possibly incorrect) limit. We conducted a simulation study to evaluate the performance of the aforementioned prediction methods in COVID-19 trials using longitudinal data from over 1,500 patients hospitalized with COVID-19 at Weill Cornell Medicine New York Presbyterian Hospital. We found that using l1-regularization led to estimators and corresponding hypothesis tests that control type 1 error and are more precise than an unadjusted estimator across all sample sizes tested. We also show that when covariates are not prognostic of the outcome, l1-regularization remains as precise as the unadjusted estimator, even at small sample sizes (n = 100). We give an R package adjrct that performs model-robust covariate adjustment for ordinal and time-to-event outcomes.

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially in a large-scale context, this article investigates penalization techniques. Taking inspiration from a well-known family of existing exact penalty algorithms, a novel improved penalty algorithm is derived, whose key ingredients are a basin hopping strategy and an interior point method, both of which are specialized for the problem class. A thorough numerical investigation is carried out for a standard stationary test problem. Extensions to a convection-diffusion as well as a nonlinear test problem finally demonstrate the versatility of the approach.

The covariance matrix plays a fundamental role in many modern exploratory and inferential statistical procedures, including dimensionality reduction, hypothesis testing, and regression. In low-dimensional regimes, where the number of observations far exceeds the number of variables, the optimality of the sample covariance matrix as an estimator of this parameter is well-established. High-dimensional regimes do not admit such a convenience, however. As such, a variety of estimators have been derived to overcome the shortcomings of the sample covariance matrix in these settings. Yet, the question of selecting an optimal estimator from among the plethora available remains largely unaddressed. Using the framework of cross-validated loss-based estimation, we develop the theoretical underpinnings of just such an estimator selection procedure. In particular, we propose a general class of loss functions for covariance matrix estimation and establish finite-sample risk bounds and conditions for the asymptotic optimality of the cross-validated estimator selector with respect to these loss functions. We evaluate our proposed approach via a comprehensive set of simulation experiments and demonstrate its practical benefits by application in the exploratory analysis of two single-cell transcriptome sequencing datasets. A free and open-source software implementation of the proposed methodology, the cvCovEst R package, is briefly introduced.

The problem of constructing a simultaneous confidence band for the mean function of a locally stationary functional time series $ \{ X_{i,n} (t) \}_{i = 1, \ldots, n}$ is challenging as these bands can not be built on classical limit theory. On the one hand, for a fixed argument $t$ of the functions $ X_{i,n}$, the maximum absolute deviation between an estimate and the time dependent regression function exhibits (after appropriate standardization) an extreme value behaviour with a Gumbel distribution in the limit. On the other hand, for stationary functional data, simultaneous confidence bands can be built on classical central theorems for Banach space valued random variables and the limit distribution of the maximum absolute deviation is given by the sup-norm of a Gaussian process. As both limit theorems have different rates of convergence, they are not compatible, and a weak convergence result, which could be used for the construction of a confidence surface in the locally stationary case, does not exist. In this paper we propose new bootstrap methodology to construct a simultaneous confidence band for the mean function of a locally stationary functional time series, which is motivated by a Gaussian approximation for the maximum absolute deviation. We prove the validity of our approach by asymptotic theory, demonstrate good finite sample properties by means of a simulation study and illustrate its applicability analyzing a data example.

Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta [EFMRTT19] demonstrates that random shuffling amplifies differential privacy guarantees of locally randomized data. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously [BEMMRLRKTS17] and has lead to significant interest in the shuffle model of privacy [CSUZZ19; EFMRTT19]. We show that random shuffling of $n$ data records that are input to $\varepsilon_0$-differentially private local randomizers results in an $(O((1-e^{-\varepsilon_0})\sqrt{\frac{e^{\varepsilon_0}\log(1/\delta)}{n}}), \delta)$-differentially private algorithm. This significantly improves over previous work and achieves the asymptotically optimal dependence in $\varepsilon_0$. Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees. Importantly, our work also yields an algorithm for deriving tighter bounds on the resulting $\varepsilon$ and $\delta$ as well as R\'enyi differential privacy guarantees. We show numerically that our algorithm gets to within a small constant factor of the optimal bound. As a direct corollary of our analysis we derive a simple and nearly optimal algorithm for frequency estimation in the shuffle model of privacy. We also observe that our result implies the first asymptotically optimal privacy analysis of noisy stochastic gradient descent that applies to sampling without replacement.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司