亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Uncrewed Aerial Vehicles (UAVs) are a leading choice of platforms for a variety of information-gathering applications. Sensor planning can enhance the efficiency and success of these types of missions when coupled with a higher-level informative path-planning algorithm. This paper aims to address these data acquisition challenges by developing an informative non-myopic sensor planning framework for a single-axis gimbal coupled with an informative path planner to maximize information gain over a prior information map. This is done by finding reduced sensor sweep bounds over a planning horizon such that regions of higher confidence are prioritized. This novel sensor planning framework is evaluated against a predefined sensor sweep and no sensor planning baselines as well as validated in two simulation environments. In our results, we observe an improvement in the performance by 21.88% and 13.34% for the no sensor planning and predefined sensor sweep baselines respectively.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 蒙特卡羅 · 等變 · 近似 · 樣本 ·
2024 年 8 月 19 日

A central problem in quantum mechanics involves solving the Electronic Schrodinger Equation for a molecule or material. The Variational Monte Carlo approach to this problem approximates a particular variational objective via sampling, and then optimizes this approximated objective over a chosen parameterized family of wavefunctions, known as the ansatz. Recently neural networks have been used as the ansatz, with accompanying success. However, sampling from such wavefunctions has required the use of a Markov Chain Monte Carlo approach, which is inherently inefficient. In this work, we propose a solution to this problem via an ansatz which is cheap to sample from, yet satisfies the requisite quantum mechanical properties. We prove that a normalizing flow using the following two essential ingredients satisfies our requirements: (a) a base distribution which is constructed from Determinantal Point Processes; (b) flow layers which are equivariant to a particular subgroup of the permutation group. We then show how to construct both continuous and discrete normalizing flows which satisfy the requisite equivariance. We further demonstrate the manner in which the non-smooth nature ("cusps") of the wavefunction may be captured, and how the framework may be generalized to provide induction across multiple molecules. The resulting theoretical framework entails an efficient approach to solving the Electronic Schrodinger Equation.

A Pyramidal Histogram Of Characters (PHOC) represents the spatial location of symbols as binary vectors. The vectors are composed of levels that split a formula into equal-sized regions of one or more types (e.g., rectangles or ellipses). For each region type, this produces a pyramid of overlapping regions, where the first level contains the entire formula, and the final level the finest-grained regions. In this work, we introduce concentric rectangles for regions, and analyze whether subsequent PHOC levels encode redundant information by omitting levels from PHOC configurations. As a baseline, we include a bag of words PHOC containing only the first whole-formula level. Finally, using the ARQMath-3 formula retrieval benchmark, we demonstrate that some levels encoded in the original PHOC configurations are redundant, that PHOC models with rectangular regions outperform earlier PHOC models, and that despite their simplicity, PHOC models are surprisingly competitive with the state-of-the-art. PHOC is not math-specific, and might be used for chemical diagrams, charts, or other graphics.

Large Language Models (LLMs) have emerged as powerful conversational interfaces, and their application in process mining (PM) tasks has shown promising results. However, state-of-the-art LLMs struggle with complex scenarios that demand advanced reasoning capabilities. In the literature, two primary approaches have been proposed for implementing PM using LLMs: providing textual insights based on a textual abstraction of the process mining artifact, and generating code executable on the original artifact. This paper proposes utilizing the AI-Based Agents Workflow (AgWf) paradigm to enhance the effectiveness of PM on LLMs. This approach allows for: i) the decomposition of complex tasks into simpler workflows, and ii) the integration of deterministic tools with the domain knowledge of LLMs. We examine various implementations of AgWf and the types of AI-based tasks involved. Additionally, we discuss the CrewAI implementation framework and present examples related to process mining.

Feature grid Scene Representation Networks (SRNs) have been applied to scientific data as compact functional surrogates for analysis and visualization. As SRNs are black-box lossy data representations, assessing the prediction quality is critical for scientific visualization applications to ensure that scientists can trust the information being visualized. Currently, existing architectures do not support inference time reconstruction quality assessment, as coordinate-level errors cannot be evaluated in the absence of ground truth data. We propose a parameter-efficient multi-decoder SRN (MDSRN) ensemble architecture consisting of a shared feature grid with multiple lightweight multi-layer perceptron decoders. MDSRN can generate a set of plausible predictions for a given input coordinate to compute the mean as the prediction of the multi-decoder ensemble and the variance as a confidence score. The coordinate-level variance can be rendered along with the data to inform the reconstruction quality, or be integrated into uncertainty-aware volume visualization algorithms. To prevent the misalignment between the quantified variance and the prediction quality, we propose a novel variance regularization loss for ensemble learning that promotes the Regularized multi-decoder SRN (RMDSRN) to obtain a more reliable variance that correlates closely to the true model error. We comprehensively evaluate the quality of variance quantification and data reconstruction of Monte Carlo Dropout, Mean Field Variational Inference, Deep Ensemble, and Predicting Variance compared to the proposed MDSRN and RMDSRN across diverse scalar field datasets. We demonstrate that RMDSRN attains the most accurate data reconstruction and competitive variance-error correlation among uncertain SRNs under the same neural network parameter budgets.

Satellite Communications (SatCom) are a backbone of worldwide development. In contrast with the past, when the GEO satellites were the only means for such connectivity, nowadays the multi-orbital connectivity is emerging, especially with the use of satellite constellations. Simultaneously, SatCom enabled the so-called In-Flight Connectivity, while with the advent of 5G-NTN, the development of this market is being accelerated. However, there are still various missing points before such a technology becomes mainstream, especially in the case of Rotary Wing Aircraft (RWA). Indeed, due to their particular characteristics, such as the low altitude flights and the blade interference, there are still open challenges. In this work, an End-to-End (E2E) analysis for the performance of SatCom under 5G-NTN for manned and unmanned RWA is performed. Various scenarios are examined, and related requirements are shown. The effects of blades and other characteristics of the RWA are established, and simulations for these cases are developed. Results along with related discussion are presented, while future directions for development are suggested. This work is part of the ESA ACROSS-AIR project.

Text-to-3D content creation has recently received much attention, especially with the prevalence of 3D Gaussians Splatting. In general, GS-based methods comprise two key stages: initialization and rendering optimization. To achieve initialization, existing works directly apply random sphere initialization or 3D diffusion models, e.g., Point-E, to derive the initial shapes. However, such strategies suffer from two critical yet challenging problems: 1) the final shapes are still similar to the initial ones even after training; 2) shapes can be produced only from simple texts, e.g., "a dog", not for lexically richer texts, e.g., "a dog is sitting on the top of the airplane". To address these problems, this paper proposes a novel general framework to boost the 3D GS Initialization for text-to-3D generation upon the lexical richness. Our key idea is to aggregate 3D Gaussians into spatially uniform voxels to represent complex shapes while enabling the spatial interaction among the 3D Gaussians and semantic interaction between Gaussians and texts. Specifically, we first construct a voxelized representation, where each voxel holds a 3D Gaussian with its position, scale, and rotation fixed while setting opacity as the sole factor to determine a position's occupancy. We then design an initialization network mainly consisting of two novel components: 1) Global Information Perception (GIP) block and 2) Gaussians-Text Fusion (GTF) block. Such a design enables each 3D Gaussian to assimilate the spatial information from other areas and semantic information from texts. Extensive experiments show the superiority of our framework of high-quality 3D GS initialization against the existing methods, e.g., Shap-E, by taking lexically simple, medium, and hard texts. Also, our framework can be seamlessly plugged into SoTA training frameworks, e.g., LucidDreamer, for semantically consistent text-to-3D generation.

Knowledge Graph Embedding (KGE) aims to learn representations for entities and relations. Most KGE models have gained great success, especially on extrapolation scenarios. Specifically, given an unseen triple (h, r, t), a trained model can still correctly predict t from (h, r, ?), or h from (?, r, t), such extrapolation ability is impressive. However, most existing KGE works focus on the design of delicate triple modeling function, which mainly tells us how to measure the plausibility of observed triples, but offers limited explanation of why the methods can extrapolate to unseen data, and what are the important factors to help KGE extrapolate. Therefore in this work, we attempt to study the KGE extrapolation of two problems: 1. How does KGE extrapolate to unseen data? 2. How to design the KGE model with better extrapolation ability? For the problem 1, we first discuss the impact factors for extrapolation and from relation, entity and triple level respectively, propose three Semantic Evidences (SEs), which can be observed from train set and provide important semantic information for extrapolation. Then we verify the effectiveness of SEs through extensive experiments on several typical KGE methods. For the problem 2, to make better use of the three levels of SE, we propose a novel GNN-based KGE model, called Semantic Evidence aware Graph Neural Network (SE-GNN). In SE-GNN, each level of SE is modeled explicitly by the corresponding neighbor pattern, and merged sufficiently by the multi-layer aggregation, which contributes to obtaining more extrapolative knowledge representation. Finally, through extensive experiments on FB15k-237 and WN18RR datasets, we show that SE-GNN achieves state-of-the-art performance on Knowledge Graph Completion task and performs a better extrapolation ability.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司