亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rapid development of the internet of things (IoT) and artificial intelligence (AI) technologies, human activity recognition (HAR) has been applied in a variety of domains such as security and surveillance, human-robot interaction, and entertainment. Even though a number of surveys and review papers have been published, there is a lack of HAR overview papers focusing on healthcare applications that use wearable sensors. Therefore, we fill in the gap by presenting this overview paper. In particular, we present our projects to illustrate the system design of HAR applications for healthcare. Our projects include early mobility identification of human activities for intensive care unit (ICU) patients and gait analysis of Duchenne muscular dystrophy (DMD) patients. We cover essential components of designing HAR systems including sensor factors (e.g., type, number, and placement location), AI model selection (e.g., classical machine learning models versus deep learning models), and feature engineering. In addition, we highlight the challenges of such healthcare-oriented HAR systems and propose several research opportunities for both the medical and the computer science community.

相關內容

可穿戴設備即直接穿在身上,或是整合到用戶的衣服或配件的一種便攜式設備。可穿戴設備不僅僅是一種硬件設備,更是通過軟件支持以及數據交互、云端交互來實現強大的功能,可穿戴設備將會對我們的生活、感知帶來很大的轉變。

By using a computer keyboard as a finger recording device, we construct the largest existing dataset for gesture recognition via surface electromyography (sEMG), and use deep learning to achieve over 90% character-level accuracy on reconstructing typed text entirely from measured muscle potentials. We prioritize the temporal structure of the EMG signal instead of the spatial structure of the electrode layout, using network architectures inspired by those used for real-time spoken language transcription. Our architecture recognizes the rapid movements of natural computer typing, which occur at irregular intervals and often overlap in time. The extensive size of our dataset also allows us to study gesture recognition after synthetically downgrading the spatial or temporal resolution, showing the system capabilities necessary for real-time gesture recognition.

The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.

Recently, many innovations have been experienced in healthcare by rapidly growing Internet-of-Things (IoT) technology that provides significant developments and facilities in the health sector and improves daily human life. The IoT bridges people, information technology and speed up shopping. For these reasons, IoT technology has started to be used on a large scale. Thanks to the use of IoT technology in health services, chronic disease monitoring, health monitoring, rapid intervention, early diagnosis and treatment, etc. facilitates the delivery of health services. However, the data transferred to the digital environment pose a threat of privacy leakage. Unauthorized persons have used them, and there have been malicious attacks on the health and privacy of individuals. In this study, it is aimed to propose a model to handle the privacy problems based on federated learning. Besides, we apply secure multi party computation. Our proposed model presents an extensive privacy and data analysis and achieve high performance.

Robots are becoming everyday devices, increasing their interaction with humans. To make human-machine interaction more natural, cognitive features like Visual Voice Activity Detection (VVAD), which can detect whether a person is speaking or not, given visual input of a camera, need to be implemented. Neural networks are state of the art for tasks in Image Processing, Time Series Prediction, Natural Language Processing and other domains. Those Networks require large quantities of labeled data. Currently there are not many datasets for the task of VVAD. In this work we created a large scale dataset called the VVAD-LRS3 dataset, derived by automatic annotations from the LRS3 dataset. The VVAD-LRS3 dataset contains over 44K samples, over three times the next competitive dataset (WildVVAD). We evaluate different baselines on four kinds of features: facial and lip images, and facial and lip landmark features. With a Convolutional Neural Network Long Short Term Memory (CNN LSTM) on facial images an accuracy of 92% was reached on the test set. A study with humans showed that they reach an accuracy of 87.93% on the test set.

Background: An early diagnosis together with an accurate disease progression monitoring of multiple sclerosis is an important component of successful disease management. Prior studies have established that multiple sclerosis is correlated with speech discrepancies. Early research using objective acoustic measurements has discovered measurable dysarthria. Objective: To determine the potential clinical utility of machine learning and deep learning/AI approaches for the aiding of diagnosis, biomarker extraction and progression monitoring of multiple sclerosis using speech recordings. Methods: A corpus of 65 MS-positive and 66 healthy individuals reading the same text aloud was used for targeted acoustic feature extraction utilizing automatic phoneme segmentation. A series of binary classification models was trained, tuned, and evaluated regarding their Accuracy and area-under-curve. Results: The Random Forest model performed best, achieving an Accuracy of 0.82 on the validation dataset and an area-under-curve of 0.76 across 5 k-fold cycles on the training dataset. 5 out of 7 acoustic features were statistically significant. Conclusion: Machine learning and artificial intelligence in automatic analyses of voice recordings for aiding MS diagnosis and progression tracking seems promising. Further clinical validation of these methods and their mapping onto multiple sclerosis progression is needed, as well as a validating utility for English-speaking populations.

In the last two decades, fall detection (FD) systems have been developed as a popular assistive technology. Such systems automatically detect critical fall events and immediately alert medical professionals or caregivers. To support long-term FD services, various power-saving strategies have been implemented. Among them, a reduced sampling rate is a common approach for an energy-efficient system in the real-world. However, the performance of FD systems is diminished owing to low-resolution (LR) accelerometer signals. To improve the detection accuracy with LR accelerometer signals, several technical challenges must be considered, including misalignment, mismatch of effective features, and the degradation effects. In this work, a deep-learning-based accelerometer signal enhancement (ASE) model is proposed to improve the detection performance of LR-FD systems. This proposed model reconstructs high-resolution (HR) signals from the LR signals by learning the relationship between the LR and HR signals. The results show that the FD system using support vector machine and the proposed ASE model at an extremely low sampling rate (sampling rate < 2 Hz) achieved 97.34% and 90.52% accuracies in the SisFall and FallAllD datasets, respectively, while those without ASE models only achieved 95.92% and 87.47% accuracies in the SisFall and FallAllD datasets, respectively. This study demonstrates that the ASE model helps the FD systems tackle the technical challenges of LR signals and achieve better detection performance.

An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts. However, due to the rapid pace at which DL techniques have been adopted, it is difficult to distill the current successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this crosscutting area of work, from its modern inception to the present, this paper presents a systematic literature review of research at the intersection of SE & DL. The review canvases work appearing in the most prominent SE and DL conferences and journals and spans 128 papers across 23 unique SE tasks. We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques (ML) to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE research, and highlights likely areas of fertile exploration for the future.

Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.

Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.

Since deep neural networks were developed, they have made huge contributions to everyday lives. Machine learning provides more rational advice than humans are capable of in almost every aspect of daily life. However, despite this achievement, the design and training of neural networks are still challenging and unpredictable procedures. To lower the technical thresholds for common users, automated hyper-parameter optimization (HPO) has become a popular topic in both academic and industrial areas. This paper provides a review of the most essential topics on HPO. The first section introduces the key hyper-parameters related to model training and structure, and discusses their importance and methods to define the value range. Then, the research focuses on major optimization algorithms and their applicability, covering their efficiency and accuracy especially for deep learning networks. This study next reviews major services and toolkits for HPO, comparing their support for state-of-the-art searching algorithms, feasibility with major deep learning frameworks, and extensibility for new modules designed by users. The paper concludes with problems that exist when HPO is applied to deep learning, a comparison between optimization algorithms, and prominent approaches for model evaluation with limited computational resources.

北京阿比特科技有限公司