Proper incentives are important for motivating developers in open-source communities, which is crucial for maintaining the development of open-source software healthy. To provide such incentives, an accurate and objective developer contribution measurement method is needed. However, existing methods rely heavily on manual peer review, lacking objectivity and transparency. The metrics of some automated works about effort estimation use only syntax-level or even text-level information, such as changed lines of code, which lack robustness. Furthermore, some works about identifying core developers provide only a qualitative understanding without a quantitative score or have some project-specific parameters, which makes them not practical in real-world projects. To this end, we propose CValue, a multidimensional information fusion-based approach to measure developer contributions. CValue extracts both syntax and semantic information from the source code changes in four dimensions: modification amount, understandability, inter-function and intra-function impact of modification. It fuses the information to produce the contribution score for each of the commits in the projects. Experimental results show that CValue outperforms other approaches by 19.59% on 10 real-world projects with manually labeled ground truth. We validated and proved that the performance of CValue, which takes 83.39 seconds per commit, is acceptable to be applied in real-world projects. Furthermore, we performed a large-scale experiment on 174 projects and detected 2,282 developers having inflated commits. Of these, 2,050 developers did not make any syntax contribution; and 103 were identified as bots.
Selective robotic harvesting is a promising technological solution to address labour shortages which are affecting modern agriculture in many parts of the world. For an accurate and efficient picking process, a robotic harvester requires the precise location and orientation of the fruit to effectively plan the trajectory of the end effector. The current methods for estimating fruit orientation employ either complete 3D information which typically requires registration from multiple views or rely on fully-supervised learning techniques, which require difficult-to-obtain manual annotation of the reference orientation. In this paper, we introduce a novel key-point-based fruit orientation estimation method allowing for the prediction of 3D orientation from 2D images directly. The proposed technique can work without full 3D orientation annotations but can also exploit such information for improved accuracy. We evaluate our work on two separate datasets of strawberry images obtained from real-world data collection scenarios. Our proposed method achieves state-of-the-art performance with an average error as low as $8^{\circ}$, improving predictions by $\sim30\%$ compared to previous work presented in~\cite{wagner2021efficient}. Furthermore, our method is suited for real-time robotic applications with fast inference times of $\sim30$ms.
Monocular 3D object detection is an inherently ill-posed problem, as it is challenging to predict accurate 3D localization from a single image. Existing monocular 3D detection knowledge distillation methods usually project the LiDAR onto the image plane and train the teacher network accordingly. Transferring LiDAR-based model knowledge to RGB-based models is more complex, so a general distillation strategy is needed. To alleviate cross-modal prob-lem, we propose MonoSKD, a novel Knowledge Distillation framework for Monocular 3D detection based on Spearman correlation coefficient, to learn the relative correlation between cross-modal features. Considering the large gap between these features, strict alignment of features may mislead the training, so we propose a looser Spearman loss. Furthermore, by selecting appropriate distillation locations and removing redundant modules, our scheme saves more GPU resources and trains faster than existing methods. Extensive experiments are performed to verify the effectiveness of our framework on the challenging KITTI 3D object detection benchmark. Our method achieves state-of-the-art performance until submission with no additional inference computational cost. Our codes are available at //github.com/Senwang98/MonoSKD
Label assignment is a crucial process in object detection, which significantly influences the detection performance by determining positive or negative samples during training process. However, existing label assignment strategies barely consider the characteristics of targets in remote sensing images (RSIs) thoroughly, e.g., large variations in scales and aspect ratios, leading to insufficient and imbalanced sampling and introducing more low-quality samples, thereby limiting detection performance. To solve the above problems, an Elliptical Distribution aided Adaptive Rotation Label Assignment (EARL) is proposed to select high-quality positive samples adaptively in anchor-free detectors. Specifically, an adaptive scale sampling (ADS) strategy is presented to select samples adaptively among multi-level feature maps according to the scales of targets, which achieves sufficient sampling with more balanced scale-level sample distribution. In addition, a dynamic elliptical distribution aided sampling (DED) strategy is proposed to make the sample distribution more flexible to fit the shapes and orientations of targets, and filter out low-quality samples. Furthermore, a spatial distance weighting (SDW) module is introduced to integrate the adaptive distance weighting into loss function, which makes the detector more focused on the high-quality samples. Extensive experiments on several popular datasets demonstrate the effectiveness and superiority of our proposed EARL, where without bells and whistles, it can be easily applied to different detectors and achieve state-of-the-art performance. The source code will be available at: //github.com/Justlovesmile/EARL.
Differential privacy via output perturbation has been a \textit{de facto} standard for releasing query or computation results on sensitive data. However, we identify that all existing Gaussian mechanisms suffer from the curse of full-rank covariance matrices, and hence the expected accuracy losses of these mechanisms equal the trace of the covariance matrix of the noise. To lift this curse, we design a Rank-1 Singular Multivariate Gaussian (R1SMG) mechanism. It achieves $(\epsilon,\delta)$-DP on query results in $\mathbb{R}^M$ by perturbing the results with noise following a singular multivariate Gaussian distribution, whose covariance matrix is a \textbf{randomly} generated rank-1 positive semi-definite matrix. In contrast, the classic Gaussian mechanism and its variants all consider \textbf{deterministic} full-rank covariance matrices. Our idea is motivated by a clue from Dwork et al.'s seminal work on the classic Gaussian mechanism that has been ignored: when projecting multivariate Gaussian noise with a full-rank covariance matrix onto a set of orthonormal basis in $\mathbb{R}^M$, only the coefficient of a single basis can contribute to the privacy guarantee. We make the following contributions. The R1SMG mechanisms achieves $(\epsilon,\delta)$-DP guarantee on query results in $\R^M$, while its expected accuracy loss is lower bounded by $C_R(\Delta_2f)^2$, where $C_R = \frac{2}{\epsilon \psi}$ and $\psi = \Big(\frac{\delta\Gamma(\frac{M-1}{2})}{\sqrt{\pi}\Gamma(\frac{M}{2})}\Big)^{\frac{2}{M-2}}$. We show that $C_R$ has a decreasing trend as $M$ increases, and converges to $\frac{2}{\epsilon}$ as $M$ approaches infinity. Compared with other mechanisms, the R1SMG mechanism is more stable and less likely to generate noise with large magnitude that overwhelms the query results.
Empirical research on perception and cognition has laid the foundation for visualization design, often yielding useful design guidelines for practitioners. However, it remains uncertain how well practitioners stay informed about the latest findings in visualization research. In this paper, we employed a mixed-method approach to explore the knowledge gap between visualization research and real-world design guidelines. We initially collected existing design guidelines from various sources and empirical studies from major publishing venues, analyzing their alignment and uncovering missing links and contradictory knowledge. Subsequently, we conducted surveys and interviews with practitioners and researchers to gain further insights into their experiences and attitudes towards design guidelines and empirical studies, and their views on the knowledge gap between research and practice. Our findings highlight the similarities and differences in their perspectives and propose strategies to bridge the divide in visualization design knowledge.
Traditional recommender systems have heavily relied on identity representations (IDs) to model users and items, while the ascendancy of pre-trained language model (PLM) encoders has enriched the modeling of contextual item descriptions. However, PLMs, although effective in addressing few-shot, zero-shot, or unified modeling scenarios, often neglect the crucial collaborative filtering signal. This neglect gives rise to two pressing challenges: (1) Collaborative Contextualization, the seamless integration of collaborative signals with contextual representations. (2) the imperative to bridge the representation gap between ID-based representations and contextual representations while preserving their contextual semantics. In this paper, we propose CollabContext, a novel model that adeptly combines collaborative filtering signals with contextual representations and aligns these representations within the contextual space, preserving essential contextual semantics. Experimental results across three real-world datasets demonstrate substantial improvements. Leveraging collaborative contextualization, CollabContext can also be effectively applied to cold-start scenarios, achieving remarkable enhancements in recommendation performance. The code is available after the conference accepts the paper.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.