亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The discrepancy of the $n \times n$ greater-than matrix is shown to be $\frac{\pi}{2 \ln n}$ up to lower order terms.

相關內容

We explore a notion of bent sequence attached to the data consisting of an Hadamard matrix of order $n$ defined over the complex $q^{th}$ roots of unity, an eigenvalue of that matrix, and a Galois automorphism from the cyclotomic field of order $q.$ In particular we construct self-dual bent sequences for various $q\le 60$ and lengths $n\le 21.$ Computational construction methods comprise the resolution of polynomial systems by Groebner bases and eigenspace computations. Infinite families can be constructed from regular Hadamard matrices, Bush-type Hadamard matrices, and generalized Boolean bent functions.As an application, we estimate the covering radius of the code attached to that matrix over $\Z_q.$ We derive a lower bound on that quantity for the Chinese Euclidean metric when bent sequences exist. We give the Euclidean distance spectrum, and bound above the covering radius of an attached spherical code, depending on its strength as a spherical design.

The polynomial identity lemma (also called the "Schwartz-Zippel lemma") states that any nonzero polynomial $f(x_1,\ldots, x_n)$ of degree at most $s$ will evaluate to a nonzero value at some point on a grid $S^n \subseteq \mathbb{F}^n$ with $|S| > s$. Thus, there is an explicit hitting set for all $n$-variate degree $s$, size $s$ algebraic circuits of size $(s+1)^n$. In this paper, we prove the following results: - Let $\varepsilon > 0$ be a constant. For a sufficiently large constant $n$ and all $s > n$, if we have an explicit hitting set of size $(s+1)^{n-\varepsilon}$ for the class of $n$-variate degree $s$ polynomials that are computable by algebraic circuits of size $s$, then for all $s$, we have an explicit hitting set of size $s^{\exp \circ \exp (O(\log^\ast s))}$ for $s$-variate circuits of degree $s$ and size $s$. That is, if we can obtain a barely non-trivial exponent compared to the trivial $(s+1)^{n}$ sized hitting set even for constant variate circuits, we can get an almost complete derandomization of PIT. - The above result holds when "circuits" are replaced by "formulas" or "algebraic branching programs". This extends a recent surprising result of Agrawal, Ghosh and Saxena (STOC 2018,PNAS 2019) who proved the same conclusion for the class of algebraic circuits, if the hypothesis provided a hitting set of size at most $(s^{n^{0.5 - \delta}})$ (where $\delta>0$ is any constant). Hence, our work significantly weakens the hypothesis of Agrawal, Ghosh and Saxena to only require a slightly non-trivial saving over the trivial hitting set, and also presents the first such result for algebraic branching programs and formulas.

We present the notion of \emph{reasonable utility} for binary mechanisms, which applies to all utility functions in the literature. This notion induces a partial ordering on the performance of all binary differentially private (DP) mechanisms. DP mechanisms that are maximal elements of this ordering are optimal DP mechanisms for every reasonable utility. By looking at differential privacy as a randomized graph coloring, we characterize these optimal DP in terms of their behavior on a certain subset of the boundary datasets we call a boundary hitting set. In the process of establishing our results, we also introduce a useful notion that generalizes DP conditions for binary-valued queries, which we coin as suitable pairs. Suitable pairs abstract away the algebraic roles of $\varepsilon,\delta$ in the DP framework, making the derivations and understanding of our proofs simpler. Additionally, the notion of a suitable pair can potentially capture privacy conditions in frameworks other than DP and may be of independent interest.

G{\"o}del's second incompleteness theorem forbids to prove, in a given theory U, the consistency of many theories-in particular, of the theory U itself-as well as it forbids to prove the normalization property for these theories, since this property implies their consistency. When we cannot prove in a theory U the consistency of a theory T , we can try to prove a relative consistency theorem, that is, a theorem of the form: If U is consistent then T is consistent. Following the same spirit, we show in this paper how to prove relative normalization theorems, that is, theorems of the form: If U is 1-consistent, then T has the normalization property.

A range family $\mathcal{R}$ is a family of subsets of $\mathbb{R}^d$, like all halfplanes, or all unit disks. Given a range family $\mathcal{R}$, we consider the $m$-uniform range capturing hypergraphs $\mathcal{H}(V,\mathcal{R},m)$ whose vertex-sets $V$ are finite sets of points in $\mathbb{R}^d$ with any $m$ vertices forming a hyperedge $e$ whenever $e = V \cap R$ for some $R \in \mathcal{R}$. Given additionally an integer $k \geq 2$, we seek to find the minimum $m = m_{\mathcal{R}}(k)$ such that every $\mathcal{H}(V,\mathcal{R},m)$ admits a polychromatic $k$-coloring of its vertices, that is, where every hyperedge contains at least one point of each color. Clearly, $m_{\mathcal{R}}(k) \geq k$ and the gold standard is an upper bound $m_{\mathcal{R}}(k) = O(k)$ that is linear in $k$. A $t$-shallow hitting set in $\mathcal{H}(V,\mathcal{R},m)$ is a subset $S \subseteq V$ such that $1 \leq |e \cap S| \leq t$ for each hyperedge $e$; i.e., every hyperedge is hit at least once but at most $t$ times by $S$. We show for several range families $\mathcal{R}$ the existence of $t$-shallow hitting sets in every $\mathcal{H}(V,\mathcal{R},m)$ with $t$ being a constant only depending on $\mathcal{R}$. This in particular proves that $m_{\mathcal{R}}(k) \leq tk = O(k)$ in such cases, improving previous polynomial bounds in $k$. Particularly, we prove this for the range families of all axis-aligned strips in $\mathbb{R}^d$, all bottomless and topless rectangles in $\mathbb{R}^2$, and for all unit-height axis-aligned rectangles in $\mathbb{R}^2$.

We give a simple and computationally efficient algorithm that, for any constant $\varepsilon>0$, obtains $\varepsilon T$-swap regret within only $T = \mathsf{polylog}(n)$ rounds; this is an exponential improvement compared to the super-linear number of rounds required by the state-of-the-art algorithm, and resolves the main open problem of [Blum and Mansour 2007]. Our algorithm has an exponential dependence on $\varepsilon$, but we prove a new, matching lower bound. Our algorithm for swap regret implies faster convergence to $\varepsilon$-Correlated Equilibrium ($\varepsilon$-CE) in several regimes: For normal form two-player games with $n$ actions, it implies the first uncoupled dynamics that converges to the set of $\varepsilon$-CE in polylogarithmic rounds; a $\mathsf{polylog}(n)$-bit communication protocol for $\varepsilon$-CE in two-player games (resolving an open problem mentioned by [Babichenko-Rubinstein'2017, Goos-Rubinstein'2018, Ganor-CS'2018]; and an $\tilde{O}(n)$-query algorithm for $\varepsilon$-CE (resolving an open problem of [Babichenko'2020] and obtaining the first separation between $\varepsilon$-CE and $\varepsilon$-Nash equilibrium in the query complexity model). For extensive-form games, our algorithm implies a PTAS for $\mathit{normal}$ $\mathit{form}$ $\mathit{correlated}$ $\mathit{equilibria}$, a solution concept often conjectured to be computationally intractable (e.g. [Stengel-Forges'08, Fujii'23]).

Despite the empirical version of least trimmed squares (LTS) in regression (Rousseeuw \cite{R84}) having been repeatedly studied in the literature, the population version of LTS has never been introduced. Novel properties of the objective function in both empirical and population settings of the LTS, along with other properties, are established for the first time in this article. The primary properties of the objective function facilitate the establishment of other original results, including the influence function and Fisher consistency. The strong consistency is established with the help of a generalized Glivenko-Cantelli Theorem over a class of functions. Differentiability and stochastic equicontinuity promote the establishment of asymptotic normality with a concise and novel approach.

Existing contrastive learning methods rely on pairwise sample contrast $z_x^\top z_{x'}$ to learn data representations, but the learned features often lack clear interpretability from a human perspective. Theoretically, it lacks feature identifiability and different initialization may lead to totally different features. In this paper, we study a new method named tri-factor contrastive learning (triCL) that involves a 3-factor contrast in the form of $z_x^\top S z_{x'}$, where $S=\text{diag}(s_1,\dots,s_k)$ is a learnable diagonal matrix that automatically captures the importance of each feature. We show that by this simple extension, triCL can not only obtain identifiable features that eliminate randomness but also obtain more interpretable features that are ordered according to the importance matrix $S$. We show that features with high importance have nice interpretability by capturing common classwise features, and obtain superior performance when evaluated for image retrieval using a few features. The proposed triCL objective is general and can be applied to different contrastive learning methods like SimCLR and CLIP. We believe that it is a better alternative to existing 2-factor contrastive learning by improving its identifiability and interpretability with minimal overhead. Code is available at //github.com/PKU-ML/Tri-factor-Contrastive-Learning.

We construct and analyze finite element approximations of the Einstein tensor in dimension $N \ge 3$. We focus on the setting where a smooth Riemannian metric tensor $g$ on a polyhedral domain $\Omega \subset \mathbb{R}^N$ has been approximated by a piecewise polynomial metric $g_h$ on a simplicial triangulation $\mathcal{T}$ of $\Omega$ having maximum element diameter $h$. We assume that $g_h$ possesses single-valued tangential-tangential components on every codimension-1 simplex in $\mathcal{T}$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $g_h$ to the Einstein curvature of $g$ under refinement of the triangulation. We show that in the $H^{-2}(\Omega)$-norm, this convergence takes place at a rate of $O(h^{r+1})$ when $g_h$ is an optimal-order interpolant of $g$ that is piecewise polynomial of degree $r \ge 1$. We provide numerical evidence to support this claim.

A collection of graphs is \textit{nearly disjoint} if every pair of them intersects in at most one vertex. We prove that if $G_1, \dots, G_m$ are nearly disjoint graphs of maximum degree at most $D$, then the following holds. For every fixed $C$, if each vertex $v \in \bigcup_{i=1}^m V(G_i)$ is contained in at most $C$ of the graphs $G_1, \dots, G_m$, then the (list) chromatic number of $\bigcup_{i=1}^m G_i$ is at most $D + o(D)$. This result confirms a special case of a conjecture of Vu and generalizes Kahn's bound on the list chromatic index of linear uniform hypergraphs of bounded maximum degree. In fact, this result holds for the correspondence (or DP) chromatic number and thus implies a recent result of Molloy, and we derive this result from a more general list coloring result in the setting of `color degrees' that also implies a result of Reed and Sudakov.

小貼士
登錄享
相關主題
北京阿比特科技有限公司