亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While conformal predictors reap the benefits of rigorous statistical guarantees on their error frequency, the size of their corresponding prediction sets is critical to their practical utility. Unfortunately, there is currently a lack of finite-sample analysis and guarantees for their prediction set sizes. To address this shortfall, we theoretically quantify the expected size of the prediction sets under the split conformal prediction framework. As this precise formulation cannot usually be calculated directly, we further derive point estimates and high-probability interval bounds that can be empirically computed, providing a practical method for characterizing the expected set size. We corroborate the efficacy of our results with experiments on real-world datasets for both regression and classification problems.

相關內容

Optimal Transport (OT) problem investigates a transport map that bridges two distributions while minimizing a given cost function. In this regard, OT between tractable prior distribution and data has been utilized for generative modeling tasks. However, OT-based methods are susceptible to outliers and face optimization challenges during training. In this paper, we propose a novel generative model based on the semi-dual formulation of Unbalanced Optimal Transport (UOT). Unlike OT, UOT relaxes the hard constraint on distribution matching. This approach provides better robustness against outliers, stability during training, and faster convergence. We validate these properties empirically through experiments. Moreover, we study the theoretical upper-bound of divergence between distributions in UOT. Our model outperforms existing OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 6.36 on CelebA-HQ-256. The code is available at \url{//github.com/Jae-Moo/UOTM}.

We conduct a systematic study of the approximation properties of Transformer for sequence modeling with long, sparse and complicated memory. We investigate the mechanisms through which different components of Transformer, such as the dot-product self-attention, positional encoding and feed-forward layer, affect its expressive power, and we study their combined effects through establishing explicit approximation rates. Our study reveals the roles of critical parameters in the Transformer, such as the number of layers and the number of attention heads, and these insights also provide natural suggestions for alternative architectures.

We present a theoretical approach to overcome the curse of dimensionality using a neural computation algorithm which can be distributed across several machines. Our modular distributed deep learning paradigm, termed \textit{neural pathways}, can achieve arbitrary accuracy while only loading a small number of parameters into GPU VRAM. Formally, we prove that for every error level $\varepsilon>0$ and every Lipschitz function $f:[0,1]^n\to \mathbb{R}$, one can construct a neural pathways model which uniformly approximates $f$ to $\varepsilon$ accuracy over $[0,1]^n$ while only requiring networks of $\mathcal{O}(\varepsilon^{-1})$ parameters to be loaded in memory and $\mathcal{O}(\varepsilon^{-1}\log(\varepsilon^{-1}))$ to be loaded during the forward pass. This improves the optimal bounds for traditional non-distributed deep learning models, namely ReLU MLPs, which need $\mathcal{O}(\varepsilon^{-n/2})$ parameters to achieve the same accuracy. The only other available deep learning model that breaks the curse of dimensionality is MLPs with super-expressive activation functions. However, we demonstrate that these models have an infinite VC dimension, even with bounded depth and width restrictions, unlike the neural pathways model. This implies that only the latter generalizes. Our analysis is validated experimentally in both regression and classification tasks, demonstrating that our model exhibits superior performance compared to larger centralized benchmarks.

Numerical solutions to the adjoint Euler equations have been found to diverge with mesh refinement near walls for a variety of flow conditions and geometry configurations. The issue is reviewed and an explanation is provided by comparing a numerical incompressible adjoint solution with an analytic adjoint solution, showing that the anomaly observed in numerical computations is caused by a divergence of the analytic solution at the wall. The singularity causing this divergence is of the same type as the well-known singularity along the incoming stagnation streamline and both originate at the adjoint singularity at the trailing edge. The argument is extended to cover the fully compressible case, in subcritical flow conditions, by presenting an analytic solution that follows the same structure as the incompressible one.

Runge-Kutta (RK) methods may exhibit order reduction when applied to stiff problems. For linear problems with time-independent operators, order reduction can be avoided if the method satisfies certain weak stage order (WSO) conditions, which are less restrictive than traditional stage order conditions. This paper outlines the first algebraic theory of WSO, and establishes general order barriers that relate the WSO of a RK scheme to its order and number of stages for both fully-implicit and DIRK schemes. It is shown in several scenarios that the constructed bounds are sharp. The theory characterizes WSO in terms of orthogonal invariant subspaces and associated minimal polynomials. The resulting necessary conditions on the structure of RK methods with WSO are then shown to be of practical use for the construction of such schemes.

The magnitude of a metric space is a recently-established invariant, providing a measure of the 'effective size' of a space across multiple scales while also capturing numerous geometrical properties. We develop a family of magnitude-based measures of the intrinsic diversity of latent representations, formalising a novel notion of dissimilarity between magnitude functions of finite metric spaces. Our measures are provably stable under perturbations of the data, can be efficiently calculated, and enable a rigorous multi-scale comparison of latent representations. We show the utility and superior performance of our measures in an experimental suite that comprises different domains and tasks, including the evaluation of diversity, the detection of mode collapse, and the evaluation of generative models for text, image, and graph data.

Image captioning models are typically trained by treating all samples equally, neglecting to account for mismatched or otherwise difficult data points. In contrast, recent work has shown the effectiveness of training models by scheduling the data using curriculum learning strategies. This paper contributes to this direction by actively curating difficult samples in datasets without increasing the total number of samples. We explore the effect of using three data curation methods within the training process: complete removal of an sample, caption replacement, or image replacement via a text-to-image generation model. Experiments on the Flickr30K and COCO datasets with the BLIP and BEiT-3 models demonstrate that these curation methods do indeed yield improved image captioning models, underscoring their efficacy.

Most identification laws of unknown parameters of linear regression equations (LRE) ensure only boundedness of a parametric error in the presence of additive perturbations, which is almost always unacceptable for practical scenarios. In this paper, a new identification law is proposed to overcome this drawback and guarantee asymptotic convergence of the unknown parameters estimation error to zero in case the mentioned additive perturbation meets special averaging conditions. Such law is successfully applied to state reconstruction problem. Theoretical results are illustrated by numerical simulations.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司