亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we study a class of exponential family on permutations, which includes some of the commonly studied Mallows models. We show that the pseudo-likelihood estimator for the natural parameter in the exponential family is asymptotically normal, with an explicit variance. Using this, we are able to construct asymptotically valid confidence intervals. We also show that the MLE for the same problem is consistent everywhere, and asymptotically normal at the origin. In this special case, the asymptotic variance of the cost effective pseudo-likelihood estimator turns out to be the same as the cost prohibitive MLE. To the best of our knowledge, this is the first inference result on permutation models including Mallows models, excluding the very special case of Mallows model with Kendall's Tau.

相關內容

Model misspecification can create significant challenges for the implementation of probabilistic models, and this has led to development of a range of robust methods which directly account for this issue. However, whether these more involved methods are required will depend on whether the model is really misspecified, and there is a lack of generally applicable methods to answer this question. In this paper, we propose one such method. More precisely, we propose kernel-based hypothesis tests for the challenging composite testing problem, where we are interested in whether the data comes from any distribution in some parametric family. Our tests make use of minimum distance estimators based on the maximum mean discrepancy and the kernel Stein discrepancy. They are widely applicable, including whenever the density of the parametric model is known up to normalisation constant, or if the model takes the form of a simulator. As our main result, we show that we are able to estimate the parameter and conduct our test on the same data (without data splitting), while maintaining a correct test level. Our approach is illustrated on a range of problems, including testing for goodness-of-fit of an unnormalised non-parametric density model, and an intractable generative model of a biological cellular network.

The Gaussian copula is a powerful tool that has been widely used to model spatial and/or temporal correlated data with arbitrary marginal distributions. However, this kind of model can potentially be too restrictive since it expresses a reflection symmetric dependence. In this paper, we propose a new spatial copula model that makes it possible to obtain random fields with arbitrary marginal distributions with a type of dependence that can be reflection symmetric or not. Particularly, we propose a new random field with uniform marginal distributions that can be viewed as a spatial generalization of the classical Clayton copula model. It is obtained through a power transformation of a specific instance of a beta random field which in turn is obtained using a transformation of two independent Gamma random fields. For the proposed random field, we study the second-order properties and we provide analytic expressions for the bivariate distribution and its correlation. Finally, in the reflection symmetric case, we study the associated geometrical properties. As an application of the proposed model we focus on spatial modeling of data with bounded support. Specifically, we focus on spatial regression models with marginal distribution of the beta type. In a simulation study, we investigate the use of the weighted pairwise composite likelihood method for the estimation of this model. Finally, the effectiveness of our methodology is illustrated by analyzing point-referenced vegetation index data using the Gaussian copula as benchmark. Our developments have been implemented in an open-source package for the \textsf{R} statistical environment.

We study a family of loss functions named label-distributionally robust (LDR) losses for multi-class classification that are formulated from distributionally robust optimization (DRO) perspective, where the uncertainty in the given label information are modeled and captured by taking the worse case of distributional weights. The benefits of this perspective are several fold: (i) it provides a unified framework to explain the classical cross-entropy (CE) loss and SVM loss and their variants, (ii) it includes a special family corresponding to the temperature-scaled CE loss, which is widely adopted but poorly understood; (iii) it allows us to achieve adaptivity to the uncertainty degree of label information at an instance level. Our contributions include: (1) we study both consistency and robustness by establishing top-$k$ ($\forall k\geq 1$) consistency of LDR losses for multi-class classification, and a negative result that a top-$1$ consistent and symmetric robust loss cannot achieve top-$k$ consistency simultaneously for all $k\geq 2$; (2) we propose a new adaptive LDR loss that automatically adapts the individualized temperature parameter to the noise degree of class label of each instance; (3) we demonstrate stable and competitive performance for the proposed adaptive LDR loss on 7 benchmark datasets under 6 noisy label and 1 clean settings against 13 loss functions, and on one real-world noisy dataset. The code is open-sourced at \url{//github.com/Optimization-AI/ICML2023_LDR}.

This paper investigates the asymptotic distribution of the maximum-likelihood estimate (MLE) in multinomial logistic models in the high-dimensional regime where dimension and sample size are of the same order. While classical large-sample theory provides asymptotic normality of the MLE under certain conditions, such classical results are expected to fail in high-dimensions as documented for the binary logistic case in the seminal work of Sur and Cand\`es [2019]. We address this issue in classification problems with 3 or more classes, by developing asymptotic normality and asymptotic chi-square results for the multinomial logistic MLE (also known as cross-entropy minimizer) on null covariates. Our theory leads to a new methodology to test the significance of a given feature. Extensive simulation studies on synthetic data corroborate these asymptotic results and confirm the validity of proposed p-values for testing the significance of a given feature.

We have developed a statistical inference method applicable to a broad range of generalized linear models (GLMs) in high-dimensional settings, where the number of unknown coefficients scales proportionally with the sample size. Although a pioneering method has been developed for logistic regression, which is a specific instance of GLMs, its direct applicability to other GLMs remains limited. In this study, we address this limitation by developing a new inference method designed for a class of GLMs with asymmetric link functions. More precisely, we first introduce a novel convex loss-based estimator and its associated system, which are essential components for the inference. We next devise a methodology for identifying parameters of the system required within the method. Consequently, we construct confidence intervals for GLMs in the high-dimensional regime. We prove that our proposal has desirable theoretical properties, such as strong consistency and exact coverage probability. Finally, we confirm the validity in experiments.

This work explores the use of gradient boosting in the context of classification. Four popular implementations, including original GBM algorithm and selected state-of-the-art gradient boosting frameworks (i.e. XGBoost, LightGBM and CatBoost), have been thoroughly compared on several publicly available real-world datasets of sufficient diversity. In the study, special emphasis was placed on hyperparameter optimization, specifically comparing two tuning strategies, i.e. randomized search and Bayesian optimization using the Tree-stuctured Parzen Estimator. The performance of considered methods was investigated in terms of common classification accuracy metrics as well as runtime and tuning time. Additionally, obtained results have been validated using appropriate statistical testing. An attempt was made to indicate a gradient boosting variant showing the right balance between effectiveness, reliability and ease of use.

We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.

Kernel-weighted test statistics have been widely used in a variety of settings including non-stationary regression, inference on propensity score and panel data models. We develop the limit theory for a kernel-based specification test of a parametric conditional mean when the law of the regressors may not be absolutely continuous to the Lebesgue measure and is contaminated with singular components. This result is of independent interest and may be useful in other applications that utilize kernel smoothed U-statistics. Simulations illustrate the non-trivial impact of the distribution of the conditioning variables on the power properties of the test statistic.

Double-descent curves in neural networks describe the phenomenon that the generalisation error initially descends with increasing parameters, then grows after reaching an optimal number of parameters which is less than the number of data points, but then descends again in the overparameterized regime. In this paper, we use techniques from random matrix theory to characterize the spectral distribution of the empirical feature covariance matrix as a width-dependent perturbation of the spectrum of the neural network Gaussian process (NNGP) kernel, thus establishing a novel connection between the NNGP literature and the random matrix theory literature in the context of neural networks. Our analytical expression allows us to study the generalisation behavior of the corresponding kernel and GP regression, and provides a new interpretation of the double-descent phenomenon, namely as governed by the discrepancy between the width-dependent empirical kernel and the width-independent NNGP kernel.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司