The heavy-load legged robot has strong load carrying capacity and can adapt to various unstructured terrains. But the large weight results in higher requirements for motion stability and environmental perception ability. In order to utilize force sensing information to improve its motion performance, in this paper, we propose a finite state machine model for the swing leg in the static gait by imitating the movement of the elephant. Based on the presence or absence of additional terrain information, different trajectory planning strategies are provided for the swing leg to enhance the success rate of stepping and save energy. The experimental results on a novel quadruped robot show that our method has strong robustness and can enable heavy-load legged robots to pass through various complex terrains autonomously and smoothly.
Teams of flying robots can be used for inspection, delivery, and construction tasks, in which they might be required to fly very close to each other. In such close-proximity cases, nonlinear aerodynamic effects can cause catastrophic crashes, necessitating each robots' awareness of the surrounding. Existing approaches rely on multiple, expensive or heavy perception sensors. Such perception methods are impractical to use on nano multirotors that are constrained with respect to weight, computation, and price. Instead, we propose to use the often ignored yaw degree-of-freedom of multirotors to spin a single, cheap and lightweight monocular camera at a high angular rate for omnidirectional awareness of the neighboring robots. We provide a dataset collected with real-world physical flights as well as with 3D-rendered scenes and compare two existing learning-based methods in different settings with respect to success rate, relative position estimation, and downwash prediction accuracy. We demonstrate that our proposed spinning camera is capable of predicting the presence of aerodynamic downwash with an $F_1$ score of over 80% in a challenging swapping task.
We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing "classical" and "learning-based" techniques for agile robot control. Videos of our experiments may be found at //sites.google.com/view/agile-catching
Diffusion models have risen as a powerful tool in robotics due to their flexibility and multi-modality. While some of these methods effectively address complex problems, they often depend heavily on inference-time obstacle detection and require additional equipment. Addressing these challenges, we present a method that, during inference time, simultaneously generates only reachable goals and plans motions that avoid obstacles, all from a single visual input. Central to our approach is the novel use of a collision-avoiding diffusion kernel for training. Through evaluations against behavior-cloning and classical diffusion models, our framework has proven its robustness. It is particularly effective in multi-modal environments, navigating toward goals and avoiding unreachable ones blocked by obstacles, while ensuring collision avoidance.
Recently, asynchronous coarse-space correction has been achieved within both the overlapping Schwarz and the primal Schur frameworks. Both additive and multiplicative corrections have been discussed. In this paper, we address some implementation drawbacks of the proposed additive correction scheme. In the existing approach, each coarse solution is applied only once, leaving most of the iterations of the solver without coarse-space information while building the right-hand side of the coarse problem. Moreover, one-sided routines of the Message Passing Interface (MPI) standard were considered, which introduced the need for a sleep statement in the iterations loop of the coarse solver. This implies a tuning of the sleep period, which is a non-discrete quantity. In this paper, we improve the accuracy of the coarse right-hand side, which allowed for more frequent corrections. In addition, we highlight a two-sided implementation which better suits the asynchronous coarse-space correction scheme. Numerical experiments show a significant performance gain with such increased incorporation of the coarse space.
Formal verification of intelligent agents is often computationally infeasible due to state-space explosion. We present a tool for reducing the impact of the explosion by means of state abstraction that is (a) easy to use and understand by non-experts, and (b) agent-based in the sense that it operates on a modular representation of the system, rather than on its huge explicit state model.
To achieve safe legged locomotion, it is important to generate motion in real-time considering various constraints in robots and environments. In this study, we propose a lightweight real-time perspective motion control system for the newly developed six-wheeled-telescopic-legged robot, Tachyon 3. In the proposed method, analytically smoothed constraints including Smooth Separating Axis Theorem (Smooth SAT) as a novel higher order differentiable collision detection for 3D shapes is applied to the Control Barrier Function (CBF). The proposed system integrating the CBF achieves online motion generation in a short control cycle of 1 ms that satisfies joint limitations, environmental collision avoidance and safe convex foothold constraints. The efficiency of Smooth SAT is shown from the collision detection time of 1 us or less and the CBF constraint computation time for Tachyon3 of several us. Furthermore, the effectiveness of the proposed system is verified through the stair-climbing motion, integrating online recognition in a simulation and a real machine.
We present object handling and transport by a multi-robot team with a deformable sheet as a carrier. Due to the deformability of the sheet and the high dimension of the whole system, it is challenging to clearly describe all the possible positions of the object on the sheet for a given formation of the multi-robot system. A complete forward kinematics (FK) method is proposed in this paper for object handling by an $N$-mobile robot team with a deformable sheet. Based on the virtual variable cables model, a constrained quadratic problem (CQP) is formulated by combining the form closure and minimum potential energy conditions of the system. Analytical solutions to the CQP are presented and then further verified with the force closure condition. With the proposed FK method, all possible solutions are obtained with the given initial sheet shape and the robot team formation. We demonstrate the effectiveness, completeness, and efficiency of the FK method with simulation and experimental results.
An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Deep/machine learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different types of uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in KRR since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. We found that only a few studies have leveraged the mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. In this survey paper, we discuss several popular belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. In addition, we discuss three main approaches that leverage belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Based on our in-depth survey, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and finally, future research directions.
Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.
We consider the task of weakly supervised one-shot detection. In this task, we attempt to perform a detection task over a set of unseen classes, when training only using weak binary labels that indicate the existence of a class instance in a given example. The model is conditioned on a single exemplar of an unseen class and a target example that may or may not contain an instance of the same class as the exemplar. A similarity map is computed by using a Siamese neural network to map the exemplar and regions of the target example to a latent representation space and then computing cosine similarity scores between representations. An attention mechanism weights different regions in the target example, and enables learning of the one-shot detection task using the weaker labels alone. The model can be applied to detection tasks from different domains, including computer vision object detection. We evaluate our attention Siamese networks on a one-shot detection task from the audio domain, where it detects audio keywords in spoken utterances. Our model considerably outperforms a baseline approach and yields a 42.6% average precision for detection across 10 unseen classes. Moreover, architectural developments from computer vision object detection models such as a region proposal network can be incorporated into the model architecture, and results show that performance is expected to improve by doing so.