亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish a machine learning model for the prediction of the magnetization dynamics as function of the external field described by the Landau-Lifschitz-Gilbert equation, the partial differential equation of motion in micromagnetism. The model allows for fast and accurate determination of the response to an external field which is illustrated by a thin-film standard problem. The data-driven method internally reduces the dimensionality of the problem by means of nonlinear model reduction for unsupervised learning. This not only makes accurate prediction of the time steps possible, but also decisively reduces complexity in the learning process where magnetization states from simulated micromagnetic dynamics associated with different external fields are used as input data. We use a truncated representation of kernel principal components to describe the states between time predictions. The method is capable of handling large training sample sets owing to a low-rank approximation of the kernel matrix and an associated low-rank extension of kernel principal component analysis and kernel ridge regression. The approach entirely shifts computations into a reduced dimensional setting breaking down the problem dimension from the thousands to the tens.

相關內容

Bayesian Optimization (BO) is a method for globally optimizing black-box functions. While BO has been successfully applied to many scenarios, developing effective BO algorithms that scale to functions with high-dimensional domains is still a challenge. Optimizing such functions by vanilla BO is extremely time-consuming. Alternative strategies for high-dimensional BO that are based on the idea of embedding the high-dimensional space to the one with low dimension are sensitive to the choice of the embedding dimension, which needs to be pre-specified. We develop a new computationally efficient high-dimensional BO method that exploits variable selection. Our method is able to automatically learn axis-aligned sub-spaces, i.e. spaces containing selected variables, without the demand of any pre-specified hyperparameters. We theoretically analyze the computational complexity of our algorithm and derive the regret bound. We empirically show the efficacy of our method on several synthetic and real problems.

Many important high-dimensional dynamical systems exhibit complex chaotic behaviour. Their complexity means that their dynamics are necessarily comprehended under strong reducing assumptions. It is therefore important to have a clear picture of these reducing assumptions' range of validity. The highly influential chaotic hypothesis of Gallavotti and Cohen states that the large-scale dynamics of high-dimensional systems are effectively hyperbolic, which implies many felicitous statistical properties. We demonstrate, contrary to the chaotic hypothesis, the existence of non-hyperbolic large-scale dynamics in a mean-field coupled system. To do this we reduce the system to its thermodynamic limit, which we approximate numerically with a Chebyshev Galerkin transfer operator discretisation. This enables us to obtain a high precision estimate of a homoclinic tangency, implying a failure of hyperbolicity. Robust non-hyperbolic behaviour is expected under perturbation. As a result, the chaotic hypothesis should not be assumed to hold in all systems, and a better understanding of the domain of its validity is required.

The commonly used latent space embedding techniques, such as Principal Component Analysis, Factor Analysis, and manifold learning techniques, are typically used for learning effective representations of homogeneous data. However, they do not readily extend to heterogeneous data that are a combination of numerical and categorical variables, e.g., arising from linked GPS and text data. In this paper, we are interested in learning probabilistic generative models from high-dimensional heterogeneous data in an unsupervised fashion. The learned generative model provides latent unified representations that capture the factors common to the multiple dimensions of the data, and thus enable fusing multimodal data for various machine learning tasks. Following a Bayesian approach, we propose a general framework that combines disparate data types through the natural parameterization of the exponential family of distributions. To scale the model inference to millions of instances with thousands of features, we use the Laplace-Bernstein approximation for posterior computations involving nonlinear link functions. The proposed algorithm is presented in detail for the commonly encountered heterogeneous datasets with real-valued (Gaussian) and categorical (multinomial) features. Experiments on two high-dimensional and heterogeneous datasets (NYC Taxi and MovieLens-10M) demonstrate the scalability and competitive performance of the proposed algorithm on different machine learning tasks such as anomaly detection, data imputation, and recommender systems.

Motivated by the need to statistically quantify differences between modern (complex) data-sets which commonly result as high-resolution measurements of stochastic processes varying over a continuum, we propose novel testing procedures to detect relevant differences between the second order dynamics of two functional time series. In order to take the between-function dynamics into account that characterize this type of functional data, a frequency domain approach is taken. Test statistics are developed to compare differences in the spectral density operators and in the primary modes of variation as encoded in the associated eigenelements. Under mild moment conditions, we show convergence of the underlying statistics to Brownian motions and construct pivotal test statistics. The latter is essential because the nuisance parameters can be unwieldy and their robust estimation infeasible, especially if the two functional time series are dependent. In addition to these novel features, the properties of the tests are robust to any choice of frequency band enabling also to compare energy contents at a single frequency. The finite sample performance of the tests are verified through a simulation study and are illustrated with an application to fMRI data.

Geometric graphs form an important family of hidden structures behind data. In this paper, we develop an efficient and robust algorithm to infer a graph skeleton behind a point cloud data (PCD)embedded in high dimensional space. Previously, there has been much work to recover a hidden graph from a low-dimensional density field, or from a relatively clean high-dimensional PCD (in the sense that the input points are within a small bounded distance to a true hidden graph). Our proposed approach builds upon the recent line of work on using a persistence-guided discrete Morse (DM) theory based approach to reconstruct a geometric graph from a density field defined over a triangulation of low-dimensional Euclidean domain. In particular, we first give a very simple generalization of this DM-based algorithm from a density-function perspective to a general filtration perspective. On the theoretical front, we show that the output of the generalized algorithm contains a so-called lexicographic-optimal persistent cycle basis w.r.t the input filtration, justifying that the output is indeed meaningful. On the algorithmic front, this generalization allows us to use the idea of sparsified weighted Rips filtration (developed by Buchet etal) to develop a new graph reconstruction algorithm for noisy point cloud data (PCD) (which do not need to be embedded). The new algorithm is robust to background noise and non-uniform distribution of input points. We provide various experimental results to show the efficiency and effectiveness of our new graph reconstruction algorithm for PCDs.

Machine learning methods are powerful in distinguishing different phases of matter in an automated way and provide a new perspective on the study of physical phenomena. We train a Restricted Boltzmann Machine (RBM) on data constructed with spin configurations sampled from the Ising Hamiltonian at different values of temperature and external magnetic field using Monte Carlo methods. From the trained machine we obtain the flow of iterative reconstruction of spin state configurations to faithfully reproduce the observables of the physical system. We find that the flow of the trained RBM approaches the spin configurations of the maximal possible specific heat which resemble the near criticality region of the Ising model. In the special case of the vanishing magnetic field the trained RBM converges to the critical point of the Renormalization Group (RG) flow of the lattice model. Our results suggest an alternative explanation of how the machine identifies the physical phase transitions, by recognizing certain properties of the configuration like the maximization of the specific heat, instead of associating directly the recognition procedure with the RG flow and its fixed points. Then from the reconstructed data we deduce the critical exponent associated to the magnetization to find satisfactory agreement with the actual physical value. We assume no prior knowledge about the criticality of the system and its Hamiltonian.

Because of continuous advances in mathematical programing, Mix Integer Optimization has become a competitive vis-a-vis popular regularization method for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. We tackle these challenges, reducing computational burden when tuning the sparsity bound (a parameter which is critical for effectiveness) and improving performance in the presence of feature collinearity and of signals that vary in nature and strength. Importantly, we render the approach efficient and effective in applications of realistic size and complexity - without resorting to relaxations or heuristics in the optimization, or abandoning rigorous cross-validation tuning. Computational viability and improved performance in subtler scenarios is achieved with a multi-pronged blueprint, leveraging characteristics of the Mixed Integer Programming framework and by means of whitening, a data pre-processing step.

Image-level feature descriptors obtained from convolutional neural networks have shown powerful representation capabilities for image retrieval. In this paper, we present an unsupervised method to aggregate deep convolutional features into compact yet discriminative image vectors by simulating the dynamics of heat diffusion. A distinctive problem in image retrieval is that repetitive or bursty features tend to dominate feature representations, leading to less than ideal matches. We show that by leveraging elegant properties of the heat equation, our method is able to select informative features while avoiding over-representation of bursty features. We additionally present a theoretical time complexity analysis showing the efficiency of our method, which is further demonstrated in our experimental evaluation. Finally, we extensively evaluate the proposed approach with pre-trained and fine-tuned deep networks on common public benchmarks, and show superior performance compared to previous work.

State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.

Robust estimation is much more challenging in high dimensions than it is in one dimension: Most techniques either lead to intractable optimization problems or estimators that can tolerate only a tiny fraction of errors. Recent work in theoretical computer science has shown that, in appropriate distributional models, it is possible to robustly estimate the mean and covariance with polynomial time algorithms that can tolerate a constant fraction of corruptions, independent of the dimension. However, the sample and time complexity of these algorithms is prohibitively large for high-dimensional applications. In this work, we address both of these issues by establishing sample complexity bounds that are optimal, up to logarithmic factors, as well as giving various refinements that allow the algorithms to tolerate a much larger fraction of corruptions. Finally, we show on both synthetic and real data that our algorithms have state-of-the-art performance and suddenly make high-dimensional robust estimation a realistic possibility.

北京阿比特科技有限公司