亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The tongue surface houses a range of papillae that are integral to the mechanics and chemistry of taste and textural sensation. Although gustatory function of papillae is well investigated, the uniqueness of papillae within and across individuals remains elusive. Here, we present the first machine learning framework on 3D microscopic scans of human papillae (n = 2092), uncovering the uniqueness of geometric and topological features of papillae. The finer differences in shapes of papillae are investigated computationally based on a number of features derived from discrete differential geometry and computational topology. Interpretable machine learning techniques show that persistent homology features of the papillae shape are the most effective in predicting the biological variables. Models trained on these features with small volumes of data samples predict the type of papillae with an accuracy of 85%. The papillae type classification models can map the spatial arrangement of filiform and fungiform papillae on a surface. Remarkably, the papillae are found to be distinctive across individuals and an individual can be identified with an accuracy of 48% among the 15 participants from a single papillae. Collectively, this is the first unprecedented evidence demonstrating that tongue papillae can serve as a unique identifier inspiring new research direction for food preferences and oral diagnostics.

相關內容

User interaction is one of the most effective ways to improve the ontology alignment quality. However, this approach faces the challenge of how users can participate effectively in the matching process. To solve this challenge. In this paper, an interactive ontology alignment approach using compact differential evolution algorithm with adaptive parameter control (IOACDE) is proposed. In this method, the ontology alignment process is modeled as an interactive optimization problem and users are allowed to intervene in matching in two ways. One is that the mapping suggestions generated by IOACDE as a complete candidate alignment is evaluated by user during optimization process. The other is that the user ameliorates the alignment results by evaluating single mapping after the automatic matching process. To demonstrate the effectiveness of the proposed algorithm, the neural embedding model and K nearest neighbor (KNN) is employed to simulate user for the ontologies of the real world. The experimental results show that the proposed interactive approach can improve the alignment quality compared to the non-interactive. Compared with the state-of-the-art methods from OAEI, the results show that the proposed algorithm has a better performance under the same error rate.

We provide quantitative evidence suggesting social learning in sperm whales across socio-cultural boundaries, using acoustic data from the Pacific and Atlantic Oceans. Traditionally, sperm whale populations are categorized into clans based on their vocal repertoire: the rhythmically patterned click sequences (codas) that they use. Among these codas, identity codas function as symbolic markers for each clan, accounting for 35-60% of codas they produce. We introduce a computational method to model whale speech, which encodes rhythmic micro-variations within codas, capturing their vocal style. We find that vocal style-clans closely align with repertoire-clans. However, contrary to vocal repertoire, we show that sympatry increases vocal style similarity between clans for non-identity codas, i.e. most codas, suggesting social learning across cultural boundaries. More broadly, this subcoda structure model offers a framework for comparing communication systems in other species, with potential implications for deeper understanding of vocal and cultural transmission within animal societies.

Dealing with missing data is an important problem in statistical analysis that is often addressed with imputation procedures. The performance and validity of such methods are of great importance for their application in empirical studies. While the prevailing method of Multiple Imputation by Chained Equations (MICE) with Predictive Mean Matching (PMM) is considered standard in the social science literature, the increase in complex datasets may require more advanced approaches based on machine learning. In particular, tree-based imputation methods have emerged as very competitive approaches. However, the performance and validity are not completely understood, particularly compared to the standard MICE PMM. This is especially true for inference in linear models. In this study, we investigate the impact of various imputation methods on coefficient estimation, Type I error, and power, to gain insights that can help empirical researchers deal with missingness more effectively. We explore MICE PMM alongside different tree-based methods, such as MICE with Random Forest (RF), Chained Random Forests with and without PMM (missRanger), and Extreme Gradient Boosting (MIXGBoost), conducting a realistic simulation study using the German National Educational Panel Study (NEPS) as the original data source. Our results reveal that Random Forest-based imputations, especially MICE RF and missRanger with PMM, consistently perform better in most scenarios. Standard MICE PMM shows partially increased bias and overly conservative test decisions, particularly with non-true zero coefficients. Our results thus underscore the potential advantages of tree-based imputation methods, albeit with a caveat that all methods perform worse with an increased missingness, particularly missRanger.

The rise of AI in human contexts places new demands on automated systems to be transparent and explainable. We examine some anthropomorphic ideas and principles relevant to such accountablity in order to develop a theoretical framework for thinking about digital systems in complex human contexts and the problem of explaining their behaviour. Structurally, systems are made of modular and hierachical components, which we abstract in a new system model using notions of modes and mode transitions. A mode is an independent component of the system with its own objectives, monitoring data, and algorithms. The behaviour of a mode, including its transitions to other modes, is determined by functions that interpret each mode's monitoring data in the light of its objectives and algorithms. We show how these belief functions can help explain system behaviour by visualising their evaluation as trajectories in higher-dimensional geometric spaces. These ideas are formalised mathematically by abstract and concrete simplicial complexes. We offer three techniques: a framework for design heuristics, a general system theory based on modes, and a geometric visualisation, and apply them in three types of human-centred systems.

The optimal one-sided parametric polynomial approximants of a circular arc are considered. More precisely, the approximant must be entirely in or out of the underlying circle of an arc. The natural restriction to an arc's approximants interpolating boundary points is assumed. However, the study of approximants, which additionally interpolate corresponding tangent directions and curvatures at the boundary of an arc, is also considered. Several low-degree polynomial approximants are studied in detail. When several solutions fulfilling the interpolation conditions exist, the optimal one is characterized, and a numerical algorithm for its construction is suggested. Theoretical results are demonstrated with several numerical examples and a comparison with general (i.e. non-one-sided) approximants are provided.

With growing concerns surrounding privacy and regulatory compliance, the concept of machine unlearning has gained prominence, aiming to selectively forget or erase specific learned information from a trained model. In response to this critical need, we introduce a novel approach called Attack-and-Reset for Unlearning (ARU). This algorithm leverages meticulously crafted adversarial noise to generate a parameter mask, effectively resetting certain parameters and rendering them unlearnable. ARU outperforms current state-of-the-art results on two facial machine-unlearning benchmark datasets, MUFAC and MUCAC. In particular, we present the steps involved in attacking and masking that strategically filter and re-initialize network parameters biased towards the forget set. Our work represents a significant advancement in rendering data unexploitable to deep learning models through parameter re-initialization, achieved by harnessing adversarial noise to craft a mask.

The implication of the thalamus in multiple neurological pathologies makes it a structure of interest for volumetric analysis. In the present work, we have designed and implemented a multimodal volumetric deep neural network for the segmentation of thalamic nuclei at ultra-high resolution (0.125 mm3). Current tools either operate at standard resolution (1 mm3) or use monomodal data. To achieve the proposed objective, first, a database of semiautomatically segmented thalamic nuclei was created using ultra-high resolution T1, T2 and White Matter nulled (WMn) images. Then, a novel Deep learning based strategy was designed to obtain the automatic segmentations and trained to improve its robustness and accuaracy using a semisupervised approach. The proposed method was compared with a related state-of-the-art method showing competitive results both in terms of segmentation quality and efficiency. To make the proposed method fully available to the scientific community, a full pipeline able to work with monomodal standard resolution T1 images is also proposed.

Wheat varieties show a large diversity of traits and phenotypes. Linking them to genetic variability is essential for shorter and more efficient wheat breeding programs. Newly desirable wheat variety traits include disease resistance to reduce pesticide use, adaptation to climate change, resistance to heat and drought stresses, or low gluten content of grains. Wheat breeding experiments are documented by a large body of scientific literature and observational data obtained in-field and under controlled conditions. The cross-referencing of complementary information from the literature and observational data is essential to the study of the genotype-phenotype relationship and to the improvement of wheat selection. The scientific literature on genetic marker-assisted selection describes much information about the genotype-phenotype relationship. However, the variety of expressions used to refer to traits and phenotype values in scientific articles is a hinder to finding information and cross-referencing it. When trained adequately by annotated examples, recent text mining methods perform highly in named entity recognition and linking in the scientific domain. While several corpora contain annotations of human and animal phenotypes, currently, no corpus is available for training and evaluating named entity recognition and entity-linking methods in plant phenotype literature. The Triticum aestivum trait Corpus is a new gold standard for traits and phenotypes of wheat. It consists of 540 PubMed references fully annotated for trait, phenotype, and species named entities using the Wheat Trait and Phenotype Ontology and the species taxonomy of the National Center for Biotechnology Information. A study of the performance of tools trained on the Triticum aestivum trait Corpus shows that the corpus is suitable for the training and evaluation of named entity recognition and linking.

Business and technology are intricately connected through logic and design. They are equally sensitive to societal changes and may be devastated by scandal. Cooperative multi-robot systems (MRSs) are on the rise, allowing robots of different types and brands to work together in diverse contexts. Generative artificial intelligence has been a dominant topic in recent artificial intelligence (AI) discussions due to its capacity to mimic humans through the use of natural language and the production of media, including deep fakes. In this article, we focus specifically on the conversational aspects of generative AI, and hence use the term Conversational Generative artificial intelligence (CGI). Like MRSs, CGIs have enormous potential for revolutionizing processes across sectors and transforming the way humans conduct business. From a business perspective, cooperative MRSs alone, with potential conflicts of interest, privacy practices, and safety concerns, require ethical examination. MRSs empowered by CGIs demand multi-dimensional and sophisticated methods to uncover imminent ethical pitfalls. This study focuses on ethics in CGI-empowered MRSs while reporting the stages of developing the MORUL model.

Deep Learning (DL) is the most widely used tool in the contemporary field of computer vision. Its ability to accurately solve complex problems is employed in vision research to learn deep neural models for a variety of tasks, including security critical applications. However, it is now known that DL is vulnerable to adversarial attacks that can manipulate its predictions by introducing visually imperceptible perturbations in images and videos. Since the discovery of this phenomenon in 2013~[1], it has attracted significant attention of researchers from multiple sub-fields of machine intelligence. In [2], we reviewed the contributions made by the computer vision community in adversarial attacks on deep learning (and their defenses) until the advent of year 2018. Many of those contributions have inspired new directions in this area, which has matured significantly since witnessing the first generation methods. Hence, as a legacy sequel of [2], this literature review focuses on the advances in this area since 2018. To ensure authenticity, we mainly consider peer-reviewed contributions published in the prestigious sources of computer vision and machine learning research. Besides a comprehensive literature review, the article also provides concise definitions of technical terminologies for non-experts in this domain. Finally, this article discusses challenges and future outlook of this direction based on the literature reviewed herein and [2].

北京阿比特科技有限公司