亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we examine the problem of online decision making under uncertainty, which we formulate as planning in the belief space. Maintaining beliefs (i.e., distributions) over high-dimensional states (e.g., entire trajectories) was not only shown to significantly improve accuracy, but also allows planning with information-theoretic objectives, as required for the tasks of active SLAM and information gathering. Nonetheless, planning under this "smoothing" paradigm holds a high computational complexity, which makes it challenging for online solution. Thus, we suggest the following idea: before planning, perform a standalone state variable reordering procedure on the initial belief, and "push forwards" all the predicted loop closing variables. Since the initial variable order determines which subset of them would be affected by incoming updates, such reordering allows us to minimize the total number of affected variables, and reduce the computational complexity of candidate evaluation during planning. We call this approach PIVOT: Predictive Incremental Variable Ordering Tactic. Applying this tactic can also improve the state inference efficiency; if we maintain the PIVOT order after the planning session, then we should similarly reduce the cost of loop closures, when they actually occur. To demonstrate its effectiveness, we applied PIVOT in a realistic active SLAM simulation, where we managed to significantly reduce the computation time of both the planning and inference sessions. The approach is applicable to general distributions, and induces no loss in accuracy.

相關內容

In this paper, we develop a Monte Carlo method for solving PDEs involving an integral fractional Laplacian (IFL) in multiple dimensions. We first construct a new Feynman-Kac representation based on the Green function for the fractional Laplacian operator on the unit ball in arbitrary dimensions. Inspired by the "walk-on-spheres" algorithm proposed in [24], we extend our algorithm for solving fractional PDEs in the complex domain. Then, we can compute the expectation of a multi-dimensional random variable with a known density function to obtain the numerical solution efficiently. The proposed algorithm finds it remarkably efficient in solving fractional PDEs: it only needs to evaluate the integrals of expectation form over a series of inside ball tangent boundaries with the known Green function. Moreover, we carry out the error estimates of the proposed method for the $n$-dimensional unit ball. Finally, ample numerical results are presented to demonstrate the robustness and effectiveness of this approach for fractional PDEs in unit disk and complex domains, and even in ten-dimensional unit balls.

Although deep neural networks enable impressive visual perception performance for autonomous driving, their robustness to varying weather conditions still requires attention. When adapting these models for changed environments, such as different weather conditions, they are prone to forgetting previously learned information. This catastrophic forgetting is typically addressed via incremental learning approaches which usually re-train the model by either keeping a memory bank of training samples or keeping a copy of the entire model or model parameters for each scenario. While these approaches show impressive results, they can be prone to scalability issues and their applicability for autonomous driving in all weather conditions has not been shown. In this paper we propose DISC -- Domain Incremental through Statistical Correction -- a simple online zero-forgetting approach which can incrementally learn new tasks (i.e weather conditions) without requiring re-training or expensive memory banks. The only information we store for each task are the statistical parameters as we categorize each domain by the change in first and second order statistics. Thus, as each task arrives, we simply 'plug and play' the statistical vectors for the corresponding task into the model and it immediately starts to perform well on that task. We show the efficacy of our approach by testing it for object detection in a challenging domain-incremental autonomous driving scenario where we encounter different adverse weather conditions, such as heavy rain, fog, and snow.

Annotating data for supervised learning can be costly. When the annotation budget is limited, active learning can be used to select and annotate those observations that are likely to give the most gain in model performance. We propose an active learning algorithm that, in addition to selecting which observation to annotate, selects the precision of the annotation that is acquired. Assuming that annotations with low precision are cheaper to obtain, this allows the model to explore a larger part of the input space, with the same annotation costs. We build our acquisition function on the previously proposed BALD objective for Gaussian Processes, and empirically demonstrate the gains of being able to adjust the annotation precision in the active learning loop.

Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once $d\geq\log n$, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of $n$ points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to $\mathrm{poly}(d,\log n)$ bits of space by trading off with a $\mathrm{poly}(d,\log n)$ factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for $\ell_\infty$ subspace embeddings with $\mathrm{poly}(d,\log n)$ space and $\mathrm{poly}(d,\log n)$ distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a $\log n$ dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For $\ell_p$ subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using $O(d^2\log n)$ space and $O((d\log n)^{1/2-1/p})$ distortion for $p>2$, whereas previous deterministic algorithms incurred a $\mathrm{poly}(n)$ factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.

Computing a maximum independent set (MaxIS) is a fundamental NP-hard problem in graph theory, which has important applications in a wide spectrum of fields. Since graphs in many applications are changing frequently over time, the problem of maintaining a MaxIS over dynamic graphs has attracted increasing attention over the past few years. Due to the intractability of maintaining an exact MaxIS, this paper aims to develop efficient algorithms that can maintain an approximate MaxIS with an accuracy guarantee theoretically. In particular, we propose a framework that maintains a $(\frac{\Delta}{2} + 1)$-approximate MaxIS over dynamic graphs and prove that it achieves a constant approximation ratio in many real-world networks. To the best of our knowledge, this is the first non-trivial approximability result for the dynamic MaxIS problem. Following the framework, we implement an efficient linear-time dynamic algorithm and a more effective dynamic algorithm with near-linear expected time complexity. Our thorough experiments over real and synthetic graphs demonstrate the effectiveness and efficiency of the proposed algorithms, especially when the graph is highly dynamic.

A High-dimensional and sparse (HiDS) matrix is frequently encountered in a big data-related application like an e-commerce system or a social network services system. To perform highly accurate representation learning on it is of great significance owing to the great desire of extracting latent knowledge and patterns from it. Latent factor analysis (LFA), which represents an HiDS matrix by learning the low-rank embeddings based on its observed entries only, is one of the most effective and efficient approaches to this issue. However, most existing LFA-based models perform such embeddings on a HiDS matrix directly without exploiting its hidden graph structures, thereby resulting in accuracy loss. To address this issue, this paper proposes a graph-incorporated latent factor analysis (GLFA) model. It adopts two-fold ideas: 1) a graph is constructed for identifying the hidden high-order interaction (HOI) among nodes described by an HiDS matrix, and 2) a recurrent LFA structure is carefully designed with the incorporation of HOI, thereby improving the representa-tion learning ability of a resultant model. Experimental results on three real-world datasets demonstrate that GLFA outperforms six state-of-the-art models in predicting the missing data of an HiDS matrix, which evidently supports its strong representation learning ability to HiDS data.

In randomized experiments, the actual treatments received by some experimental units may differ from their treatment assignments. This non-compliance issue often occurs in clinical trials, social experiments, and the applications of randomized experiments in many other fields. Under certain assumptions, the average treatment effect for the compliers is identifiable and equal to the ratio of the intention-to-treat effects of the potential outcomes to that of the potential treatment received. To improve the estimation efficiency, we propose three model-assisted estimators for the complier average treatment effect in randomized experiments with a binary outcome. We study their asymptotic properties, compare their efficiencies with that of the Wald estimator, and propose the Neyman-type conservative variance estimators to facilitate valid inferences. Moreover, we extend our methods and theory to estimate the multiplicative complier average treatment effect. Our analysis is randomization-based, allowing the working models to be misspecified. Finally, we conduct simulation studies to illustrate the advantages of the model-assisted methods and apply these analysis methods in a randomized experiment to evaluate the effect of academic services or incentives on academic performance.

The problem of active mapping aims to plan an informative sequence of sensing views given a limited budget such as distance traveled. This paper consider active occupancy grid mapping using a range sensor, such as LiDAR or depth camera. State-of-the-art methods optimize information-theoretic measures relating the occupancy grid probabilities with the range sensor measurements. The non-smooth nature of ray-tracing within a grid representation makes the objective function non-differentiable, forcing existing methods to search over a discrete space of candidate trajectories. This work proposes a differentiable approximation of the Shannon mutual information between a grid map and ray-based observations that enables gradient ascent optimization in the continuous space of SE(3) sensor poses. Our gradient-based formulation leads to more informative sensing trajectories, while avoiding occlusions and collisions. The proposed method is demonstrated in simulated and real-world experiments in 2-D and 3-D environments.

Bayesian model selection provides a powerful framework for objectively comparing models directly from observed data, without reference to ground truth data. However, Bayesian model selection requires the computation of the marginal likelihood (model evidence), which is computationally challenging, prohibiting its use in many high-dimensional Bayesian inverse problems. With Bayesian imaging applications in mind, in this work we present the proximal nested sampling methodology to objectively compare alternative Bayesian imaging models for applications that use images to inform decisions under uncertainty. The methodology is based on nested sampling, a Monte Carlo approach specialised for model comparison, and exploits proximal Markov chain Monte Carlo techniques to scale efficiently to large problems and to tackle models that are log-concave and not necessarily smooth (e.g., involving l_1 or total-variation priors). The proposed approach can be applied computationally to problems of dimension O(10^6) and beyond, making it suitable for high-dimensional inverse imaging problems. It is validated on large Gaussian models, for which the likelihood is available analytically, and subsequently illustrated on a range of imaging problems where it is used to analyse different choices of dictionary and measurement model.

The Model Order Reduction (MOR) technique can provide compact numerical models for fast simulation. Different from the intrusive MOR methods, the non-intrusive MOR does not require access to the Full Order Models (FOMs), especially system matrices. Since the non-intrusive MOR methods strongly rely on the snapshots of the FOMs, constructing good snapshot sets becomes crucial. In this work, we propose a new active learning approach with two novelties. A novel idea with our approach is the use of single-time step snapshots from the system states taken from an estimation of the reduced-state space. These states are selected using a greedy strategy supported by an error estimator based Gaussian Process Regression (GPR). Additionally, we introduce a use case-independent validation strategy based on Probably Approximately Correct (PAC) learning. In this work, we use Artificial Neural Networks (ANNs) to identify the Reduced Order Model (ROM), however the method could be similarly applied to other ROM identification methods. The performance of the whole workflow is tested by a 2-D thermal conduction and a 3-D vacuum furnace model. With little required user interaction and a training strategy independent to a specific use case, the proposed method offers a huge potential for industrial usage to create so-called executable Digital Twins (DTs).

北京阿比特科技有限公司