Many autonomous systems face safety challenges, requiring robust closed-loop control to handle physical limitations and safety constraints. Real-world systems, like autonomous ships, encounter nonlinear dynamics and environmental disturbances. Reinforcement learning is increasingly used to adapt to complex scenarios, but standard frameworks ensuring safety and stability are lacking. Predictive Safety Filters (PSF) offer a promising solution, ensuring constraint satisfaction in learning-based control without explicit constraint handling. This modular approach allows using arbitrary control policies, with the safety filter optimizing proposed actions to meet physical and safety constraints. We apply this approach to marine navigation, combining RL with PSF on a simulated Cybership II model. The RL agent is trained on path following and collision avpodance, while the PSF monitors and modifies control actions for safety. Results demonstrate the PSF's effectiveness in maintaining safety without hindering the RL agent's learning rate and performance, evaluated against a standard RL agent without PSF.
This preprint presents the current status of research into the development and application of an autonomous, self-driving compost turner. The aim is to overcome challenges in the composting industry, such as adverse working conditions, by automating the composting process. The preprint provides a comprehensive overview of the overall concept of the self-driving compost turner, including the hardware architecture with sensors, navigation module and control module. In addition, the methodical development of the architecture of concepts, models and their subsequent software integration in ROS using model-based systems engineering is described. The validation and verification of the overall system is carried out in an industrial environment using three scenarios. The capabilities of the compost turner are demonstrated by autonomously following predefined trajectories in the composting plant and performing the required composting tasks. The results show that the autonomous compost turner is capable of performing the required activities. In addition, the compost turner has intelligent processing capabilities for compost data as well as its transmission, visualization and storage in a cloud server. It is important to note that this work is a preprint that represents the current state of research. The authors aim to publish the full paper in a peer-reviewed journal in the near future.
The aspiration of the next generation's autonomous driving (AD) technology relies on the dedicated integration and interaction among intelligent perception, prediction, planning, and low-level control. There has been a huge bottleneck regarding the upper bound of autonomous driving algorithm performance, a consensus from academia and industry believes that the key to surmount the bottleneck lies in data-centric autonomous driving technology. Recent advancement in AD simulation, closed-loop model training, and AD big data engine have gained some valuable experience. However, there is a lack of systematic knowledge and deep understanding regarding how to build efficient data-centric AD technology for AD algorithm self-evolution and better AD big data accumulation. To fill in the identified research gaps, this article will closely focus on reviewing the state-of-the-art data-driven autonomous driving technologies, with an emphasis on the comprehensive taxonomy of autonomous driving datasets characterized by milestone generations, key features, data acquisition settings, etc. Furthermore, we provide a systematic review of the existing benchmark closed-loop AD big data pipelines from the industrial frontier, including the procedure of closed-loop frameworks, key technologies, and empirical studies. Finally, the future directions, potential applications, limitations and concerns are discussed to arouse efforts from both academia and industry for promoting the further development of autonomous driving.
Augmented Reality (AR) devices, emerging as prominent mobile interaction platforms, face challenges in user safety, particularly concerning oncoming vehicles. While some solutions leverage onboard camera arrays, these cameras often have limited field-of-view (FoV) with front or downward perspectives. Addressing this, we propose a new out-of-view semantic segmentation task and Segment Beyond View (SBV), a novel audio-visual semantic segmentation method. SBV supplements the visual modality, which miss the information beyond FoV, with the auditory information using a teacher-student distillation model (Omni2Ego). The model consists of a vision teacher utilising panoramic information, an auditory teacher with 8-channel audio, and an audio-visual student that takes views with limited FoV and binaural audio as input and produce semantic segmentation for objects outside FoV. SBV outperforms existing models in comparative evaluations and shows a consistent performance across varying FoV ranges and in monaural audio settings.
Roadside perception systems are increasingly crucial in enhancing traffic safety and facilitating cooperative driving for autonomous vehicles. Despite rapid technological advancements, a major challenge persists for this newly arising field: the absence of standardized evaluation methods and benchmarks for these systems. This limitation hampers the ability to effectively assess and compare the performance of different systems, thus constraining progress in this vital field. This paper introduces a comprehensive evaluation methodology specifically designed to assess the performance of roadside perception systems. Our methodology encompasses measurement techniques, metric selection, and experimental trial design, all grounded in real-world field testing to ensure the practical applicability of our approach. We applied our methodology in Mcity\footnote{\url{//mcity.umich.edu/}}, a controlled testing environment, to evaluate various off-the-shelf perception systems. This approach allowed for an in-depth comparative analysis of their performance in realistic scenarios, offering key insights into their respective strengths and limitations. The findings of this study are poised to inform the development of industry-standard benchmarks and evaluation methods, thereby enhancing the effectiveness of roadside perception system development and deployment for autonomous vehicles. We anticipate that this paper will stimulate essential discourse on standardizing evaluation methods for roadside perception systems, thus pushing the frontiers of this technology. Furthermore, our results offer both academia and industry a comprehensive understanding of the capabilities of contemporary infrastructure-based perception systems.
As automated driving technology advances, the role of the driver to resume control of the vehicle in conditionally automated vehicles becomes increasingly critical. In the SAE Level 3 or partly automated vehicles, the driver needs to be available and ready to intervene when necessary. This makes it essential to evaluate their readiness accurately. This article presents a comprehensive analysis of driver readiness assessment by combining head pose features and eye-tracking data. The study explores the effectiveness of predictive models in evaluating driver readiness, addressing the challenges of dataset limitations and limited ground truth labels. Machine learning techniques, including LSTM architectures, are utilised to model driver readiness based on the Spatio-temporal status of the driver's head pose and eye gaze. The experiments in this article revealed that a Bidirectional LSTM architecture, combining both feature sets, achieves a mean absolute error of 0.363 on the DMD dataset, demonstrating superior performance in assessing driver readiness. The modular architecture of the proposed model also allows the integration of additional driver-specific features, such as steering wheel activity, enhancing its adaptability and real-world applicability.
Rising connectivity in vehicles is enabling new capabilities like connected autonomous driving and advanced driver assistance systems (ADAS) for improving the safety and reliability of next-generation vehicles. This increased access to in-vehicle functions compromises critical capabilities that use legacy invehicle networks like Controller Area Network (CAN), which has no inherent security or authentication mechanism. Intrusion detection and mitigation approaches, particularly using machine learning models, have shown promising results in detecting multiple attack vectors in CAN through their ability to generalise to new vectors. However, most deployments require dedicated computing units like GPUs to perform line-rate detection, consuming much higher power. In this paper, we present a lightweight multi-attack quantised machine learning model that is deployed using Xilinx's Deep Learning Processing Unit IP on a Zynq Ultrascale+ (XCZU3EG) FPGA, which is trained and validated using the public CAN Intrusion Detection dataset. The quantised model detects denial of service and fuzzing attacks with an accuracy of above 99 % and a false positive rate of 0.07%, which are comparable to the state-of-the-art techniques in the literature. The Intrusion Detection System (IDS) execution consumes just 2.0 W with software tasks running on the ECU and achieves a 25 % reduction in per-message processing latency over the state-of-the-art implementations. This deployment allows the ECU function to coexist with the IDS with minimal changes to the tasks, making it ideal for real-time IDS in in-vehicle systems.
The increasing demand for autonomous machines in construction environments necessitates the development of robust object detection algorithms that can perform effectively across various weather and environmental conditions. This paper introduces a new semantic segmentation dataset specifically tailored for construction sites, taking into account the diverse challenges posed by adverse weather and environmental conditions. The dataset is designed to enhance the training and evaluation of object detection models, fostering their adaptability and reliability in real-world construction applications. Our dataset comprises annotated images captured under a wide range of different weather conditions, including but not limited to sunny days, rainy periods, foggy atmospheres, and low-light situations. Additionally, environmental factors such as the existence of dirt/mud on the camera lens are integrated into the dataset through actual captures and synthetic generation to simulate the complex conditions prevalent in construction sites. We also generate synthetic images of the annotations including precise semantic segmentation masks for various objects commonly found in construction environments, such as wheel loader machines, personnel, cars, and structural elements. To demonstrate the dataset's utility, we evaluate state-of-the-art object detection algorithms on our proposed benchmark. The results highlight the dataset's success in adversarial training models across diverse conditions, showcasing its efficacy compared to existing datasets that lack such environmental variability.
In underwater environments, variations in suspended particle concentration and turbidity cause severe image degradation, posing significant challenges to image enhancement (IE) and object detection (OD) tasks. Currently, in-air image enhancement and detection methods have made notable progress, but their application in underwater conditions is limited due to the complexity and variability of these environments. Fine-tuning in-air models saves high overhead and has more optional reference work than building an underwater model from scratch. To address these issues, we design a transfer plugin with multiple priors for converting in-air models to underwater applications, named IA2U. IA2U enables efficient application in underwater scenarios, thereby improving performance in Underwater IE and OD. IA2U integrates three types of underwater priors: the water type prior that characterizes the degree of image degradation, such as color and visibility; the degradation prior, focusing on differences in details and textures; and the sample prior, considering the environmental conditions at the time of capture and the characteristics of the photographed object. Utilizing a Transformer-like structure, IA2U employs these priors as query conditions and a joint task loss function to achieve hierarchical enhancement of task-level underwater image features, therefore considering the requirements of two different tasks, IE and OD. Experimental results show that IA2U combined with an in-air model can achieve superior performance in underwater image enhancement and object detection tasks. The code will be made publicly available.
The accuracy and fairness of perception systems in autonomous driving are crucial, particularly for vulnerable road users. Mainstream research has looked into improving the performance metrics for classification accuracy. However, the hidden traits of bias inheritance in the AI models, class imbalances and disparities in the datasets are often overlooked. In this context, our study examines the class imbalances for vulnerable road users by focusing on class distribution analysis, performance evaluation, and bias impact assessment. We identify the concern of imbalances in class representation, leading to potential biases in detection accuracy. Utilizing popular CNN models and Vision Transformers (ViTs) with the nuScenes dataset, our performance evaluation reveals detection disparities for underrepresented classes. We propose a methodology for model optimization and bias mitigation, which includes data augmentation, resampling, and metric-specific learning. Using the proposed mitigation approaches, we see improvement in IoU(%) and NDS(%) metrics from 71.3 to 75.6 and 80.6 to 83.7 respectively, for the CNN model. Similarly, for ViT, we observe improvement in IoU and NDS metrics from 74.9 to 79.2 and 83.8 to 87.1 respectively. This research contributes to developing more reliable models and datasets, enhancing inclusiveness for minority classes.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.