亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a Gaussian variational inference framework for the motion planning problem. In this framework, motion planning is formulated as an optimization over the distribution of the trajectories to approximate the desired trajectory distribution by a tractable Gaussian distribution. Equivalently, the proposed framework can be viewed as a standard motion planning with an entropy regularization. Thus, the solution obtained is a transition from an optimal deterministic solution to a stochastic one, and the proposed framework can recover the deterministic solution by controlling the level of stochasticity. To solve this optimization, we adopt the natural gradient descent scheme. The sparsity structure of the proposed formulation induced by factorized objective functions is further leveraged to improve the scalability of the algorithm. We evaluate our method on several robot systems in simulated environments, and show that it achieves collision avoidance with smooth trajectories, and meanwhile brings robustness to the deterministic baseline results, especially in challenging environments and tasks.

相關內容

Thanks to the augmented convenience, safety advantages, and potential commercial value, Intelligent vehicles (IVs) have attracted wide attention throughout the world. Although a few of autonomous driving unicorns assert that IVs will be commercially deployable by 2025, their implementation is still restricted to small-scale validation due to various issues, among which precise computation of control commands or trajectories by planning methods remains a prerequisite for IVs. This paper aims to review state-of-the-art planning methods, including pipeline planning and end-to-end planning methods. In terms of pipeline methods, a survey of selecting algorithms is provided along with a discussion of the expansion and optimization mechanisms, whereas in end-to-end methods, the training approaches and verification scenarios of driving tasks are points of concern. Experimental platforms are reviewed to facilitate readers in selecting suitable training and validation methods. Finally, the current challenges and future directions are discussed. The side-by-side comparison presented in this survey not only helps to gain insights into the strengths and limitations of the reviewed methods but also assists with system-level design choices.

We consider a chance-constrained multi-robot motion planning problem in the presence of Gaussian motion and sensor noise. Our proposed algorithm, CC-K-CBS, leverages the scalability of kinodynamic conflict-based search (K-CBS) in conjunction with the efficiency of the Gaussian belief trees used in the Belief-A framework, and inherits the completeness guarantees of Belief-A's low-level sampling-based planner. We also develop three different methods for robot-robot probabilistic collision checking, which trade off computation with accuracy. Our algorithm generates motion plans driving each robot from its initial state to its goal while accounting for the evolution of its uncertainty with chance-constrained safety guarantees. Benchmarks compare computation time to conservatism of the collision checkers, in addition to characterizing the performance of the planner as a whole. Results show that CC-K-CBS can scale up to 30 robots.

We consider the problem of autonomous navigation using limited information from a remote sensor network. Because the remote sensors are power and bandwidth limited, we use event-triggered (ET) estimation to manage communication costs. We introduce a fast and efficient sampling-based planner which computes motion plans coupled with ET communication strategies that minimize communication costs, while satisfying constraints on the probability of reaching the goal region and the point-wise probability of collision. We derive a novel method for offline propagation of the expected state distribution, and corresponding bounds on this distribution. These bounds are used to evaluate the chance constraints in the algorithm. Case studies establish the validity of our approach, demonstrating fast computation of optimal plans.

Recently, graph-based planning algorithms have gained much attention to solve goal-conditioned reinforcement learning (RL) tasks: they provide a sequence of subgoals to reach the target-goal, and the agents learn to execute subgoal-conditioned policies. However, the sample-efficiency of such RL schemes still remains a challenge, particularly for long-horizon tasks. To address this issue, we present a simple yet effective self-imitation scheme which distills a subgoal-conditioned policy into the target-goal-conditioned policy. Our intuition here is that to reach a target-goal, an agent should pass through a subgoal, so target-goal- and subgoal- conditioned policies should be similar to each other. We also propose a novel scheme of stochastically skipping executed subgoals in a planned path, which further improves performance. Unlike prior methods that only utilize graph-based planning in an execution phase, our method transfers knowledge from a planner along with a graph into policy learning. We empirically show that our method can significantly boost the sample-efficiency of the existing goal-conditioned RL methods under various long-horizon control tasks.

The problem of chemotherapy treatment optimization can be defined in order to minimize the size of the tumor without endangering the patient's health; therefore, chemotherapy requires to achieve a number of objectives, simultaneously. For this reason, the optimization problem turns to a multi-objective problem. In this paper, a multi-objective meta-heuristic method is provided for cancer chemotherapy with the aim of balancing between two objectives: the amount of toxicity and the number of cancerous cells. The proposed method uses mathematical models in order to measure the drug concentration, tumor growth and the amount of toxicity. This method utilizes a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm to optimize cancer chemotherapy plan using cell-cycle specific drugs. The proposed method can be a good model for personalized medicine as it returns a set of solutions as output that have balanced between different objectives and provided the possibility to choose the most appropriate therapeutic plan based on some information about the status of the patient. Experimental results confirm that the proposed method is able to explore the search space efficiently in order to find out the suitable treatment plan with minimal side effects. This main objective is provided using a desirable designing of chemotherapy drugs and controlling the injection dose. Moreover, results show that the proposed method achieve to a better therapeutic performance compared to a more recent similar method [1].

In many specific scenarios, accurate and effective system identification is a commonly encountered challenge in the model predictive control (MPC) formulation. As a consequence, the overall system performance could be significantly weakened in outcome when the traditional MPC algorithm is adopted under those circumstances when such accuracy is lacking. This paper investigates a non-parametric closed-loop behavior learning method for multi-agent motion planning, which underpins a data-driven predictive control framework. Utilizing an innovative methodology with closed-loop input/output measurements of the unknown system, the behavior of the system is learned based on the collected dataset, and thus the constructed non-parametric predictive model can be used to determine the optimal control actions. This non-parametric predictive control framework alleviates the heavy computational burden commonly encountered in the optimization procedures typically in alternate methodologies requiring open-loop input/output measurement data collection and parametric system identification. The proposed data-driven approach is also shown to preserve good robustness properties. Finally, a multi-UAV system is used to demonstrate the highly effective outcome of this promising development.

The flock-guidance problem enjoys a challenging structure where multiple optimization objectives are solved simultaneously. This usually necessitates different control approaches to tackle various objectives, such as guidance, collision avoidance, and cohesion. The guidance schemes, in particular, have long suffered from complex tracking-error dynamics. Furthermore, techniques that are based on linear feedback strategies obtained at equilibrium conditions either may not hold or degrade when applied to uncertain dynamic environments. Pre-tuned fuzzy inference architectures lack robustness under such unmodeled conditions. This work introduces an adaptive distributed technique for the autonomous control of flock systems. Its relatively flexible structure is based on online fuzzy reinforcement learning schemes which simultaneously target a number of objectives; namely, following a leader, avoiding collision, and reaching a flock velocity consensus. In addition to its resilience in the face of dynamic disturbances, the algorithm does not require more than the agent position as a feedback signal. The effectiveness of the proposed method is validated with two simulation scenarios and benchmarked against a similar technique from the literature.

Intelligent vehicles (IVs) have attracted wide attention thanks to the augmented convenience, safety advantages, and potential commercial value. Although a few of autonomous driving unicorns assert that IVs will be commercially deployable by 2025, their deployment is still restricted to small-scale validation due to various issues, among which safety, reliability, and generalization of planning methods are prominent concerns. Precise computation of control commands or trajectories by planning methods remains a prerequisite for IVs, owing to perceptual imperfections under complex environments, which pose an obstacle to the successful commercialization of IVs. This paper aims to review state-of-the-art planning methods, including pipeline planning and end-to-end planning methods. In terms of pipeline methods, a survey of selecting algorithms is provided along with a discussion of the expansion and optimization mechanisms, whereas in end-to-end methods, the training approaches and verification scenarios of driving tasks are points of concern. Experimental platforms are reviewed to facilitate readers in selecting suitable training and validation methods. Finally, the current challenges and future directions are discussed. The side-by-side comparison presented in this survey helps to gain insights into the strengths and limitations of the reviewed methods, which also assists with system-level design choices.

The paper provides a new perspective on peak- and average-constrained Gaussian channels. Such channels model optical wireless communication (OWC) systems which employ intensity-modulation with direct detection (IM/DD). First, the paper proposes a new, capacity-preserving vector binary channel (VBC) model, consisting of dependent binary noisy bit-pipes. Then, to simplify coding over this VBC, the paper proposes coding schemes with varying levels of complexity, building on the capacity of binary-symmetric channels (BSC) and channels with state. The achievable rates are compared to capacity and capacity bounds, showing that coding for the BSC with state over the VBC achieves rates close to capacity at moderate to high signal-to-noise ratio (SNR), whereas simpler schemes achieve lower rates at lower complexity. The presented coding schemes are realizable using capacity-achieving codes for binary-input channels, such as polar codes. Numerical results are provided to validate the theoretical results and demonstrate the applicability of the proposed schemes.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司