The clique chromatic number of a graph is the minimum number of colours needed to colour its vertices so that no inclusion-wise maximal clique which is not an isolated vertex is monochromatic. We show that every graph of maximum degree $\Delta$ has clique chromatic number $O\left(\frac{\Delta}{\log~\Delta}\right)$. We obtain as a corollary that every $n$-vertex graph has clique chromatic number $O\left(\sqrt{\frac{n}{\log ~n}}\right)$. Both these results are tight.
Let $G$ be a multigraph with $n$ vertices and $e>4n$ edges, drawn in the plane such that any two parallel edges form a simple closed curve with at least one vertex in its interior and at least one vertex in its exterior. Pach and T\'oth (A Crossing Lemma for Multigraphs, SoCG 2018) extended the Crossing Lemma of Ajtai et al. (Crossing-free subgraphs, North-Holland Mathematics Studies, 1982) and Leighton (Complexity issues in VLSI, Foundations of computing series, 1983) by showing that if no two adjacent edges cross and every pair of nonadjacent edges cross at most once, then the number of edge crossings in $G$ is at least $\alpha e^3/n^2$, for a suitable constant $\alpha>0$. The situation turns out to be quite different if nonparallel edges are allowed to cross any number of times. It is proved that in this case the number of crossings in $G$ is at least $\alpha e^{2.5}/n^{1.5}$. The order of magnitude of this bound cannot be improved.
We prove that a formula predicted on the basis of non-rigorous physics arguments [Zdeborova and Krzakala: Phys. Rev. E (2007)] provides a lower bound on the chromatic number of sparse random graphs. The proof is based on the interpolation method from mathematical physics. In the case of random regular graphs the lower bound can be expressed algebraically, while in the case of the binomial random we obtain a variational formula. As an application we calculate improved explicit lower bounds on the chromatic number of random graphs for small (average) degrees. Additionally, show how asymptotic formulas for large degrees that were previously obtained by lengthy and complicated combinatorial arguments can be re-derived easily from these new results.
This paper concerns the use of a particular class of determinantal point processes (DPP), a class of repulsive spatial point processes, for Monte Carlo integration. Let $d\ge 1$, $I\subseteq \overline d=\{1,\dots,d\}$ with $\iota=|I|$. Using a single set of $N$ quadrature points $\{u_1,\dots,u_N\}$ defined, once for all, in dimension $d$ from the realization of the DPP model, we investigate "minimal" assumptions on the integrand in order to obtain unbiased Monte Carlo estimates of $\mu(f_I)=\int_{[0,1]^\iota} f_I(u) \mathrm{d} u$ for any known $\iota$-dimensional integrable function on $[0,1]^\iota$. In particular, we show that the resulting estimator has variance with order $N^{-1-(2s\wedge 1)/d}$ when the integrand belongs to some Sobolev space with regularity $s > 0$. When $s>1/2$ (which includes a large class of non-differentiable functions), the variance is asymptotically explicit and the estimator is shown to satisfy a Central Limit Theorem.
We consider the termination problem for triangular weakly non-linear loops (twn-loops) over some ring $\mathcal{S}$ like $\mathbb{Z}$, $\mathbb{Q}$, or $\mathbb{R}$. Essentially, the guard of such a loop is an arbitrary quantifier-free Boolean formula over (possibly non-linear) polynomial inequations, and the body is a single assignment of the form $(x_1, \ldots, x_d) \longleftarrow (c_1 \cdot x_1 + p_1, \ldots, c_d \cdot x_d + p_d)$ where each $x_i$ is a variable, $c_i \in \mathcal{S}$, and each $p_i$ is a (possibly non-linear) polynomial over $\mathcal{S}$ and the variables $x_{i+1},\ldots,x_{d}$. We show that the question of termination can be reduced to the existential fragment of the first-order theory of $\mathcal{S}$ and $\mathbb{R}$. For loops over $\mathbb{R}$, our reduction implies decidability of termination. For loops over $\mathbb{Z}$ and $\mathbb{Q}$, it proves semi-decidability of non-termination. Furthermore, we present a transformation to convert certain non-twn-loops into twn-form. Then the original loop terminates iff the transformed loop terminates over a specific subset of $\mathbb{R}$, which can also be checked via our reduction. Moreover, we formalize a technique to linearize twn-loops in our setting and analyze its complexity. Based on these results, we prove complexity bounds for the termination problem of twn-loops as well as tight bounds for two important classes of loops which can always be transformed into twn-loops. Finally, we show that there is an important class of linear loops where our decision procedure results in an efficient procedure for termination analysis, i.e., where the parameterized complexity of deciding termination is polynomial.
A classic conjecture of F\"{u}redi, Kahn and Seymour (1993) states that given any hypergraph with non-negative edge weights $w(e)$, there exists a matching $M$ such that $\sum_{e \in M} (|e|-1+1/|e|)\, w(e) \geq w^*$, where $w^*$ is the value of an optimum fractional matching. We show the conjecture is true for rank-3 hypergraphs, and is achieved by a natural iterated rounding algorithm. While the general conjecture remains open, we give several new improved bounds. In particular, we show that the iterated rounding algorithm gives $\sum_{e \in M} (|e|-\delta(e))\, w(e) \geq w^*$, where $\delta(e) = |e|/(|e|^2+|e|-1)$, improving upon the baseline guarantee of $\sum_{e \in M} |e|\,w(e) \geq w^*$.
We study the problem of locating the source of a stochastic epidemic diffusion process from a sparse set of sensors. In a graph $G=(V,E)$, an unknown source node $v^* \in V$ is drawn uniformly at random, and unknown edge weights $w(e)$ for $e\in E$, representing the propagation delays along the edges, are drawn independently from a Gaussian distribution of mean $1$ and variance $\sigma^2$. An algorithm then attempts to locate $v^*$ by picking sensor (also called query) nodes $s \in V$ and being told the length of the shortest path between $s$ and $v^*$ in graph $G$ weighted by $w$. We consider two settings: \emph{static}, in which all query nodes must be decided in advance, and \emph{sequential}, in which each query can depend on the results of the previous ones. We characterize the query complexity when $G$ is an $n$-node path. In the static setting, $\Theta(n\sigma^2)$ queries are needed for $\sigma^2 \leq 1$, and $\Theta(n)$ for $\sigma^2 \geq 1$. In the sequential setting, somewhat surprisingly, only $\Theta(\log\log_{1/\sigma}n)$ are needed when $\sigma^2 \leq 1/2$, and $\Theta(\log \log n)+O_\sigma(1)$ when $\sigma^2 \geq 1/2$. This is the first mathematical study of sensor-based source location in a non-deterministic epidemic process.
In 1992 Mansour proved that every size-$s$ DNF formula is Fourier-concentrated on $s^{O(\log\log s)}$ coefficients. We improve this to $s^{O(\log\log k)}$ where $k$ is the read number of the DNF. Since $k$ is always at most $s$, our bound matches Mansour's for all DNFs and strengthens it for small-read ones. The previous best bound for read-$k$ DNFs was $s^{O(k^{3/2})}$. For $k$ up to $\tilde{\Theta}(\log\log s)$, we further improve our bound to the optimal $\mathrm{poly}(s)$; previously no such bound was known for any $k = \omega_s(1)$. Our techniques involve new connections between the term structure of a DNF, viewed as a set system, and its Fourier spectrum.
By a theorem of Johansson, every triangle-free graph $G$ of maximum degree $\Delta$ has chromatic number at most $(C+o(1))\Delta/\log \Delta$ for some universal constant $C > 0$. Using the entropy compression method, Molloy proved that one can in fact take $C = 1$. Here we show that for every $q \geq (1 + o(1))\Delta/\log \Delta$, the number $c(G,q)$ of proper $q$-colorings of $G$ satisfies $c(G, q) \,\geq\, \left(1 - \frac{1}{q}\right)^m ((1-o(1))q)^n$, where $n = |V(G)|$ and $m = |E(G)|$. Except for the $o(1)$ term, this lower bound is best possible as witnessed by random $\Delta$-regular graphs. When $q = (1 + o(1)) \Delta/\log \Delta$, our result yields the inequality $c(G,q) \,\geq\, \exp\left((1 - o(1)) \frac{\log \Delta}{2} n\right)$, which implies the optimal lower bound on the number of independent sets in $G$ due to Davies, Jenssen, Perkins, and Roberts. An important ingredient in our proof is the counting method that was recently developed by Rosenfeld. As a byproduct, we obtain an alternative proof of Molloy's bound $\chi(G) \leq (1 + o(1))\Delta/\log \Delta$ using Rosenfeld's method in place of entropy compression.
Given a property (graph class) $\Pi$, a graph $G$, and an integer $k$, the \emph{$\Pi$-completion} problem consists in deciding whether we can turn $G$ into a graph with the property $\Pi$ by adding at most $k$ edges to $G$. The $\Pi$-completion problem is known to be NP-hard for general graphs when $\Pi$ is the property of being a proper interval graph (PIG). In this work, we study the PIG-completion problem %when $\Pi$ is the class of proper interval graphs (PIG) within different subclasses of chordal graphs. We show that the problem remains NP-complete even when restricted to split graphs. We then turn our attention to positive results and present polynomial time algorithms to solve the PIG-completion problem when the input is restricted to caterpillar and threshold graphs. We also present an efficient algorithm for the minimum co-bipartite-completion for quasi-threshold graphs, which provides a lower bound for the PIG-completion problem within this graph class.
We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.