亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the present work we propose and study a time discrete scheme for the following chemotaxis-consumption model (for any $s\ge 1$), $$\partial_t u - \Delta u = - \nabla \cdot (u \nabla v), \quad \partial_t v - \Delta v = - u^s v \quad \hbox{in $(0,T)\times \Omega$,}$$ endowed with isolated boundary conditions and initial conditions, where $(u,v)$ model cell density and chemical signal concentration. The proposed scheme is defined via a reformulation of the model, using the auxiliary variable $z = \sqrt{v + \alpha^2}$ combined with a Backward Euler scheme for the $(u,z)$ problem and a upper truncation of $u$ in the nonlinear chemotaxis and consumption terms. Then, two different ways of retrieving an approximation for the function $v$ are provided. We prove the existence of solution to the time discrete scheme and establish uniform in time \emph{a priori} estimates, yielding to the convergence of the scheme towards a weak solution $(u,v)$ of the chemotaxis-consumption model.

相關內容

Modern policy optimization methods in applied reinforcement learning are often inspired by the trust region policy optimization algorithm, which can be interpreted as a particular instance of policy mirror descent. While theoretical guarantees have been established for this framework, particularly in the tabular setting, the use of a general parametrization scheme remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parametrizations. The policy class induced by our scheme recovers known classes, e.g. tabular softmax, log-linear, and neural policies. It also generates new ones, depending on the choice of the mirror map. For a general mirror map and parametrization function, we establish the quasi-monotonicity of the updates in value function, global linear convergence rates, and we bound the total variation of the algorithm along its path. To showcase the ability of our framework to accommodate general parametrization schemes, we present a case study involving shallow neural networks.

This work is devoted to design and study efficient and accurate numerical schemes to approximate a chemo-attraction model with consumption effects, which is a nonlinear parabolic system for two variables; the cell density and the concentration of the chemical signal that the cell feel attracted to. We present several finite element schemes to approximate the system, detailing the main properties of each of them, such as conservation of cells, energy-stability and approximated positivity. Moreover, we carry out several numerical simulations to study the efficiency of each of the schemes and to compare them with others classical schemes.

We adopt the integral definition of the fractional Laplace operator and study, on Lipschitz domains, an optimal control problem that involves a fractional elliptic partial differential equation (PDE) as state equation and a control variable that enters the state equation as a coefficient; pointwise constraints on the control variable are considered as well. We establish the existence of optimal solutions and analyze first and, necessary and sufficient, second order optimality conditions. Regularity estimates for optimal variables are also analyzed. We devise two strategies of finite element discretization: a semidiscrete scheme where the control variable is not discretized and a fully discrete scheme where the control variable is discretized with piecewise constant functions. For both solution techniques, we analyze convergence properties of discretizations and derive error estimates.

Contention resolution schemes (or CR schemes), introduced by Chekuri, Vondrak and Zenklusen, are a class of randomized rounding algorithms for converting a fractional solution to a relaxation for a down-closed constraint family into an integer solution. A CR scheme takes a fractional point $x$ in a relaxation polytope, rounds each coordinate $x_i$ independently to get a possibly non-feasible set, and then drops some elements in order to satisfy the constraints. Intuitively, a contention resolution scheme is $c$-balanced if every element $i$ is selected with probability at least $c \cdot x_i$. It is known that general matroids admit a $(1-1/e)$-balanced CR scheme, and that this is (asymptotically) optimal. This is in particular true for the special case of uniform matroids of rank one. In this work, we provide a simple and explicit monotone CR scheme for uniform matroids of rank $k$ on $n$ elements with a balancedness of $1 - \binom{n}{k}\:\left(1-\frac{k}{n}\right)^{n+1-k}\:\left(\frac{k}{n}\right)^k$, and show that this is optimal. As $n$ grows, this expression converges from above to $1 - e^{-k}k^k/k!$. While this asymptotic bound can be obtained by combining previously known results, these require defining an exponential-sized linear program, as well as using random sampling and the ellipsoid algorithm. Our procedure, on the other hand, has the advantage of being simple and explicit. This scheme extends naturally into an optimal CR scheme for partition matroids.

We present a discretisation of the 3+1 formulation of the Yang-Mills equations in the temporal gauge, using a Lie algebra-valued extension of the discrete de Rham (DDR) sequence, that preserves the non-linear constraint exactly. In contrast to Maxwell's equations, where the preservation of the analogous constraint only depends on reproducing some complex properties of the continuous de Rham sequence, the preservation of the non-linear constraint relies for the Yang-Mills equations on a constrained formulation, previously proposed in [10]. The fully discrete nature of the DDR method requires to devise appropriate constructions of the non-linear terms, adapted to the discrete spaces and to the need for replicating the crucial Ad-invariance property of the $L^2$-product. We then prove some energy estimates, and provide results of 3D numerical simulations based on this scheme.

Transfer learning for partial differential equations (PDEs) is to develop a pre-trained neural network that can be used to solve a wide class of PDEs. Existing transfer learning approaches require much information of the target PDEs such as its formulation and/or data of its solution for pre-training. In this work, we propose to construct transferable neural feature spaces from purely function approximation perspectives without using PDE information. The construction of the feature space involves re-parameterization of the hidden neurons and uses auxiliary functions to tune the resulting feature space. Theoretical analysis shows the high quality of the produced feature space, i.e., uniformly distributed neurons. Extensive numerical experiments verify the outstanding performance of our method, including significantly improved transferability, e.g., using the same feature space for various PDEs with different domains and boundary conditions, and the superior accuracy, e.g., several orders of magnitude smaller mean squared error than the state of the art methods.

In this paper, we propose a numerical algorithm based on a cell-centered finite volume method to compute a distance from given objects on a three-dimensional computational domain discretized by polyhedral cells. Inspired by the vanishing viscosity method, a Laplacian regularized eikonal equation is solved and the Soner boundary condition is applied to the boundary of the domain to avoid a non-viscosity solution. As the regularization parameter depending on a characteristic length of the discretized domain is reduced, a corresponding numerical solution is calculated. A convergence to the viscosity solution is verified numerically as the characteristic length becomes smaller and the regularization parameter accordingly becomes smaller. From the numerical experiments, the second experimental order of convergence in the $L^1$ norm error is confirmed for a smooth solution. Compared to an algorithm to solve a time-dependent form of eikonal equation, the proposed algorithm has the advantage of reducing computational cost dramatically when a more significant number of cells is used or a region of interest is far away from the given objects. Moreover, the implementation of parallel computing on decomposed domains with $1$-ring face neighborhood structure can be done straightforwardly in a standard cell-centered finite volume code.

We consider the problem of estimating the optimal transport map between two probability distributions, $P$ and $Q$ in $\mathbb R^d$, on the basis of i.i.d. samples. All existing statistical analyses of this problem require the assumption that the transport map is Lipschitz, a strong requirement that, in particular, excludes any examples where the transport map is discontinuous. As a first step towards developing estimation procedures for discontinuous maps, we consider the important special case where the data distribution $Q$ is a discrete measure supported on a finite number of points in $\mathbb R^d$. We study a computationally efficient estimator initially proposed by Pooladian and Niles-Weed (2021), based on entropic optimal transport, and show in the semi-discrete setting that it converges at the minimax-optimal rate $n^{-1/2}$, independent of dimension. Other standard map estimation techniques both lack finite-sample guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these results in numerical experiments, and provide experiments for other settings, not covered by our theory, which indicate that the entropic estimator is a promising methodology for other discontinuous transport map estimation problems.

The geometric optimisation of crystal structures is a procedure widely used in Chemistry that changes the geometrical placement of the particles inside a structure. It is called structural relaxation and constitutes a local minimization problem with a non-convex objective function whose domain complexity increases along with the number of particles involved. In this work we study the performance of the two most popular first order optimisation methods, Gradient Descent and Conjugate Gradient, in structural relaxation. The respective pseudocodes can be found in Section 6. Although frequently employed, there is a lack of their study in this context from an algorithmic point of view. In order to accurately define the problem, we provide a thorough derivation of all necessary formulae related to the crystal structure energy function and the function's differentiation. We run each algorithm in combination with a constant step size, which provides a benchmark for the methods' analysis and direct comparison. We also design dynamic step size rules and study how these improve the two algorithms' performance. Our results show that there is a trade-off between convergence rate and the possibility of an experiment to succeed, hence we construct a function to assign utility to each method based on our respective preference. The function is built according to a recently introduced model of preference indication concerning algorithms with deadline and their run time. Finally, building on all our insights from the experimental results, we provide algorithmic recipes that best correspond to each of the presented preferences and select one recipe as the optimal for equally weighted preferences.

We prove that there exist infinitely many coprime numbers $a$, $b$, $c$ with $a+b=c$ and $c>\operatorname{rad}(abc)\exp(6.563\sqrt{\log c}/\log\log c)$. These are the most extremal examples currently known in the $abc$ conjecture, thereby providing a new lower bound on the tightest possible form of the conjecture. This builds on work of van Frankenhuysen (1999) whom proved the existence of examples satisfying the above bound with the constant $6.068$ in place of $6.563$. We show that the constant $6.563$ may be replaced by $4\sqrt{2\delta/e}$ where $\delta$ is a constant such that all full-rank unimodular lattices of sufficiently large dimension $n$ contain a nonzero vector with $\ell_1$ norm at most $n/\delta$.

北京阿比特科技有限公司