亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A finite word $w$ is called \emph{rich} if it contains $\vert w\vert+1$ distinct palindromic factors including the empty word. For every finite rich word $w$ there are distinct nonempty palindromes $w_1, w_2,\dots,w_p$ such that $w=w_pw_{p-1}\cdots w_1$ and $w_i$ is the longest palindromic suffix of $w_pw_{p-1}\cdots w_i$, where $1\leq i\leq p$. This palindromic factorization is called \emph{UPS-factorization}. Let $luf(w)=p$ be \emph{the length of UPS-factorization} of $w$. In 2017, it was proved that there is a constant $c$ such that if $w$ is a finite rich word and $n=\vert w\vert$ then $luf(w)\leq c\frac{n}{\ln{n}}$. We improve this result as follows: There are constants $\mu, \pi$ such that if $w$ is a finite rich word and $n=\vert w\vert$ then \[luf(w)\leq \mu\frac{n}{e^{\pi\sqrt{\ln{n}}}}\mbox{.}\] The constants $c,\mu,\pi$ depend on the size of the alphabet.

相關內容

We study subtrajectory clustering under the Fr\'echet distance. Given one or more trajectories, the task is to split the trajectories into several parts, such that the parts have a good clustering structure. We approach this problem via a new set cover formulation, which we think provides a natural formalization of the problem as it is studied in many applications. Given a polygonal curve $P$ with $n$ vertices in fixed dimension, integers $k$, $\ell \geq 1$, and a real value $\Delta > 0$, the goal is to find $k$ center curves of complexity at most $\ell$ such that every point on $P$ is covered by a subtrajectory that has small Fr\'echet distance to one of the $k$ center curves ($\leq \Delta$). In many application scenarios, one is interested in finding clusters of small complexity, which is controlled by the parameter $\ell$. Our main result is a bicriterial approximation algorithm: if there exists a solution for given parameters $k$, $\ell$, and $\Delta$, then our algorithm finds a set of $k'$ center curves of complexity at most $\ell$ with covering radius $\Delta'$ with $k' \in O( k \ell^2 \log (k \ell))$, and $\Delta'\leq 19 \Delta$. Moreover, within these approximation bounds, we can minimize $k$ while keeping the other parameters fixed. If $\ell$ is a constant independent of $n$, then, the approximation factor for the number of clusters $k$ is $O(\log k)$ and the approximation factor for the radius $\Delta$ is constant. In this case, the algorithm has expected running time in $ \tilde{O}\left( k m^2 + mn\right)$ and uses space in $O(n+m)$, where $m=\lceil\frac{L}{\Delta}\rceil$ and $L$ is the total arclength of the curve $P$.

A Bayesian Network is a directed acyclic graph (DAG) on a set of $n$ random variables (identified with the vertices); a Bayesian Network Distribution (BND) is a probability distribution on the rv's that is Markovian on the graph. A finite mixture of such models is the projection on these variables of a BND on the larger graph which has an additional "hidden" (or "latent") random variable $U$, ranging in $\{1,\ldots,k\}$, and a directed edge from $U$ to every other vertex. Models of this type are fundamental to research in Causal Inference, where $U$ models a confounding effect. One extremely special case has been of longstanding interest in the theory literature: the empty graph. Such a distribution is simply a mixture of $k$ product distributions. A longstanding problem has been, given the joint distribution of a mixture of $k$ product distributions, to identify each of the product distributions, and their mixture weights. Our results are: (1) We improve the sample complexity (and runtime) for identifying mixtures of $k$ product distributions from $\exp(O(k^2))$ to $\exp(O(k \log k))$. This is almost best possible in view of a known $\exp(\Omega(k))$ lower bound. (2) We give the first algorithm for the case of non-empty graphs. The complexity for a graph of maximum degree $\Delta$ is $\exp(O(k(\Delta^2 + \log k)))$. (The above complexities are approximate and suppress dependence on secondary parameters.)

The problem of finding the unique low dimensional decomposition of a given matrix has been a fundamental and recurrent problem in many areas. In this paper, we study the problem of seeking a unique decomposition of a low rank matrix $Y\in \mathbb{R}^{p\times n}$ that admits a sparse representation. Specifically, we consider $Y = A X\in \mathbb{R}^{p\times n}$ where the matrix $A\in \mathbb{R}^{p\times r}$ has full column rank, with $r < \min\{n,p\}$, and the matrix $X\in \mathbb{R}^{r\times n}$ is element-wise sparse. We prove that this sparse decomposition of $Y$ can be uniquely identified, up to some intrinsic signed permutation. Our approach relies on solving a nonconvex optimization problem constrained over the unit sphere. Our geometric analysis for the nonconvex optimization landscape shows that any {\em strict} local solution is close to the ground truth solution, and can be recovered by a simple data-driven initialization followed with any second order descent algorithm. At last, we corroborate these theoretical results with numerical experiments.

A mapping $\alpha : V(G) \to V(H)$ from the vertex set of one graph $G$ to another graph $H$ is an isometric embedding if the shortest path distance between any two vertices in $G$ equals the distance between their images in $H$. Here, we consider isometric embeddings of a weighted graph $G$ into unweighted Hamming graphs, called Hamming embeddings, when $G$ satisfies the property that every edge is a shortest path between its endpoints. Using a Cartesian product decomposition of $G$ called its pseudofactorization, we show that every Hamming embedding of $G$ may be partitioned into Hamming embeddings for each irreducible pseudofactor graph of $G$, which we call its canonical partition. This implies that $G$ permits a Hamming embedding if and only if each of its irreducible pseudofactors is Hamming embeddable. This result extends prior work on unweighted graphs that showed that an unweighted graph permits a Hamming embedding if and only if each irreducible pseudofactor is a complete graph. When a graph $G$ has nontrivial pseudofactors, determining whether $G$ has a Hamming embedding can be simplified to checking embeddability of two or more smaller graphs.

In this thesis, we propose new theoretical frameworks for the analysis of stochastic and distributed methods with error compensation and local updates. Using these frameworks, we develop more than 20 new optimization methods, including the first linearly converging Error-Compensated SGD and the first linearly converging Local-SGD for arbitrarily heterogeneous local functions. Moreover, the thesis contains several new distributed methods with unbiased compression for distributed non-convex optimization problems. The derived complexity results for these methods outperform the previous best-known results for the considered problems. Finally, we propose a new scalable decentralized fault-tolerant distributed method, and under reasonable assumptions, we derive the iteration complexity bounds for this method that match the ones of centralized Local-SGD.

A string $w$ is called a minimal absent word (MAW) for another string $T$ if $w$ does not occur in $T$ but the proper substrings of $w$ occur in $T$. For example, let $\Sigma = \{\mathtt{a, b, c}\}$ be the alphabet. Then, the set of MAWs for string $w = \mathtt{abaab}$ is $\{\mathtt{aaa, aaba, bab, bb, c}\}$. In this paper, we study combinatorial properties of MAWs in the sliding window model, namely, how the set of MAWs changes when a sliding window of fixed length $d$ is shifted over the input string $T$ of length $n$, where $1 \leq d < n$. We present \emph{tight} upper and lower bounds on the maximum number of changes in the set of MAWs for a sliding window over $T$, both in the cases of general alphabets and binary alphabets. Our bounds improve on the previously known best bounds [Crochemore et al., 2020].

Several recent applications of optimal transport (OT) theory to machine learning have relied on regularization, notably entropy and the Sinkhorn algorithm. Because matrix-vector products are pervasive in the Sinkhorn algorithm, several works have proposed to \textit{approximate} kernel matrices appearing in its iterations using low-rank factors. Another route lies instead in imposing low-rank constraints on the feasible set of couplings considered in OT problems, with no approximations on cost nor kernel matrices. This route was first explored by Forrow et al., 2018, who proposed an algorithm tailored for the squared Euclidean ground cost, using a proxy objective that can be solved through the machinery of regularized 2-Wasserstein barycenters. Building on this, we introduce in this work a generic approach that aims at solving, in full generality, the OT problem under low-rank constraints with arbitrary costs. Our algorithm relies on an explicit factorization of low rank couplings as a product of \textit{sub-coupling} factors linked by a common marginal; similar to an NMF approach, we alternatively updates these factors. We prove the non-asymptotic stationary convergence of this algorithm and illustrate its efficiency on benchmark experiments.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

Clustering is an essential data mining tool that aims to discover inherent cluster structure in data. For most applications, applying clustering is only appropriate when cluster structure is present. As such, the study of clusterability, which evaluates whether data possesses such structure, is an integral part of cluster analysis. However, methods for evaluating clusterability vary radically, making it challenging to select a suitable measure. In this paper, we perform an extensive comparison of measures of clusterability and provide guidelines that clustering users can reference to select suitable measures for their applications.

Since the invention of word2vec, the skip-gram model has significantly advanced the research of network embedding, such as the recent emergence of the DeepWalk, LINE, PTE, and node2vec approaches. In this work, we show that all of the aforementioned models with negative sampling can be unified into the matrix factorization framework with closed forms. Our analysis and proofs reveal that: (1) DeepWalk empirically produces a low-rank transformation of a network's normalized Laplacian matrix; (2) LINE, in theory, is a special case of DeepWalk when the size of vertices' context is set to one; (3) As an extension of LINE, PTE can be viewed as the joint factorization of multiple networks' Laplacians; (4) node2vec is factorizing a matrix related to the stationary distribution and transition probability tensor of a 2nd-order random walk. We further provide the theoretical connections between skip-gram based network embedding algorithms and the theory of graph Laplacian. Finally, we present the NetMF method as well as its approximation algorithm for computing network embedding. Our method offers significant improvements over DeepWalk and LINE for conventional network mining tasks. This work lays the theoretical foundation for skip-gram based network embedding methods, leading to a better understanding of latent network representation learning.

北京阿比特科技有限公司