Complex studies involve many steps. Selecting promising findings based on pilot data is a first step. As more observations are collected, the investigator must decide how to combine the new data with the pilot data to construct valid selective inference. Carving, introduced by Fithian et al. (2014), enables the reuse of pilot data during selective inference and accounts for over-optimism from the selection process. Currently, the justification for carving is tied to parametric models, like the commonly used Gaussian model. In this paper, we develop the asymptotic theory to substantiate the use of carving beyond Gaussian models. Through both simulated and real instances, we find that carving produces valid and tight confidence intervals within a model-free setting.
Next Point-of-Interest (POI) recommendation is a critical task in location-based services that aim to provide personalized suggestions for the user's next destination. Previous works on POI recommendation have laid focused on modeling the user's spatial preference. However, existing works that leverage spatial information are only based on the aggregation of users' previous visited positions, which discourages the model from recommending POIs in novel areas. This trait of position-based methods will harm the model's performance in many situations. Additionally, incorporating sequential information into the user's spatial preference remains a challenge. In this paper, we propose Diff-POI: a Diffusion-based model that samples the user's spatial preference for the next POI recommendation. Inspired by the wide application of diffusion algorithm in sampling from distributions, Diff-POI encodes the user's visiting sequence and spatial character with two tailor-designed graph encoding modules, followed by a diffusion-based sampling strategy to explore the user's spatial visiting trends. We leverage the diffusion process and its reversed form to sample from the posterior distribution and optimized the corresponding score function. We design a joint training and inference framework to optimize and evaluate the proposed Diff-POI. Extensive experiments on four real-world POI recommendation datasets demonstrate the superiority of our Diff-POI over state-of-the-art baseline methods. Further ablation and parameter studies on Diff-POI reveal the functionality and effectiveness of the proposed diffusion-based sampling strategy for addressing the limitations of existing methods.
The autologistic actor attribute model, or ALAAM, is the social influence counterpart of the better-known exponential-family random graph model (ERGM) for social selection. Extensive experience with ERGMs has shown that the problem of near-degeneracy which often occurs with simple models can be overcome by using "geometrically weighted" or "alternating" statistics. In the much more limited empirical applications of ALAAMs to date, the problem of near-degeneracy, although theoretically expected, appears to have been less of an issue. In this work I present a comprehensive survey of ALAAM applications, showing that this model has to date only been used with relatively small networks, in which near-degeneracy does not appear to be a problem. I show near-degeneracy does occur in simple ALAAM models of larger empirical networks, define some geometrically weighted ALAAM statistics analogous to those for ERGM, and demonstrate that models with these statistics do not suffer from near-degeneracy and hence can be estimated where they could not be with the simple statistics.
This paper investigates the in-context learning abilities of the Whisper automatic speech recognition (ASR) models released by OpenAI. A novel speech-based in-context learning (SICL) approach is proposed for test-time adaptation, which can reduce the word error rates (WERs) with only a small number of labelled speech samples without gradient descent. Language-level adaptation experiments using Chinese dialects showed that when applying SICL to isolated word ASR, consistent and considerable relative WER reductions can be achieved using Whisper models of any size on two dialects, which is on average 32.3%. A k-nearest-neighbours-based in-context example selection technique can be applied to further improve the efficiency of SICL, which can increase the average relative WER reduction to 36.4%. The findings are verified using speaker adaptation or continuous speech recognition tasks, and both achieved considerable relative WER reductions. Detailed quantitative analyses are also provided to shed light on SICL's adaptability to phonological variances and dialect-specific lexical nuances.
In this paper, we introduce the concept of fractional integration for spatial autoregressive models. We show that the range of the dependence can be spatially extended or diminished by introducing a further fractional integration parameter to spatial autoregressive moving average models (SARMA). This new model is called the spatial autoregressive fractionally integrated moving average model, briefly sp-ARFIMA. We show the relation to time-series ARFIMA models and also to (higher-order) spatial autoregressive models. Moreover, an estimation procedure based on the maximum-likelihood principle is introduced and analysed in a series of simulation studies. Eventually, the use of the model is illustrated by an empirical example of atmospheric fine particles, so-called aerosol optical thickness, which is important in weather, climate and environmental science.
One of the most prominent methods for uncertainty quantification in high-dimen-sional statistics is the desparsified LASSO that relies on unconstrained $\ell_1$-minimization. The majority of initial works focused on real (sub-)Gaussian designs. However, in many applications, such as magnetic resonance imaging (MRI), the measurement process possesses a certain structure due to the nature of the problem. The measurement operator in MRI can be described by a subsampled Fourier matrix. The purpose of this work is to extend the uncertainty quantification process using the desparsified LASSO to design matrices originating from a bounded orthonormal system, which naturally generalizes the subsampled Fourier case and also allows for the treatment of the case where the sparsity basis is not the standard basis. In particular we construct honest confidence intervals for every pixel of an MR image that is sparse in the standard basis provided the number of measurements satisfies $n \gtrsim\max\{ s\log^2 s\log p, s \log^2 p \}$ or that is sparse with respect to the Haar Wavelet basis provided a slightly larger number of measurements.
Existing research has either adapted the Probably Approximately Correct (PAC) Bayesian framework for federated learning (FL) or used information-theoretic PAC-Bayesian bounds while introducing their theorems, but few considering the non-IID challenges in FL. Our work presents the first non-vacuous federated PAC-Bayesian bound tailored for non-IID local data. This bound assumes unique prior knowledge for each client and variable aggregation weights. We also introduce an objective function and an innovative Gibbs-based algorithm for the optimization of the derived bound. The results are validated on real-world datasets.
This study focuses on the use of model and data fusion for improving the Spalart-Allmaras (SA) closure model for Reynolds-averaged Navier-Stokes solutions of separated flows. In particular, our goal is to develop of models that not-only assimilate sparse experimental data to improve performance in computational models, but also generalize to unseen cases by recovering classical SA behavior. We achieve our goals using data assimilation, namely the Ensemble Kalman Filtering approach (EnKF), to calibrate the coefficients of the SA model for separated flows. A holistic calibration strategy is implemented via a parameterization of the production, diffusion, and destruction terms. This calibration relies on the assimilation of experimental data collected velocity profiles, skin friction, and pressure coefficients for separated flows. Despite using of observational data from a single flow condition around a backward-facing step (BFS), the recalibrated SA model demonstrates generalization to other separated flows, including cases such as the 2D-bump and modified BFS. Significant improvement is observed in the quantities of interest, i.e., skin friction coefficient ($C_f$) and pressure coefficient ($C_p$) for each flow tested. Finally, it is also demonstrated that the newly proposed model recovers SA proficiency for external, unseparated flows, such as flow around a NACA-0012 airfoil without any danger of extrapolation, and that the individually calibrated terms in the SA model are targeted towards specific flow-physics wherein the calibrated production term improves the re-circulation zone while destruction improves the recovery zone.
Speaker anonymization aims to conceal a speaker's identity while preserving content information in speech. Current mainstream neural-network speaker anonymization systems disentangle speech into prosody-related, content, and speaker representations. The speaker representation is then anonymized by a selection-based speaker anonymizer that uses a mean vector over a set of randomly selected speaker vectors from an external pool of English speakers. However, the resulting anonymized vectors are subject to severe privacy leakage against powerful attackers, reduction in speaker diversity, and language mismatch problems for unseen-language speaker anonymization. To generate diverse, language-neutral speaker vectors, this paper proposes an anonymizer based on an orthogonal Householder neural network (OHNN). Specifically, the OHNN acts like a rotation to transform the original speaker vectors into anonymized speaker vectors, which are constrained to follow the distribution over the original speaker vector space. A basic classification loss is introduced to ensure that anonymized speaker vectors from different speakers have unique speaker identities. To further protect speaker identities, an improved classification loss and similarity loss are used to push original-anonymized sample pairs away from each other. Experiments on VoicePrivacy Challenge datasets in English and the \textit{AISHELL-3} dataset in Mandarin demonstrate the proposed anonymizer's effectiveness.
A challenging category of robotics problems arises when sensing incurs substantial costs. This paper examines settings in which a robot wishes to limit its observations of state, for instance, motivated by specific considerations of energy management, stealth, or implicit coordination. We formulate the problem of planning under uncertainty when the robot's observations are intermittent but their timing is known via a pre-declared schedule. After having established the appropriate notion of an optimal policy for such settings, we tackle the problem of joint optimization of the cumulative execution cost and the number of state observations, both in expectation under discounts. To approach this multi-objective optimization problem, we introduce an algorithm that can identify the Pareto front for a class of schedules that are advantageous in the discounted setting. The algorithm proceeds in an accumulative fashion, prepending additions to a working set of schedules and then computing incremental changes to the value functions. Because full exhaustive construction becomes computationally prohibitive for moderate-sized problems, we propose a filtering approach to prune the working set. Empirical results demonstrate that this filtering is effective at reducing computation while incurring only negligible reduction in quality. In summarizing our findings, we provide a characterization of the run-time vs quality trade-off involved.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.