Reconfigurable intelligent surface (RIS) has been regarded as a promising technique due to its high array gain and low power. However, the traditional passive RIS suffers from the ``double fading'' effect, which has restricted the performance of passive RIS-aided communications. Fortunately, active RIS can alleviate this problem since it can adjust the phase shift and amplify the received signal simultaneously. Nevertheless, a high beamforming gain often requires a number of reflecting elements, which leads to non-negligible power consumption, especially for the active RIS. Thus, one challenge is how to improve the scalability of the RIS and the energy efficiency. Different from the existing works where all reflecting elements are activated, we propose a novel element on-off mechanism where reflecting elements can be flexibly activated and deactivated. Two different optimization problems for passive RIS and active RIS are formulated by maximizing the total energy efficiency. We develop two different alternating optimization-based iterative algorithms to obtain sub-optimal solutions. Furthermore, we consider special cases involving rate maximization problems for given the same total power budget, and respectively analyze the number configuration for passive RIS and active RIS. Simulation results verify that reflecting elements under the proposed algorithms can be flexibly activated and deactivated.
For many years, car keys have been the sole mean of authentication in vehicles. Whether the access control process is physical or wireless, entrusting the ownership of a vehicle to a single token is prone to stealing attempts. For this reason, many researchers started developing behavior-based authentication systems. By collecting data in a moving vehicle, Deep Learning (DL) models can recognize patterns in the data and identify drivers based on their driving behavior. This can be used as an anti-theft system, as a thief would exhibit a different driving style compared to the vehicle owner's. However, the assumption that an attacker cannot replicate the legitimate driver behavior falls under certain conditions. In this paper, we propose GAN-CAN, the first attack capable of fooling state-of-the-art behavior-based driver authentication systems in a vehicle. Based on the adversary's knowledge, we propose different GAN-CAN implementations. Our attack leverages the lack of security in the Controller Area Network (CAN) to inject suitably designed time-series data to mimic the legitimate driver. Our design of the malicious time series results from the combination of different Generative Adversarial Networks (GANs) and our study on the safety importance of the injected values during the attack. We tested GAN-CAN in an improved version of the most efficient driver behavior-based authentication model in the literature. We prove that our attack can fool it with an attack success rate of up to 0.99. We show how an attacker, without prior knowledge of the authentication system, can steal a car by deploying GAN-CAN in an off-the-shelf system in under 22 minutes.
Internet-of-Things (IoT) networks are expected to support the wireless connection of massive energy limited IoT nodes. The emerging wireless powered backscatter communications (WPBC) enable IoT nodes to harvest energy from the incident radio frequency signals transmitted by a power beacon (PB) to support their circuit operation, but the energy consumption of the PB (a potentially high cost borne by the network operator) has not been sufficiently studied for WPBC. In this paper, we aim to minimize the energy consumption of the PB while satisfying the throughput requirement per IoT node by jointly optimizing the time division multiple access (TDMA) time slot duration and backscatter reflection coefficient of each IoT node and the PB transmit power per time slot. As the formulated joint optimization problem is non-convex, we transform it into a convex problem by using auxiliary variables, then employ the Lagrange dual method to obtain the optimal solutions. To reduce the implementation complexity required for adjusting the PB's transmit power every time slot, we keep the PB transmit power constant in each time block and solve the corresponding PB energy consumption minimization problem by using auxiliary variables, the block coordinated decent method and the successive convex approximation technique. Based on the above solutions, two iterative algorithms are proposed for the dynamic PB transmit power scheme and the static PB transmit power scheme. The simulation results show that the dynamic PB transmit power scheme and the static PB transmit power scheme both achieve a lower PB energy consumption than the benchmark schemes, and the former achieves the lowest PB energy consumption.
The sixth-generation (6G) wireless technology recognizes the potential of reconfigurable intelligent surfaces (RIS) as an effective technique for intelligently manipulating channel paths through reflection to serve desired users. Full-duplex (FD) systems, enabling simultaneous transmission and reception from a base station (BS), offer the theoretical advantage of doubled spectrum efficiency. However, the presence of strong self-interference (SI) in FD systems significantly degrades performance, which can be mitigated by leveraging the capabilities of RIS. Moreover, accurately obtaining channel state information (CSI) from RIS poses a critical challenge. Our objective is to maximize downlink (DL) user data rates while ensuring quality-of-service (QoS) for uplink (UL) users under imperfect CSI from reflected channels. To address this, we introduce the robust active BS and passive RIS beamforming (RAPB) scheme for RIS-FD, accounting for both SI and imperfect CSI. RAPB incorporates distributionally robust design, conditional value-at-risk (CVaR), and penalty convex-concave programming (PCCP) techniques. Additionally, RAPB extends to active and passive beamforming (APB) with perfect channel estimation. Simulation results demonstrate the UL/DL rate improvements achieved considering various levels of imperfect CSI. The proposed RAPB/APB schemes validate their effectiveness across different RIS deployment and RIS/BS configurations. Benefited from robust beamforming, RAPB outperforms existing methods in terms of non-robustness, deployment without RIS, conventional successive convex approximation, and half-duplex systems.
Score-based diffusion models learn to reverse a stochastic differential equation that maps data to noise. However, for complex tasks, numerical error can compound and result in highly unnatural samples. Previous work mitigates this drift with thresholding, which projects to the natural data domain (such as pixel space for images) after each diffusion step, but this leads to a mismatch between the training and generative processes. To incorporate data constraints in a principled manner, we present Reflected Diffusion Models, which instead reverse a reflected stochastic differential equation evolving on the support of the data. Our approach learns the perturbed score function through a generalized score matching loss and extends key components of standard diffusion models including diffusion guidance, likelihood-based training, and ODE sampling. We also bridge the theoretical gap with thresholding: such schemes are just discretizations of reflected SDEs. On standard image benchmarks, our method is competitive with or surpasses the state of the art without architectural modifications and, for classifier-free guidance, our approach enables fast exact sampling with ODEs and produces more faithful samples under high guidance weight.
Today's blockchains suffer from low throughput and high latency, which impedes their widespread adoption of more complex applications like smart contracts. In this paper, we propose a novel paradigm for smart contract execution. It distinguishes between consensus nodes and execution nodes: different groups of execution nodes can execute transactions in parallel; meanwhile, consensus nodes can asynchronously order transactions and process execution results. Moreover, it requires no coordination among execution nodes and can effectively prevent livelocks. We show two ways of applying this paradigm to blockchains. First, we show how we can make Ethereum support parallel and asynchronous contract execution \emph{without hard-forks}. Then, we propose a new public, permissionless blockchain. Our benchmark shows that, with a fast consensus layer, it can provide a high throughput even for complex transactions like Cryptokitties gene mixing. It can also protect simple transactions from being starved by complex transactions.
Reconfigurable intelligent surface (RIS) has shown its great potential in facilitating device-based integrated sensing and communication (ISAC), where sensing and communication tasks are mostly conducted on different time-frequency resources. While the more challenging scenarios of simultaneous sensing and communication (SSC) have so far drawn little attention. In this paper, we propose a novel RIS-aided ISAC framework where the inherent location information in the received communication signals from a blind-zone user equipment is exploited to enable SSC. We first design a two-phase ISAC transmission protocol. In the first phase, communication and coarse-grained location sensing are performed concurrently by exploiting the very limited channel state information, while in the second phase, by using the coarse-grained sensing information obtained from the first phase, simple-yet-efficient sensing-based beamforming designs are proposed to realize both higher-rate communication and fine-grained location sensing. We demonstrate that our proposed framework can achieve almost the same performance as the communication-only frameworks, while providing up to millimeter-level positioning accuracy. In addition, we show how the communication and sensing performance can be simultaneously boosted through our proposed sensing-based beamforming designs. The results presented in this work provide valuable insights into the design and implementation of other ISAC systems considering SSC.
Current communication networks use design methodologies that prevent the realization of maximum network efficiency. In the first place, while users' perception of satisfactory service diverges widely, current networks are designed to be a "universal fit," where they are generally over-engineered to deliver services appealing to all types of users. Also, current networks lack user-level data cognitive intelligence that would enable fast personalized network decisions and actions through automation. Thus, in this article, we propose the utilization of AI, big data analytics, and real-time non-intrusive user feedback in order to enable the personalization of wireless networks. Based on each user's actual QoS requirements and context, a multi-objective formulation enables the network to micro-manage and optimize the provided QoS and user satisfaction levels simultaneously. Moreover, in order to enable user feedback tracking and measurement, we propose a user satisfaction model based on the zone of tolerance concept. Furthermore, we propose a big-data-driven and AI-based personalization framework to integrate personalization into wireless networks. Finally, we implement a personalized network prototype to demonstrate the proposed personalization concept and its potential benefits through a case study. The case study shows how personalization can be realized to enable the efficient optimization of network resources such that certain requirement levels of user satisfaction and revenue in the form of saved resources are achieved.
In database design, Composite Keys are used to uniquely identify records and prevent data duplication. However, they require more memory and storage space than single keys, and can make queries more CPU-intensive. Surrogate Keys are an alternative that can overcome some of these limitations, but they can also introduce new disadvantages. To address these challenges, a new type of key called a Reversible Numeric Composite Key (RNCK) has been developed. RNCK is a single number that encodes multiple data attributes, and can be decoded back to the original values. This makes it possible to achieve the benefits of both Composite Keys and Surrogate Keys, while overcoming some of their limitations. RNCK has been shown to improve query performance and reduce memory and storage requirements. It can be used in relational databases, large static datasets, and key-value caching systems. RNCK has been successfully used in production systems for several years.
This paper proposes a novel algorithm, named quantum multi-agent actor-critic networks (QMACN) for autonomously constructing a robust mobile access system employing multiple unmanned aerial vehicles (UAVs). In the context of facilitating collaboration among multiple unmanned aerial vehicles (UAVs), the application of multi-agent reinforcement learning (MARL) techniques is regarded as a promising approach. These methods enable UAVs to learn collectively, optimizing their actions within a shared environment, ultimately leading to more efficient cooperative behavior. Furthermore, the principles of a quantum computing (QC) are employed in our study to enhance the training process and inference capabilities of the UAVs involved. By leveraging the unique computational advantages of quantum computing, our approach aims to boost the overall effectiveness of the UAV system. However, employing a QC introduces scalability challenges due to the near intermediate-scale quantum (NISQ) limitation associated with qubit usage. The proposed algorithm addresses this issue by implementing a quantum centralized critic, effectively mitigating the constraints imposed by NISQ limitations. Additionally, the advantages of the QMACN with performance improvements in terms of training speed and wireless service quality are verified via various data-intensive evaluations. Furthermore, this paper validates that a noise injection scheme can be used for handling environmental uncertainties in order to realize robust mobile access.
Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.