亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of identifying the acoustic impedance of a wall surface from noisy pressure measurements in a closed room using a Bayesian approach. The room acoustics is modeled by the interior Helmholtz equation with impedance boundary conditions. The aim is to compute moments of the acoustic impedance to estimate a suitable density function of the impedance coefficient. For the computation of moments we use ratio estimators and Monte-Carlo sampling. We consider two different experimental scenarios. In the first scenario, the noisy measurements correspond to a wall modeled by impedance boundary conditions. In this case, the Bayesian algorithm uses a model that is (up to the noise) consistent with the measurements and our algorithm is able to identify acoustic impedance with high accuracy. In the second scenario, the noisy measurements come from a coupled acoustic-structural problem, modeling a wall made of glass, whereas the Bayesian algorithm still uses a model with impedance boundary conditions. In this case, the parameter identification model is inconsistent with the measurements and therefore is not capable to represent them well. Nonetheless, for particular frequency bands the Bayesian algorithm identifies estimates with high likelihood. Outside these frequency bands the algorithm fails. We discuss the results of both examples and possible reasons for the failure of the latter case for particular frequency values.

相關內容

Miura surfaces are the solutions of a constrained nonlinear elliptic system of equations. This system is derived by homogenization from the Miura fold, which is a type of origami fold with multiple applications in engineering. A previous inquiry, gave suboptimal conditions for existence of solutions and proposed an $H^2$-conformal finite element method to approximate them. In this paper, the existence of Miura surfaces is studied using a mixed formulation. It is also proved that the constraints propagate from the boundary to the interior of the domain for well-chosen boundary conditions. Then, a numerical method based on a least-squares formulation, Taylor--Hood finite elements and a Newton method is introduced to approximate Miura surfaces. The numerical method is proved to converge at order one in space and numerical tests are performed to demonstrate its robustness.

Out of the participants in a randomized experiment with anticipated heterogeneous treatment effects, is it possible to identify which subjects have a positive treatment effect? While subgroup analysis has received attention, claims about individual participants are much more challenging. We frame the problem in terms of multiple hypothesis testing: each individual has a null hypothesis (stating that the potential outcomes are equal, for example) and we aim to identify those for whom the null is false (the treatment potential outcome stochastically dominates the control one, for example). We develop a novel algorithm that identifies such a subset, with nonasymptotic control of the false discovery rate (FDR). Our algorithm allows for interaction -- a human data scientist (or a computer program) may adaptively guide the algorithm in a data-dependent manner to gain power. We show how to extend the methods to observational settings and achieve a type of doubly-robust FDR control. We also propose several extensions: (a) relaxing the null to nonpositive effects, (b) moving from unpaired to paired samples, and (c) subgroup identification. We demonstrate via numerical experiments and theoretical analysis that the proposed method has valid FDR control in finite samples and reasonably high identification power.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the non-uniform mesh. Then truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as $\min\{4-\alpha,r\alpha\}$ and $\frac{4-\alpha}{\alpha}$, respectively, where $\alpha\in(0,1)$ is the order of fractional derivative and $r\geq 1$ is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general $r$. Then we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for $r=1$, is analyzed for non-smooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.

Selfadhesivity is a property of entropic polymatroids which guarantees that the polymatroid can be glued to an identical copy of itself along arbitrary restrictions such that the two pieces are independent given the common restriction. We show that positive definite matrices satisfy this condition as well and examine consequences for Gaussian conditional independence structures. New axioms of Gaussian CI are obtained by applying selfadhesivity to the previously known axioms of structural semigraphoids and orientable gaussoids.

Trace finite element methods have become a popular option for solving surface partial differential equations, especially in problems where surface and bulk effects are coupled. In such methods a surface mesh is formed by approximately intersecting the continuous surface on which the PDE is posed with a three-dimensional (bulk) tetrahedral mesh. In classical $H^1$-conforming trace methods, the surface finite element space is obtained by restricting a bulk finite element space to the surface mesh. It is not clear how to carry out a similar procedure in order to obtain other important types of finite element spaces such as $H({\rm div})$-conforming spaces. Following previous work of Olshanskii, Reusken, and Xu on $H^1$-conforming methods, we develop a ``quasi-trace'' mixed method for the Laplace-Beltrami problem. The finite element mesh is taken to be the intersection of the surface with a regular tetrahedral bulk mesh as previously described, resulting in a surface triangulation that is highly unstructured and anisotropic but satisfies a classical maximum angle condition. The mixed method is then employed on this mesh. Optimal error estimates with respect to the bulk mesh size are proved along with superconvergent estimates for the projection of the scalar error and a postprocessed scalar approximation.

We prove axiomatic characterizations of several important multiwinner rules within the class of approval-based committee choice rules. These are voting rules that return a set of (fixed-size) committees. In particular, we provide axiomatic characterizations of Proportional Approval Voting, the Chamberlin--Courant rule, and other Thiele methods. These rules share the important property that they satisfy an axiom called consistency, which is crucial in our characterizations.

We consider the problem of simultaneous variable selection and estimation of the corresponding regression coefficients in an ultra-high dimensional linear regression models, an extremely important problem in the recent era. The adaptive penalty functions are used in this regard to achieve the oracle variable selection property along with easier computational burden. However, the usual adaptive procedures (e.g., adaptive LASSO) based on the squared error loss function is extremely non-robust in the presence of data contamination which are quite common with large-scale data (e.g., noisy gene expression data, spectra and spectral data). In this paper, we present a regularization procedure for the ultra-high dimensional data using a robust loss function based on the popular density power divergence (DPD) measure along with the adaptive LASSO penalty. We theoretically study the robustness and the large-sample properties of the proposed adaptive robust estimators for a general class of error distributions; in particular, we show that the proposed adaptive DPD-LASSO estimator is highly robust, satisfies the oracle variable selection property, and the corresponding estimators of the regression coefficients are consistent and asymptotically normal under easily verifiable set of assumptions. Numerical illustrations are provided for the mostly used normal error density. Finally, the proposal is applied to analyze an interesting spectral dataset, in the field of chemometrics, regarding the electron-probe X-ray microanalysis (EPXMA) of archaeological glass vessels from the 16th and 17th centuries.

Neuromorphic computing is one of the few current approaches that have the potential to significantly reduce power consumption in Machine Learning and Artificial Intelligence. Imam & Cleland presented an odour-learning algorithm that runs on a neuromorphic architecture and is inspired by circuits described in the mammalian olfactory bulb. They assess the algorithm's performance in "rapid online learning and identification" of gaseous odorants and odorless gases (short "gases") using a set of gas sensor recordings of different odour presentations and corrupting them by impulse noise. We replicated parts of the study and discovered limitations that affect some of the conclusions drawn. First, the dataset used suffers from sensor drift and a non-randomised measurement protocol, rendering it of limited use for odour identification benchmarks. Second, we found that the model is restricted in its ability to generalise over repeated presentations of the same gas. We demonstrate that the task the study refers to can be solved with a simple hash table approach, matching or exceeding the reported results in accuracy and runtime. Therefore, a validation of the model that goes beyond restoring a learned data sample remains to be shown, in particular its suitability to odour identification tasks.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司