亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

將分布式仿真和工具集成到可互操作的系統聯盟中是一項復雜而耗時的任務,需要對單個組件、接口和綜合解決方案進行廣泛測試。為了支持這項任務,北約依靠標準和協議以及它們的一致應用。在整合解決方案以支持北約和國家仿真和訓練時,提高建模和仿真(M&S)的互操作性、重用性和成本效益,是一個長期的目標,有幾個挑戰。需要采取漸進和迭代的方法來協調分布式仿真聯盟協議,以應對與遺留系統、多種架構、信息技術(IT)和軟件技術的新進展、行業標準的采用、新的商業模式以及開發開放標準的過程有關的問題。

標準、聯盟協議、符合性測試和認證是重要的工具,可以減少集成時間,降低風險,增加現有系統的重復使用,并支持采購新的可互操作的仿真組件。新的和更新的仿真互操作性標準,如高級架構(HLA),要求北約仿真認證服務持續維護和更新,以使用適用標準的最新版本管理更復雜的測試案例。仿真組件的認證需要在核心HLA服務接口之外進行額外的測試,還應該包括符合聯盟協議的測試。

在M&S界,人們普遍認為系統之間的技術互操作性不再是一個基本問題。然而,高水平的互操作性仍然被認為是建立可靠和可信的分布式仿真聯盟的一個主要挑戰。所需的互操作性程度不僅取決于仿真系統的目的和目標,而且還取決于聯盟設計和具體系統組件的互操作能力。早期識別互操作性問題可以降低風險,以及減少與互操作性系統組件相關的成本。高度的互操作性允許更靈活的聯合設計,以及仿真系統的可組合性,而不會大大增加與測試和集成有關的風險和成本。

根據參與的仿真組件之間的互操作性程度,將聯合體集成到復雜的聯合體中可能是一項耗時且雄心勃勃的任務。支持早期檢測互操作性問題的工具、流程和服務將大大減少集成時間和成本。符合標準和接口的驗證不僅與支持認證有關,而且對系統集成商和仿真系統開發商也有價值。

對系統組件進行符合互操作性標準和協議的測試是驗證互操作性的基礎。測試和驗證仿真組件的互操作能力是實現異構分布式仿真系統快速設計和集成的基礎。隨時可用的、最新的、可信賴的工具是支持合規性測試的關鍵。

認證服務可以根據一套基于一致性聲明的互操作性要求(IR),對被測系統(SuT)提供無偏見的符合性測試。證書由授權的認證機構(CE)提供,是符合互操作性要求的標志。根據STANAG 4603的規定,仿真組件必須擁有或獲得證書才能成為采購或驗收測試的候選者。

MSG-134的任務是根據現有的標準和使用以前的工具和認證程序的經驗,建立一個北約仿真互操作性測試和認證服務。MSG-134項目的重點和優先事項是提供基于HLA和北約教育和培訓網絡(NETN)聯邦架構和FOM設計(FAFD)的認證服務工具。該服務由工具、流程和組織組成,管理和提供仿真組件的測試、驗證和認證,以實現高效集成。

2016年,MSG-134建立了認證服務,并在CWIX 2017實驗中首次使用,證明了其功能能力。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

北約(NATO)研究任務組IST-152為在軍事資產上執行主動的、自主的網絡防御行動軟件智能體開發了一個概念和參考架構。在本報告中,這種智能體被稱為自主智能網絡防御智能體(AICA),這是先前版本的更新和擴展版本。

在與技術先進對手的沖突中,北約的軍事網絡將在一個激烈的競爭戰場上運作。敵人的惡意軟件將有可能滲入并攻擊友軍網絡和系統。今天對人類網絡防御者的依賴在未來戰場上將是站不住腳的。相反,AI智能體,如AICA,將有必要在一個潛在的通信中斷的環境中擊敗敵人的惡意軟件,而人類的干預可能是不可能的。

IST-152小組確定了AICA的具體能力。例如,AICA必須能夠自主規劃和執行復雜的多步驟活動,以擊敗或削弱復雜的敵方惡意軟件,并預測和盡量減少由此產生的副作用。它必須有能力進行對抗性推理,以對抗有思想、有適應性的惡意軟件。最重要的是,AICA必須盡可能地保持自己和自己的行動不被發現,并且必須使用欺騙和偽裝。

該小組確定了這種智能體潛在參考架構的關鍵功能、組件及其相互作用,以及實現AICA能力的暫定路線圖。

北約應該鼓勵成員國的學術界、工業界和政府對相關研究和開發的興趣。AICA有可能成為未來戰場上的主要網絡戰士,北約在開發和部署此類技術方面決不能落后于其對手。

AICA 的范圍和要求

為了描述其參考架構,假設AICA嵌入在一個物理軍事平臺上,其范圍是確保平臺所有相關計算機化功能的可用性和完整性,防止注入惡意代碼,以確保平臺的正確行為。檢測物理平臺的異常功能行為不屬于網絡防御智能體的范圍。這被認為是由其他操作監測和控制功能手動或自主完成的。

以無人機作為平臺案例,AICA的范圍可以如圖所示。

在圖中,計算能力是指支持無人機功能的主要計算機(一臺或多臺)。執行器是控制無人機物理元素的物理設備。這里假設這些設備包括計算機處理,可以成為網絡攻擊的目標,因此,應該由AICA保護。同樣的論點也適用于傳感器和通信組件。因此,在這個例子中,圖中強調的元素屬于AICA的責任范圍。

以下是一些關鍵的要求,可以看作是開發AICA架構的先決條件。

  • 該智能體應以持久和隱蔽的方式嵌入在軍事平臺上。這里,隱蔽性是指智能體的能力,以盡量減少對手惡意軟件檢測和觀察智能體的存在和活動的概率。

  • 智能體應能在其職責范圍內觀察各要素的狀態和活動,檢測敵方惡意軟件,同時保持對惡意軟件的最小觀察,并摧毀或降低敵方惡意軟件。

  • 該智能體應能夠在被敵方惡意軟件破壞的環境中有效運行。

  • 該智能體應能抵御破壞。

  • 該智能體應能觀察和理解它所處的環境,為此它需要自己的相關環境世界模型。

  • 智能體應能觀察和影響其保護下的所有計算元素,包括平臺的所有傳感器和執行器的計算元素。

  • 所有相關的通信流量對智能體應是可觀察的。

  • 當與其他友軍元素或外部控制器的通信受到限制或不可用時,該智能體應能有效地發揮作用。

  • 智能體應在特定情況下發揮作用,如有限的計算資源(內存、CPU等)和特殊的環境條件(如溫度、氣壓、G-力、尺寸等)。

  • 智能體在必要時應自主運作,也就是說,不依賴于外部友軍元素或外部控制器的支持。這意味著它必須能夠與平臺的所有計算組件互動,包括實時的傳感器和執行器的計算元素;做出自己的決定;并采取必要的行動。

  • 應作出規定,使遠程或本地的人類控制器能夠觀察、指導和修改智能體的行動,當需要和情況允許時。

  • 智能體應能制定非微不足道的(對對手來說非顯而易見的)計劃,以追求一個給定的目標,并且必須能夠執行計劃中規定的行動。

  • 智能體應能自主地采取破壞性行動,如刪除或隔離某些軟件和數據,同時遵守指定的參與規則。該智能體應具有評估此類行動所涉及的風險和利益的手段,并作出相應的決定。

  • 當需要和條件允許時,智能體應該能夠與其他友軍的智能體進行協作。為此需要協作計劃和談判機制。

  • 智能體應該能夠進行自主學習,特別是關于敵人惡意軟件的能力、技術和程序。學習應該在離線和在線的情況下進行,新學習的知識應該能夠在智能體的操作過程中提供信息。

  • 只要有要求,智能體應向外部控制器報告數據,使控制器能夠對智能體的可信度作出推斷。

  • 智能體應能自我傳播到遠程友軍的計算設備。自我傳播應僅在特殊的和明確規定的軍事需要的條件下發生。

本報告的其余部分描述了一個能滿足這種要求的擬議架構。

報告的A部分提供了AICA的基本原理和操作概念,概述了其架構,并解釋了必要的數據如何在智能體中存儲和管理。

B部分對實現該架構的關鍵功能的可能方法進行了探索性討論。在這一部分中,第5節描述了智能體如何獲得有關其環境的信息并確定環境的狀態。第6節討論了智能體計劃其行動的方法,包括對行動后果的預測。第7節是關于智能體執行其決定的行動的方式。第8節解釋了智能體如何與其他智能體合作。第9節概述了智能體從其行動和觀察中學習的可能方法。

付費5元查看完整內容

北約和各國將仿真環境用于各種目的,如培訓、能力發展、任務演練和采購過程中的決策支持。因此,建模與仿真(M&S)已成為聯盟及其國家的一項重要能力。M&S產品是非常有價值的資源,而且M&S產品、數據和過程必須盡可能方便地被大量的用戶使用。然而,實現仿真系統之間的互操作性并確保結果的可信性,目前需要在時間、人員和預算方面做出巨大努力。

云計算技術和面向服務架構的最新發展為更好地利用M&S能力以滿足北約的關鍵需求提供了機會。M&S即服務(MSaaS)是一個新的概念,包括服務導向和通過云計算的服務模式提供M&S應用,以實現更多的可組合模擬環境,可以按需部署和執行。MSaaS模式支持獨立使用,以及在需要時將多個模擬和真實系統整合到一個統一的基于云的模擬環境中。

北約MSG-136("建模和仿真即服務--快速部署可互操作和可信的仿真環境")調查了MSaaS的新概念,目的是提供技術和組織基礎,以便在北約和伙伴國建立盟國的M&S即服務框架。作為服務的M&S聯盟框架是北約和各國實施MSaaS的共同方法,由以下文件定義。

  • 行動概念文件。
  • 技術參考架構(包括服務發現、工程流程和實驗文件)。 和
  • 治理政策。

業務應用表明,MSaaS能夠實現這樣的愿景:無論何時何地,大量用戶都能方便地獲取M&S產品、數據和流程。MSG-136強烈建議北約和各國推進和促進M&S作為一項服務的運行準備,并進行必要的科學和技術努力,以彌補目前的差距。

本文件描述了MSaaS的盟軍框架的行動概念。行動概念文件(OCD)從用戶的角度描述了盟軍的M&S服務框架的預期用途、關鍵能力和預期效果。

付費5元查看完整內容

目前的做法、標準和技術旨在實現分布式仿真系統中的國防作戰環境的相關靜態合成表示。然而,現實世界的作戰環境是動態的。天氣隨時間和地點的變化而變化,地形受到自然影響(如暴雨、雪、洪水)以及部隊行為的影響,如彈藥對建筑物和基礎設施的破壞。在多個模擬系統聯合的情況下,作戰環境的靜態和動態表現都需要保持一致。

本文描述了北約科技組織MSG-156任務組(TG)正在進行的工作,研究仿真架構、流程和標準,旨在實現改進和一致的跨仿真系統的動態環境表示。這包括氣象數據在模擬中的表現,動態修改地形的過程和仿真系統檢索仿真作戰環境的當前狀態的協議。建模和仿真服務(MSaaS)被認為是實現這一目標所需的一個關鍵的推動因素。

本文描述了一組用例和從這些用例中得出的概念模型。本文還包括一個用于實現一致的動態合成環境的擬議架構,以及對評估擬議解決方案的計劃實驗的描述。

應用案例

MSG-156采用的技術方法是基于四個用例,這些用例將被用作與部署、整合和執行模擬場景有關的方法和原型方法的實驗基礎,其中包括天氣的相關表現和干擾(即天氣影響)對部隊行為的影響。

  • 近距離空中支援(CAS)。
  • 現實天氣下的空中交戰。
  • 受天氣影響的交通能力。
  • 地形修改。

建議的初始架構

北約MSG最近的一項發展是提出MSaaS作為分布式軍事仿真的前瞻性方法。M&S服務是一種特定的M&S相關能力,由提供者根據明確的合同,包括服務級協議(SLA)和接口,提供給一個或多個消費者。分布式仿真是由現有的、可重復使用的或新實施的專用服務組成。

MSaaS方法的一些優勢已經在相關工作部分有所闡述。TG最初也考慮過遵循一種更傳統的方法,基于使用現有的基礎設施和協議(即DIS和HLA),來實現相關的動態SE。然而,使用更傳統的方法有很多限制,特別是當不使用集中式的SE模型,而是由每個聯盟維護自己的SE實例時,在所有聯盟中維持一個相關的SE是很困難的。這就需要采用標準化的變形算法,以及動態效應的預期結果(例如,軟土上的彈藥爆炸)。過去已經進行過實驗,基于在動態交互發生后發送完整的SE數據層的delta,打包成DIS協議數據單元(PDU)或HLA消息。然而,這些方法并沒有得到很大的支持。此外,DIS/HLA的設計并不是為了向聯盟的模擬分配大量的動態數據層,通常更有效的做法是讓聯盟只提取與他們的模擬和感興趣的領域相關的數據層。

考慮到上述情況,為了提出未來的證明概念,并與其他正在進行的MSG活動保持聯系,包括MSG-131/MSG-136("建模和仿真即服務(MSaaS)--快速部署可互操作和可信的仿真環境")和MSG-164("建模和仿真即服務--第二階段"),小組決定采用MSaaS方法。理想情況下,新的服務組件,可重復用于其他實驗,將從該小組的工作中產生。

高級服務架構

  • 靜態地形和天氣

只要不考慮動態地形和天氣方面,高水平的服務架構看起來很簡單。在本技術小組正在進行的工作中,地形和天氣數據被轉移到一個數據存儲庫中,該存儲庫向地形服務和天氣服務提供經過質量驗證和優化的數據。這兩個服務使用服務接口將數據傳遞給連接的聯盟。圖5顯示了這個架構。

  • 動態地形和天氣

為了處理動態地形,該架構必須被擴展。靜態部分仍然保留并提供最初的數據供應。動態地形方面意味著地形數據可能會由于天氣或聯合模擬(如空對地導彈)的影響而改變。例如,大雨造成無法通行的道路,或者武器撞擊產生彈坑或摧毀建筑物。

為了支持動態地形效應,引入了地形交互和修改服務(TIMS)。這種服務的任務是接收事件,計算對地形的影響,最后使用地形服務更新地形。為了完成這個任務,TIMS提取感興趣區域的地形數據,處理修改并將修改后的數據送回給地形服務。此外,地形服務還必須推送變更通知,以通知其他聯盟成員。圖6顯示了由此產生的架構。

為了清楚起見,有兩類TIMS。聯盟-地形交互和修改服務負責聯盟引起的修改,天氣-地形交互和修改服務負責處理天氣相關的影響。從技術上講,它們應該使用相同的接口。

付費5元查看完整內容

建模與仿真即服務(MSaaS)體現了這樣一個理念:仿真應該由松耦合的共享組件、仿真服務在基于云的環境中為手頭的任務快速組成。然后,這些模擬作為組成的模擬服務,提供給人類和技術消費者。這方面的重要功能是讓仿真操作員發現和組合仿真服務并執行組合。我們用我們所說的MSaaS基礎設施能力來描述這一功能。按照逐步完善的理念,仿真服務的發現和組合可以在設計時使用與實施無關的仿真服務信息,在實施時使用與實施有關的仿真服務信息。執行環境也可以在設計時和實施時進行設置。因此,我們在描述MSaaS基礎設施的能力時,要說明它們是如何用于獨立于實施的和特定于實施的服務信息的。通過做這些闡述,我們打算更深入地了解如何進行模擬服務的發現、組成和執行。我們的結論是,盡管MSaaS基礎設施所需的大部分功能都可以通過現有的平臺和框架獲得,但為了實現MSaaS的愿景,有必要將這些功能作為服務,與(組成)仿真服務一起提供。

圖 1. 建模和仿真即服務 (MSaaS) 聯合框架,具有 MSaaS 門戶功能(發現、組合、執行)和用于數據管理、組合以及服務管理和控制的 MSaaS 基礎設施功能。

引言

對行動、訓練和演習的模擬支持具有很大的潛力,它可以支持和增強行動過程,并通過新的方面和擴展的接觸來加強訓練。隨著多國部隊的相互聯系越來越緊密,對國防活動的模擬支持被認為將變得越來越重要。

然而,建立和執行分布式模擬是一個漫長的過程,根據所涉及的系統的復雜性和特點,有各種障礙。由于系統的版本和設置可能在這期間被更新或改變,因此每次行動或演習都必須重復這一過程。跨網絡的系統連接也帶來了自己的一系列問題。所有這些挑戰使得在分布式模擬的生命周期中,有必要在每個地點配備熟練的技術人員,這增加了已經很復雜的后勤工作和有時漫長的操作和演習計劃。

建模與仿真服務(MSaaS)--尤其是北大西洋公約組織(NATO)的MSaaS聯盟框架--提出了一個愿景,即為行動、演習和培訓設置仿真應該是快速和容易的。該服務概念通過通用功能的標準化體現了可重用性,并通過松散耦合和標準化的服務描述體現了可組合性。

圖1說明了這一理念,供應商在云環境中共享仿真服務。仿真操作員使用一個基于網絡的門戶來發現并將仿真服務組合成一個仿真組合來執行。組成的仿真本身可以作為服務提供,以便重復使用。云環境促進了 "按需、隨地 "的模擬訪問。事實上,基于云的模擬和MSaaS被認為是 "巨大的挑戰",對模擬軟件提出了新的要求,特別是對服務描述、服務發現和服務組合的需求。

門戶網站中發現、組成和執行模擬的功能是由MSaaS基礎設施能力的集合提供的,這些能力分為數據管理、組成以及服務管理和控制(SMC)的能力(圖1)。討論的主線是闡述這些MSaaS基礎設施能力應該是什么,目的是為了更好地理解在面向服務的環境中處理模擬的基本機制。我們的闡述是建立在早期的MSaaS經驗之上的。

在MSaaS的參考架構中,服務目前被稱為是獨立實施的。也就是說,服務是由其獨立于實施的服務描述來識別的,參考架構中列出了一些與建模和仿真相關的服務。當獨立于實施的服務描述被標準化并以機器可讀的格式表達時,可以建立工具來支持某種程度的自動發現和組成。這就支持了MSaaS快速仿真部署的愿景,并進一步支持了仿真操作員(圖1)在未來可能成為非技術培訓師或其他操作人員的愿景。

然而,為了對面向服務的標準和仿真協議世界中的開發者有用,這些標準和協議中的每一個都可能處于不同的特定實現抽象水平,MSaaS參考架構需要包括相應的抽象水平。此外,從概念建模到設計再到實現的步驟中所表達的逐步細化原則,進一步激勵了擁有多個抽象層次的服務概念。

因此,在闡述MSaaS基礎設施能力時,我們在考慮這些能力如何在模擬服務抽象的幾個層次上運作的同時,進行了闡述。這樣就能更好地理解服務抽象層次本身,以及基礎設施能力如何通過這些抽象層次進行逐步細化。

MSaaS依賴于北約國家和組織之間以及民用基礎設施之間共享的云基礎設施。這意味著模擬服務和它們的組合,以及基礎設施的能力,必須在適當的云應用成熟度水平的軟件中實現;例如,見Kratzke的云準備、云友好、云彈性、云本地分類。然而,我們在本文中的重點是了解功能層面的基礎設施能力(Kratzke參考模型中的服務構成和應用層)。確定MSaaS的適當的云應用成熟度水平是下一個重要步驟,在本文中沒有討論。

在認識論上,我們在這里的工作相當于建立格雷戈爾所說的分析型理論和設計與行動型理論。前者由 "是什么 "的概念化組成;在我們的案例中,"是什么 "不是一個物理實體,而是一個概念實體;即一個參考架構。后一種類型的理論描述了 "如何做 "事情,包括設計原則。這兩種類型的理論都不支持理論本身所表達的預測,這些預測可以用傳統的方式進行反駁。相反,可以說,它們通過假設概念化和設計有利于各種目的而暗示了元預測。我們提出的概念化是有益的,這可以通過從業者和研究者發現它有多大用處、它在解析性方面有多好、它有多有趣以及理論的其他質量方面來進行分析和經驗性的驗證。這種驗證必須由其他研究者和實踐者長期進行,并與不斷發展概念化的研究者合作。

在第2節中,我們回顧并闡述了MSaaS參考架構的服務概念,在這個概念中,服務可以在幾個抽象層次上被聲明--使用服務描述,從獨立于實施到具體實施。然后,我們在第3節中介紹了MSaaS的基礎設施能力,并在第4-6節中分別闡述了與服務抽象層次有關的組成數據、組合和SMC能力。我們在第7節中得出結論。

圖7. 建模和仿真即服務基礎設施功能之間的關系。

付費5元查看完整內容

摘要

北約和各國都面臨著聯合集體訓練的迫切需求,以確保任務準備就緒:當前和未來的行動都是多國性質的,任務和系統都變得更加復雜,需要詳細的準備和快速適應不斷變化的環境。由于可用資源較少,訓練范圍有限,防止對手觀察第五代戰術和系統能力,以及政治決策和部署之間有限的準備時間,多國背景下的實戰訓練和任務準備機會減少。仿真已經成為解決軍隊訓練需求的一個重要工具,各國都在朝著采用分布式仿真的國家任務訓練(MTDS)能力發展。聯軍正在尋找一種在實戰和模擬訓練和演習之間新的平衡,以提供兩個世界的最佳效果。

北約建模與仿真小組(NMSG)的一些倡議為北約MTDS愿景和行動概念的發展提供了寶貴的意見(MSG-106 NETN、MSG-128 MTDS、MSG169 LVC-T)。在這些成果的基礎上,最近的NMSG活動(MSG-163北約標準的演變,MSG-165 MTDS-II,MSG-180 LVC-T)涉及為聯合和集體行動開發一個通用的MTDS參考架構(MTDS RA)。最近完成的MTDS RA版本以構件、互操作性標準和模式形式定義了指導方針,用于實現和執行由分布式仿真支持的集體訓練和演習,與應用領域(陸地、空中、海上)無關。此外,MSG-164(M&S即服務II)開發了一個技術參考架構(MSaaS TRA),其中包括實現所謂的MSaaS能力的構件。這些構件可以與MTDS的RA結合起來,以包括作為服務進行集體訓練和演習的準則。

當前版本的MTDS RA提供了一個基線,以詳細說明和確定應該發生進一步要求/技術開發的領域。未來更新的主題包括網絡戰和影響、危機管理、現場系統集成和多域戰或混合戰,僅舉幾例。

聯合MTDS對北約和國家的準備工作至關重要。本文提供了MTDS RA的背景、目標和原則,以及實現北約范圍內持久的集體訓練能力的途徑。聯合MTDS RA的維護和持續發展將是北約多個國家、伙伴國和組織在NMSG主持下的共同方向。

1.0 引言

北約和各國都有一個共同的需求,那就是進行聯合集體訓練,以確保任務準備就緒。然而,存在著重大的挑戰:當前和未來的行動都是多國性質的,需要多方協調以追求共同的目標;新的系統和平臺正變得越來越復雜,需要更多的準備時間才能使用。同時,由于可用資源較少,政治決策和部署之間的時間跨度有限,在多國背景下進行實戰訓練和任務準備的機會減少。成本、復雜性、環境限制和敵方(電子)監測能力往往使得在現實環境中不可能完全用實戰系統進行訓練。

仿真已經成為滿足軍隊訓練需求的一個重要工具,各國正在朝著采用國家MTDS能力的方向發展。隨著時間的推移,北約建模與仿真小組(NMSG)的一些倡議(見[1])已經為北約MTDS愿景和行動概念的發展提供了寶貴的投入,如MSG-106北約教育和訓練網絡(NETN)和MSG-128 MTDS。到目前為止,由于缺乏一個共同的技術框架和準備集體訓練活動的復雜性,這些導致北約范圍內沒有持久形成有意義的合成集體訓練能力。這種復雜性既是由于技術方面(例如,不同的、遺留的國家仿真資產和用戶界面),也是由于組織方面(例如,行為者和學科的數量)。此外,仿真資產可能使用不同的安全域,數據的交換受制于國家安全政策。根據演習的范圍和復雜性,合成集體訓練活動的準備工作可能需要幾個月的時間,有時甚至需要一年的時間,包括最初的規劃會議。因此,合成集體(和聯合)訓練或任務演練只是零星地發生,而實際任務越來越多地在國際聯盟中進行,而且準備時間很短。

北約MTDS應該關注現有訓練安排中沒有涉及的領域,并在這些領域提供最大的價值和效率。因此,它不尋求復制通過現有國家活動提供的訓練,而是提供額外的聯盟合成訓練能力。北約MTDS能力旨在將國家或北約的模擬資產整合到一個分布式的合成集體訓練環境中,這些資產通過一個共同的模擬基礎設施連接。在以往成果的基礎上,正在進行的NMSG活動(MSG-165 MTDS-II,MSG-169 LVC-T)旨在為聯合和聯合行動開發一個MTDS參考架構(以下稱為 "RA")。該參考架構以構件、互操作性標準和模式的形式概述了實現和執行由獨立于應用領域(陸地、空中、海上)的分布式仿真支持的合成集體訓練和演習的要求。

該要求涉及多個利益相關者的觀點:

  • 對于在其組織內實施合成集體訓練的國家和北約,以及參加北約合成集體訓練活動的國家和北約,RA應被用來說明標準能力、構件、模式和其他屬性,以評估一致性。

  • 對于產品供應商,RA應提供一套足夠具體的要求和標準,使供應商能夠開發產品并評估其產品與這些要求和標準的一致性。

  • 對于集成商來說,RA應該是一個參考來源,以確定實施合成集體訓練環境的具體限制和方向。

  • 對于NMSG來說,RA應該提供一個參考,在此基礎上可以開發技術和要求,確定標準,提供指南,并定義更詳細的具體水平。

本文概述了RA以及用于劃分不同類型架構的概念。

2.0 架構概念和MTDS的框架

架構可以在不同的抽象層次上進行設計,人們可以區分不同類型的架構。一般來說,對各種抽象層次或如何命名它們沒有什么共識。例如,北約架構框架(NAF)[2]提到了不同種類的架構和導致這些架構的活動。架構的不同種類或類型如圖1所示。

圖1:架構的種類。

在這個圖中,企業架構是由企業層活動開發的,參考架構是由領域和方案層活動開發的,而系統架構是在項目層活動中開發的。本文遵循同樣的結構,領域和計劃層的活動由NMSG旗下的任務組執行,而項目層的活動由國家或北約的項目執行。

各種架構有不同的利益相關者和用戶,需要采用各種方法來完善一個抽象級別的架構。架構抽象級別的范圍和這種方法就是這里所說的架構框架[3]。MTDS的架構框架如圖2所示。

圖2:MTDS的架構框架。

圖中的方法指的是(a)任務組活動和(b)工程流程,如DSEEP[4]。架構開發工作是在指導原則下進行的,后面將簡要討論。

2.1 企業架構

為了MTDS RA的目的,北約協商、指揮和控制(C3)分類法[5]被視為企業架構。在圖2中,用分類圖的圖像和類別的層次來說明。北約C3分類法提供了一個北約C3能力的分類(包括標準和要求),通過超類型-次類型的關系組織了一個概念的層次。該分類法由北約ACT開發和維護,可以通過C3分類法的企業管理Wiki網站查看和修改。C3分類法定義了幾個適用于MTDS的能力類別。例如,集體訓練和演習(CTE)過程;教育、訓練、演習和評估(ETEE)應用;以及技術服務,包括M&S服務。這些類別是MTDS參考架構中各組成部分的參考來源。它們為MTDS參考架構的構件提供了結構和要求。

2.2 MTDS參考架構

這種類型的架構是MTDS架構開發工作的重點。MTDS參考架構(RA)是在NMSG的框架下通過任務小組開發和維護的,它定義了實現合成集體訓練環境所應考慮的構件和模式。在圖2中,構件用綠色方框表示,模式用灰色方框表示,包括構件和它們之間的關系。構建模塊既涉及過程構建模塊,也涉及技術構建模塊。過程構件包括,例如,開發、計劃和進行CTE活動的參考過程,而技術構件包括支持這一過程的CTE和M&S應用,以及連接培訓系統和合成集體培訓環境的CTE和M&S服務。

2.3 MTDS項目架構

一個特定的合成集體訓練活動的架構被稱為MTDS項目架構。該項目架構在圖2中由橙色的解決方案構件和它們之間的關系來說明。字母指的是參考架構中由解決方案構建塊實現的構建塊。例如,一個項目架構是由美國駐歐洲空軍(USAFE)戰士準備中心組織的斯巴達戰士活動[6]或瑞典武裝部隊組織的維京活動[7]的訓練環境架構。由于RA提供了合成集體訓練環境的構件,項目架構中使用的解決方案構件的許多要求原則上可以從RA的構件中得到。但是,一般還是需要細化以滿足項目(即訓練活動)的要求和限制。這可能包括對RA中定義的參考培訓流程進行調整;增加安全要求;選擇特定的中間件解決方案;選擇網關和橋梁組件、跨域解決方案、數據記錄解決方案以及環境數據產品和格式。參考模擬數據交換模型,如北約AMSP-04[8]中的定義,通過RA提供,但項目架構仍然需要就這些參考數據交換模型中的哪些具體部分進行約定。

因此,從同一個參考架構中,可以開發出不同的項目架構,每個項目架構都指定了符合參考架構中設定的標準和要求的合成集體訓練環境的特定實現。項目架構可能涉及一個持久的訓練環境,也可能是一個只為特定訓練活動而臨時存在的環境。

2.4 架構原則

架構原則指導MTDS參考架構和MTDS項目架構的開發、維護和使用過程。原則是持久性的一般規則和指導方針,告知并支持北約和伙伴國家如何完成任務。在圖2中,"指南 "箭頭說明了這一點。

架構原則的屬性是用The Open Group Architecture Framework (TOGAF) [9]定義的,包括:

名稱 代表規則的本質。

聲明 應該簡潔明了地傳達基本規則。

理由 應該強調遵守該原則的商業利益。

影響 應該強調執行該原則對業務和IT的要求--在資源、成本和活動/任務方面。

MSG-165為RA制定了十個主要的架構原則(見MSG-165 RA技術報告[10])。以下是其中一項原則:

1.名稱:遵守北約的政策和標準

2.聲明:MTDS應符合北約在M&S互操作性和標準方面的政策和協議。

3.原理:這些政策和協議的目的是促進所有3級(指揮和參謀)、2級(戰術)和1級(個人和機組)建模與仿真(M&S)系統內部和之間的系統級互操作性。這些政策和協議的范圍包括用于操作、訓練和分析的M&S系統。這適用于由不同的北約國家和北約組織開發的、位于這些國家的M&S系統。

4.影響:以下基準政策和協議應適用于MTDS:AMSP-01: M&S標準簡介,STANREC 4815[11]。STANAG 4603:技術互操作性的建模和仿真架構標準:高層架構(HLA)[12]。AMSP04:NETN聯盟架構和FOM設計,STANREC 4800 [8]。AMSP-03: 北約和多國計算機輔助演習中分布式模擬的M&S標準指南,STANREC 4799 [13]。

在MTDS背景下,架構原則被用來獲取關于北約國家和北約組織應如何使用和部署M&S資源和資產進行合成集體訓練的信息。除其他外,這些原則推動了架構構件中功能需求的定義,指導了項目架構的評估,并通過理由說明提供了動機。

2.5 架構模塊和架構模式

架構模塊(ABB)和架構模式(AP)這兩個概念被用來描述RA中的模塊以及這些模塊如何被組合。這些概念在圖3和圖4中得到了說明,其中第一個圖還顯示了作為對比的概念--解決方案模塊(SBB)。

圖3:架構模塊與解決方案模塊。

一個ABB具有指定其目的、功能和所需技術接口的屬性,以及任何適用的標準。一個ABB并不意味著是一個具體解決方案的規范,而是為開發合成集體訓練環境的架構,即項目架構提供要求、標準和指導。另一方面,SBB與可能被采購或開發的具體解決方案(以及項目架構)有關。SBB規定了培訓活動所需的功能、特定的接口、實際性能值和施工約束。ABB和SBB的概念來源于TOGAF[9]。

圖4:架構模式。

一個AP可以作為項目架構的參考,提供已被證明可以為某個問題提供解決方案的ABB的組合信息。模式屬性包括對模式所幫助解決的問題的描述,對模式如何提供問題解決方案的描述,以及幫助描述模式的圖示。其他模式屬性規定了功能和非功能要求,列出了適用的標準,并提供了參考和例子。

RA描述使用AP圖示,如圖5。這個簡化的插圖顯示了兩個相互作用的ABB,交換具有相關接口要求和標準的數據對象。例子在第3.0章中提供。

圖5:架構模式的插圖。

3.0 參考架構(RA)層和模塊

圖6提供了RA中各層的概述,按照北約C3分類法的主要層次組織。

  • 行動能力:在流程、信息產品、角色和組織方面的集體訓練和演習能力。在C3分類法中,相關類別位于作戰能力 > 業務流程 > 啟用 > ETEE > CTE下。

  • 面向用戶的能力:支持CTE過程的能力,以及培訓受眾使用的能力。在C3分類法中,相關的CTE類別位于面向用戶的能力 > 用戶應用 > ETEE應用 > CTE應用下。而相關的M&S類別位于面向用戶的能力 > 用戶應用 > M&S應用。

  • 后端能力:啟用或支持面向用戶的能力的能力。C3分類法中的相關類別在后端能力 > 技術服務 > COI服務 > COI特定服務 > ETEE功能服務下,以及后端能力 > 技術服務 > COI服務 > COI啟用服務 > M&S服務下。另外,核心和通信服務包括與管理和保障合成集體訓練環境中的技術組件有關的幾個類別。

  • 服務管理和控制(SMC),以及CIS安全被描述為RA中的兩個交叉層。在C3分類法的最新版本中,這些交叉層已從概覽中刪除,但基本類別存在于分類法的每一層。為了RA的目的,我們在概述中保留了這些層次,以強調集體訓練和演習中SMC和安全的交叉問題。

圖6:主要MTDS架構構件的層級和聚類。

下面的章節描述了RA的每個層次,最后一節介紹了MTDS技術框架。更多的細節包括在MSG-165 RA技術報告[10]中。

3.1 業務能力

這一層定義了集體訓練和演習(CTE)過程。這些定義了在進行合成集體訓練時應遵循的一般過程步驟,以及在此過程中應開發的信息產品。集體訓練和演習過程在北約Bi-SC 75-3集體訓練和演習指令中有所描述[14],提供了參考過程以及關于規劃、執行和評估北約集體訓練和軍事演習的綜合指南。

CTE過程還包括合成集體訓練環境本身的發展或調整。AMSP-05北約計算機輔助演習(CAX)手冊[15]提供了額外的M&S相關準則,補充了Bi-SC 75-3附件N(演習的合成環境支持)。這本手冊包括了對基于模擬的訓練活動的更專業的流程描述。

設計、開發、實施和測試訓練環境的技術組件的工程流程也包括在這一層。這包括分布式仿真工程和執行流程(DSEEP)、環境數據和流程的再利用和互操作(RIDP)以及V&V活動:

  • DSEEP[4]是一個流程模型,定義了設計、開發、集成、測試仿真環境和執行仿真的七個步驟。DSEEP允許用戶根據他們的具體應用要求定制流程模型,即合成集體訓練環境。

  • RIEDP[16]定義了環境數據產品共享所需的組件。它包括一個參考過程模型、一個抽象數據模型和一個元數據規范,以支持資源庫和目錄要求。作為項目架構開發活動的一部分,環境數據產品的開發至關重要。因此,在合成集體訓練環境的工程中,將RIEDP活動與DSEEP步驟和活動相結合是至關重要的。

  • 如果合成集體訓練環境需要驗證和/或核實,那么應該考慮FEDEP[17]的VV&A疊加,或驗證和核實的通用方法指南(GM-VV)[18]。

所有這些參考程序通常都需要定制,以滿足國家或多國的培訓要求和項目的具體限制。影響定制的因素包括:培訓環境的變化;風險;解決方案的成熟度、規模和復雜性;培訓活動的時間;技術準備度(新興技術或傳統技術);預算;系統和人員的可用性;對核查和驗證的要求;以及安全相關的要求。

3.2 面向用戶的能力

這一層包含了訓練系統,以及用于支持合成集體訓練的M&S和CTE應用。這些是用戶與之互動的應用,因此是 "面向用戶的"。

M&S和CTE應用包括(但不限于)。場景開發應用(用于開發概念性和可執行的場景),合成物理環境應用(用于開發環境數據產品),以及演習控制應用(用于控制場景的執行)。

訓練系統是國家資產,但也包括在這一組中,因為從RA的角度來看,這些被認為是面向用戶的能力。訓練系統的范圍從相對簡單的單元素系統,如專用的CGF應用程序,到更復雜的多元素系統,如完整的任務模擬器。討論訓練系統本身并不在本報告的范圍之內,而是討論這些能力如何在一個合成的集體訓練環境中聯合起來。

訓練系統與其他層的一些服務相互作用,例如。

  • 后端能力:

    • M&S面向消息的中間件(MOM)服務協調訓練系統和M&S/CTE服務之間的模擬數據交換。

    • 仿真門戶服務進行仿真數據協議轉換,使不兼容或部分兼容的訓練系統能夠與M&S MOM服務連接。

    • 場景分配服務為訓練系統提供場景初始化數據,使訓練系統的場景初始化協調一致。

  • CIS的安全性:

    • CDS服務提供了控制模擬數據從一個安全域向另一個安全域釋放的方法。

    • M&S MOM服務實現了模擬數據在站點之間的安全交換。

  • 服務管理和控制:

    • SMC服務能夠有序地啟動和停止訓練系統,并提供對訓練系統進行測量和監控的能力。

3.3 后端能力

這一層包含了幾個構件。本層的M&S和CTE服務定義了MTDS的具體能力。培訓系統和應用與這些后端能力進行交互,如模擬門戶服務,將培訓系統與M&S面向消息的中間件服務進行連接。

這一層的核心服務定義了一些一般的能力,這些能力對于任何合成的集體訓練環境來說都是需要到位的。同樣,通信服務是一般的通信能力,對于任何合成的集體訓練環境都是必不可少的。這些服務包括在這里作為參考,并沒有進行深入的討論。

本層的M&S和CTE服務包括以下內容

  • 仿真門戶服務。在許多合成集體訓練環境中,會有混合的訓練系統,每個系統都支持不同的(版本)仿真標準、戰術數據鏈和/或HLA FOM模塊,例如DIS版本7、IEEE 1516.2000(HLA)、IEEE 1516.2010(HLA進化版)、RPR-FOM、NETN-FOM模塊,或不同的戰術數據鏈仿真標準。RA定義了仿真門戶服務,以執行最常見的轉換,將使用非HLA(如DIS)或傳統HLA(如HLA 1.3)的訓練系統連接到M&S面向消息的中間件服務中。

  • M&S面向消息的中間件(MOM)服務。這些服務使M&S和CTE應用程序和服務以及培訓系統具有互操作性。面向消息的中間件服務符合NATO STANAG 4603和NATO標準AMSP-04。NATO STANAG 4603規定使用IEEE 1516?-2010 (HLA Evolved)標準,用于分布式仿真環境的高層架構。AMSP-04(NETN)定義了一套(連貫的)HLA FOM模塊,以及架構和設計指南,見圖7。NETN的FOM模塊旨在最大限度地提高仿真組件之間的重復使用和互操作性。

圖7:AMSP-04版B中的NETN FOM模塊。

  • 場景分配服務。這些服務為模擬執行提供初始模擬場景(如作戰順序(ORBAT)數據),由場景開發應用程序開發。初始模擬場景包括關于單位、設備項目及其關系的信息,以及關于初始建模責任的信息。即哪些訓練系統負責哪些單位和設備項目的建模和模擬。

  • 仿真服務。這些服務產生地面真實和非地面真實數據,用(模擬的)空中、陸地或海上平臺或綜合信息刺激訓練系統,如敵機、導彈、誘餌、陸地單位、空中交通和海上船只交通。仿真服務由演習控制應用程序控制。

RA還包括架構模式,提供了關于如何組合架構構件的信息。以下是兩種模式的說明。

圖8展示了一個演習控制模式,模擬實體由演習控制應用發出任務。M&S MOM服務在模擬服務和訓練系統之間分配任務,對于演習控制應用來說,模擬實體所在的位置是透明的,因此哪個組件有建模的責任。AMSP-04 NETN-ETR是戰爭領域中模擬實體任務和報告的標準。

圖8:模擬實體的任務分配和報告模式。

圖9提供了一個場景初始化的模式,其中初始模擬場景由演習控制應用提供給場景分配服務。場景分配服務使用M&S MOM服務在運行時將場景分配給訓練系統。場景元素的建模責任對場景分配服務是透明的。培訓系統需要對模擬環境協議中約定的指定元素的建模負責。這種模式使用AMSP-04 NETN-ORG作為場景初始化的標準。場景分配服務支持HTTP,用于發布MSDL數據等。

圖9:場景初始化的模式。

3.4 通信和信息系統(CIS)安全

該層是一個交叉層,定義了與合成集體培訓環境中不同安全領域之間的數據交換、信息安全脆弱性評估以及發布政策對培訓目標的影響評估有關的構建模塊和模式。鑒定過程也是這個交叉層的一部分。此外,其他層的構件也可能包括CIS安全要求。例如,對于M&S MOM服務來說,要支持在聯合合成集體訓練環境中各站點之間安全地交換數據的機制。

這一層的構件提供了安全執行、管理和監控的功能。這些構件在實施M&S CDS解決方案的要求方面提供了指導和考慮,并促進了為SBB選擇適當的技術。構建模塊包括

  • 安全策略配置管理應用:提供配置本套系統中其他構件的方法。

  • M&S防護服務:提供連接國家模擬安全域和北約MTDS安全域的能力,并根據一套預定的發布策略規則控制國家域的模擬數據的發布。

  • M&S調解服務:提供訓練系統或M&S MOM服務與M&S防護服務之間的模擬數據交換的調解手段。

圖10提供了一個跨域信息交換的簡化模式。M&S調解服務將數據轉換為M&S防護服務可以解釋的格式。M&S調解服務和M&S防護服務之間的接口是特定的解決方案,但通常涉及XML或純文本格式的消息,供M&S防護服務檢查和過濾。M&S防護服務的實施大多是國家(機密)和專有的解決方案,并且由于與模擬數據的延遲和吞吐量有關的M&S要求,被認為是M&S特定的。訓練系統位于國家站點,在這個例子中是X站點和Y站點,通信服務(如CFBL-Net)提供跨站點的IP單播/多播網絡服務。此外,加密設備(如果使用,未在圖中顯示)確保站點之間的數據通信是加密的。

圖10:跨域信息交換的模式。

3.5 服務管理和控制

服務管理和控制(SMC)集群也是一個跨域層,因為它影響到所有其他層。

這一層定義了一系列的構件,以便在一個(聯合的)合成集體訓練環境中連貫地管理各部分。這涉及到流程和技術能力。

SMC能力提供了以下手段:

  • 測試訓練系統和測試MTDS技術框架中的應用和服務(見下一節)。

  • 初始化和啟動MTDS技術框架中的應用和服務。

  • 監督MTDS技術框架中的應用和服務的健康和運行狀態。

  • 監測培訓系統的狀態。

  • 終止MTDS技術框架中的應用和服務,該組的應用和服務包括。

  • 系統初始化和終止服務:協調一致地初始化和終止培訓系統,以及MTDS技術框架中的應用和服務。這些服務對組件的初始化和終止進行協調。一旦一個組件成功啟動,進一步協調初始化和與其他組件的同步,例如,由該組件自己決定。

  • 監測、計量和記錄應用程序和服務:收集和提供關于MTDS技術框架中應用程序和服務的健康和性能的信息。例如,監測組件的有效性,從組件中收集指標(如CPU使用率,交換的消息數量),并從組件中收集日志數據(如控制臺日志)。這些服務是任何分布式仿真環境中的基本功能。

圖11展示了一種模式,平臺監控服務監測M&S服務的有效性和準備性。準備就緒表示服務已經準備好參與仿真執行的狀態。有效性表示服務正按計劃執行的狀態。平臺監控服務可以向M&S服務發出有效性請求,以確定其狀態,例如通過HTTP GET探測。平臺監控服務是非M&S特定的服務,定義在RA的核心服務層。

圖11:監測M&S服務的模式。

  • 測試管理應用:驗證CTE/M&S應用和服務以及訓練系統的解決方案是否正常運行;也就是說,符合商定的模擬互操作性要求。北約IVCT[19]是一個解決方案,可用于測試HLA仿真組件的互操作能力,并支持聯合仿真的整合。

3.6 MTDS技術框架

為支持合成集體訓練和演習所需的通信和信息系統能力構成了所謂的 "MTDS技術框架"。該技術框架如圖12所示。它由前幾節所討論的技術構件(不包括訓練系統)組成,被歸納為一套連貫的技術能力。

總之,MTDS技術框架支持CTE過程中的活動,提供在不同地點的訓練系統之間安全和一致地交換信息的能力,提供收集、存儲和處理訓練和演習相關數據的能力,并提供用M&S應用或M&S服務產生的信息激勵訓練系統的能力。技術框架中的構件和模式共同提供了在(聯合)合成集體訓練環境中整合訓練系統的技術要求。

圖12:MTDS技術框架的模式。

4.0 總結和結論

本文對MTDS參考架構(RA)進行了概述。RA為MTDS的合成集體訓練環境的設計、開發和實施提供了參考和方向來源。參考架構是以架構基石(ABBs)和架構模式(APs)分層描述的。每個ABB提供了要求和標準,每個AP提供了關于ABB如何組合的信息。架構塊和模式為開發或獲取ABB和AP的解決方案提供了方向。此外,RA還定義了架構原則來指導RA的開發、維護和使用。

RA與北約C3分類法有很強的聯系,提供了與北約通信、指揮和控制(C3)能力的可追溯性,以及一個共同的結構,以北約C3用戶群體可識別的方式命名和組織構建塊。

RA提供(1)一個框架和結構,(2)其內容(即ABB和AP描述)可以隨著需求和見解的變化而不斷改進和充實。目前MSG-165開發的RA版本已經提供了一個有幾個ABB和AP的基線。然而,我們發現了一些差距,應該為這些差距開發ABBs和APs,并添加到RA描述中(見MSG-165 RA技術報告,[10])。此外,還有機會利用正在進行的科學和技術工作,這些工作應與RA相整合并保持一致。

5.0 建議

對各國和北約:

  • 將RA作為在組織內實施合成集體訓練的參考,并參與北約的合成集體訓練活動,以獲得實際經驗,發展技術能力,并提供業務培訓價值。

對NMSG來說:

  • 將RA作為合成集體訓練的參考,在此基礎上開發技術和要求,確定標準,提供指南,并確定更詳細的具體水平。

  • 確保歷屆工作組對RA進行維護并保持更新。

  • 將MTDS相關的主題(見MSG-165 RA技術報告,[10])組織在一個路線圖中,用于逐步發展RA的內容。

  • 采用RA并促進各國在實施MTDS時使用它。

  • 評估RA在AMSP-03[13]中的整合情況,更新和發展該簡介,使之成為聯合MTDS的簡介。

對集成商和產品供應商:

  • 使產品與RA中列出的要求和標準保持一致。
付費5元查看完整內容

本報告描述了北約STO RTG IST-149無人地面系統和C2內互操作性能力概念演示器的研究和實驗工作。無人地面車輛(UGVs)在現代戰斗空間中正變得越來越重要。這些系統可以攜帶大量的傳感器套件,從前線提供前所未有的數據流。另一方面,這些系統在大多數情況下仍然需要遠程操作。重要的是要認識到,如果沒有適當的方式在聯盟伙伴之間交換信息和/或將其納入C2系統,ISR數據在很大程度上將是無用的。該小組的主要目的是找到改善這種情況的方法,更具體地說,調查從操作員控制單元(OCU)控制UGV和接收數據的可能標準,并在現實世界的場景中測試它們。

該項目的努力有兩個方面。比利時的貢獻是在歐盟項目ICARUS中所做的工作。這個項目涉及一個用于搜索和救援的輔助性無人駕駛空中、地面和海上車輛團隊。互操作性在幾個不同的實驗中得到了驗證。ICARUS聯盟由幾個國際合作伙伴組成,其中比利時是這個小組的鏈接。第二項工作是該小組的聯合努力,在小組內進行實驗,展示UGV和OCU之間的互操作性。該小組于2018年在挪威的Rena進行了最后的演示。

這兩項工作都使用了無人系統聯合架構(JAUS)和互操作性配置文件(IOP),以成功實現系統間的互操作性。試驗表明,有可能相當容易地擴展系統,并在相對較短的時間內實現與部分標準的兼容。弗勞恩霍夫FKIE和TARDEC都開發了軟件,將信息從IOP域傳遞到機器人操作系統(ROS),并從該系統中獲取信息。ROS是一個廣泛使用的軟件,用于開發UGV和其他類型機器人的自主性,并被該小組的許多合作伙伴所使用。Fraunhofer FKIE和TARDEC提供的軟件對試驗的成功至關重要。

報告還討論了如何在采購前利用IOP標準來定義系統的要求。該標準本身定義了一套屬性,可以在采購新系統時作為要求來指定,可以是強制性要求,也可以是選擇性要求。這使得采購部門更容易定義要求,供應商也更容易符合要求,同時也明確了OCU在連接到系統時,在控制系統和可視化系統中的數據方面需要具備哪些能力。

該小組2018年在挪威瑞納的試驗重點是對UGV進行遠程操作,以及接收UGV的位置和視頻反饋。由于這是一次成功的試驗,下一步將是使用更高層次的控制輸入和反饋來測試互操作性,例如,向UGVs發送航點,并根據系統的感知接收系統周圍環境的地圖。

付費5元查看完整內容

這是MSG-145技術活動(TA)的最終報告,即標準化C2-仿真互操作性的實施。其目標讀者是北約技術界,特別是那些在指揮與控制(C2)和建模與仿真(M&S)領域工作的人。

本文件描述了MSG-145 TA的工作和發現,它是MSG-085的后續活動。MSG-085的背景在最終報告[1]中已有記載。

本報告描述了北約建模與仿真小組145(MSG-145)的工作和成就。該小組的主要目的是提供證據,支持仿真標準互操作性組織(SISO)的指揮與控制仿真(C2SIM)互操作性標準的實施,從而建議將該標準作為北約標準化協議(STANAG)予以采納。

這項工作建立在北約早期M&S活動的基礎上,特別是MSG-048和MSG-085,它們涉及聯合作戰管理語言和軍事場景定義語言(C-BML和MSDL)的開發和使用。這項工作的成功鼓勵了SISO致力于制定一個統一的標準,即C2SIM,用于初始化、任務/報告和由此產生的系統(我們稱之為聯盟)的同步操作。MSG-145進行了補充研究和實驗,以確定、測試和展示相關的用例。

MSG-145的活動包括:評估SISO C2SIM草案并向SISO提供反饋;開發有代表性的用例并在實驗環境中實施;提供一個持久的、分布式的實驗/測試和評估環境,即C2SIM沙盒;開發一個架構以提供C2SIM作為服務,并收集證據以支持小組提議采用C2SIM作為STANAG。

對C2SIM標準包的評估是通過檢查C2SIM的基礎數據模型(由一套本體表達)、審查文件和指導過程進行的。

由不同國家團體主導的用例涵蓋了:

  • 無人駕駛自主系統(意大利)。

  • 軍事行動訓練中的網絡戰(美國)。

  • 軍隊的任務規劃(挪威)。

  • 使用戰術數據鏈的空中行動(法國和德國)。

  • 聯合任務規劃(英國)。

  • 指揮所培訓(德國)。

這些用例中的每一個都提供了一個框架,用于測試C2SIM標準,并幫助SISO完善該標準。支持性實驗在國家和聯盟環境中進行,包括北約的聯軍戰士互操作性演習、實驗、檢驗演習(CWIX)和小組自己的迷你演習(MiniEx)。用例和實驗也證明了在幫助識別和探索利用機會方面的價值。其他工作描述了一個與系統開發者相關的參考架構,包括那些與M&S即服務(MSaaS)相關的工作。

已經開展了大量的推廣活動:在國內和國際上都提供了技術論文、演講、演示和輔導,如:ITEC、I/ITSEC、TIDE Sprint、ICCRTS和SISO SIW。ITEC, I/ITSEC, TIDE Sprint, ICCRTS和SISO SIW。完整的細節和參考資料見本報告的主體部分。

該小組的C2SIM沙盒是一個完整的C2SIM環境,承載著一個有代表性的建設性仿真、一個C2代用品和一個C2SIM網絡服務器,以提供網絡通信能力。用戶可以從世界任何地方使用安全的虛擬專用網絡(VPN)連接自己的系統。沙盒已被廣泛使用,目前在羅馬的北約模擬和仿真卓越中心(MSCOE)有一個持久的能力。

最后,報告總結了該小組是如何實現其目標的,確定了開發路徑以及如何使用和擴展C2SIM標準。它還總結了外展活動。最后,對北約來說最重要的是,它涵蓋了北約作為STANAG采用C2SIM標準所需的建議和過程。

該報告建議

  • 應在SISO C2SIM標準基礎上提出并批準C2SIM STANAG。

  • NMSG應向各國和業界推廣C2SIM標準。

  • NMSG應向北約聯邦任務網絡(FMN)推廣C2SIM標準,并將該標準加入北約互操作性標準和配置文件(NISP)以及北約M&S標準配置文件(STANREC 4815)。

  • 需要繼續開發決策支持和實施工具,以進一步發展業務能力。

  • 實驗水平應擴大到包括更多的用例,以支持作戰計劃。

1.1 文檔結構

本報告的結構如下。

  • 引言(第1章)。
  • MSG-145概述(第2章)。
  • C2仿真操作化任務(第3章)。
  • 實驗、研討會和會議(第4章)。
  • 識別的教訓和吸取的經驗(第5章)。
  • 未來開發(第6章)。
  • 結論和建議(第7章)。
  • 參考文獻和書目(第8章)。

附件包括:

  • C2SIM參考架構(附件A)。
  • 2019年小型演習(附件B)。
  • 2019年空中作業擴展演示(附件C)。
  • 關于采用SISO C2SIM標準作為北約STANAG的建議(附件D)。

1.2 為什么要對C2SIM的互操作性進行標準化?

C2和仿真系統之間的互操作是現代軍事力量轉型中一個共同的重要主題。它被要求支持軍事企業執行業務活動和任務主線,如作戰訓練、信息共享和決策支持。這一要求意味著有能力將C2系統和仿真系統無縫集成,并提供有意義的、明確的信息交流手段。C2SIM互操作適用于在不同層次上為共同目標運作的系統:

  • 1)服務內部。
  • 2)跨部門(即聯合)。
  • 3)在多國或聯盟背景下的國家之間。

此外,自主無人駕駛車輛系統(UVS)的出現導致C2系統和新興的機器人部隊類別之間需要增加相互合作。越來越多的無人系統的使用產生了開發和驗證新操作概念的需要,因此需要有實驗能力。C2系統和機器人系統之間的通信要求在許多方面與C2系統和仿真系統之間的通信要求相似。

在這樣一個 "系統簇"環境中,一個系統對另一個系統的控制需要一個明確的、自動化的機制,其中C2和M&S概念可以以有效和開放的方式聯系起來。

需要C2和仿真系統之間的相互合作來支持軍事活動,例如部隊的準備工作;對行動的支持;和能力的發展。目前,不同制造商和/或國家的系統之間的互操作需要專有的接口,需要時間和金錢來開發和維護。此外,在許多情況下,除了這些供應商的特定接口外,在軍事場景定義、初始化和執行過程中還需要人為干預。所謂的 "旋轉椅"界面需要向仿真操作員提供信息,他們必須將這些信息手動翻譯成仿真可以處理的指令。用標準化、自動化的界面取代這樣的操作人員,可以節省大量的費用,同時也能使操作更加有力和及時。

因此,制定定義C2和仿真系統之間交換軍事信息的通用接口標準,可以大大降低成本,并大大促進系統集成。

C2SIM互操作標準化的好處包括:降低成本和工作量;減少場景準備時間;提高真實性和整體效果。

1.3 C2SIM互操作性標準

利益相關者已經認識到建立一個國際公認的標準的重要性,該標準提供了一個獨立于系統的語言和協議。

1.3.1 C-BML

戰斗管理語言(BML)是一種不含糊的語言,用于指揮和控制進行軍事行動的部隊和系統。BML正在被開發為一種標準的表示和手段,用于交流數字化的C2信息,如命令和計劃,使軍事人員、仿真部隊和未來的機器人部隊能夠理解。此外,BML必須通過數字化報告提供態勢感知和共享的共同作戰圖像(COP)。在以網絡為中心的環境中,BML對于實現相互理解尤為重要。BML還必須在一個多國分布式綜合能力變得越來越普遍和重要的環境中促進C2SIM的互操作性。

BML是獨立于學說的,但提供了表達學說的手段。然而,BML并不作為標準化理論的手段:詞匯必須在各自的應用領域中得到很好的定義,以便在過程結束時毫不含糊地生成可執行的任務。BML必須以底層信息技術系統(M&S或C2系統)可以交換信息的方式對這些方面進行建模,同時也可以正確解釋結果。因此,仿真互操作性標準組織(SISO)承擔了BML標準的開發工作,即聯盟戰斗管理標準。

C-BML語言使用聯合協商指揮與控制信息交換數據模型(JC3IEDM)的數據定義,因為它代表了一套公認的、定義明確的信息元素。然而,JC3IEDM的信息結構不是C-BML標準的一部分。

2014年4月,SISO批準了C-BML的初始版本,這是一種標準化的正式語言,用于指揮和控制(C2)、仿真和自主系統之間的數字化軍事信息交流。C-BML是一種互操作性標準,可以大大促進軍事場景的準備和執行,以支持軍事企業活動。

1.3.2 MSDL

涉及C2系統和仿真系統之間信息交換的用例情景,往往需要對所有系統進行與現有作戰和/或仿真數據庫一致的預先初始化。

軍事場景定義語言的目的是減少場景開發的時間和成本,它能夠創建一個獨立于仿真的軍事場景格式,側重于現實世界的軍事場景方面,使用行業標準的數據模型定義XML,可以方便和可靠地被當前和不斷發展的仿真所使用。最初的MSDL能力是在美國陸軍的 "半自動化部隊"(OneSAF)計劃中,在2001年至2004年的早期架構發展階段進行的原型設計。一個SISO研究小組(SG)得出結論,全社會都需要一個標準化的軍事場景格式,以減少開發時間和成本,并實現寶貴場景產品的共享。標準化的場景格式還提供了一種方法,可以將主要由人工復制的場景自動化為多種仿真場景格式,并減少這一人工過程中引入的錯誤數量。

2006年,一個正式的SISO MSDL標準產品開發小組(PDG)成立,其具體目的是制作一個標準的軍事場景定義語言數據模型。PDG審查了OneSAF以前的工作,并將其與JC3IEDM進行了擴展和調整。由此產生的SISO標準的1.0版本于2008年11月獲得批準。除了OneSAF,MSDL還被美國陸軍建模和仿真辦公室(AMSO)、空軍和海軍陸戰隊以及北約活動所采用。

1.3.3 C2SIM

由SISO開發的MSDL和C-BML標準分別用于支持場景初始化和場景執行,目前正在協調建立C-BML/MSDL聯合標準,也稱為C2SIM標準。為此,2014年,SISO將C-BML和MSDL產品開發組(PDG)合并,形成C2SIM PDG。這就產生了第二代協調的標準,它保持了C-BML和MSDL的優點,也提供了可擴展性。

圖1-1顯示了操作概念,C2SIM實現了C2系統、M&S應用和自主系統之間信息(如計劃、命令和報告)和初始化數據的交換。

1.4 北約以前在C2SIM互操作標準化方面的工作

北約協調支持辦公室(CSO)的建模與仿真組(MSG)近年來支持了一些與C2SIM互操作相關的技術活動。MSG-145是2006至2014年開展的MSG-085和MSG-048技術活動的后續活動。在2016年3月MSG-145開始之前,北約探索小組-038(ET-038)于2015年9月舉行。

MSG-048展示了C2SIM的可行性,MSG-085展示了C2SIM互操作性的效用。MSG-145打算將C2SIM投入使用。

1.4.1 北約MSG-048技術活動

MSG-048技術活動探討了 "戰斗管理語言"(BML)作為一個開放框架的組成部分,在北約范圍內連接C2系統和M&S或機器人系統的技術可行性。

MSG-048的研究結果提供了一套經驗教訓,豐富了MSG-048實驗項目的經驗。一套關于C2SIM互操作的操作和技術要求已被證明對仿真互操作性標準組織(SISO)的C-BML標準化活動有用,并為MSG-085技術活動提供了參考。2013年,MSG-048因這項工作獲得了北約科學成就獎。

1.4.2 北約MSG-085技術活動

MSG-048的后續活動,即2010年啟動的MSG-085 TA的結果,主要得益于作戰團體的大量參與,為C2SIM互操作性確立了更清晰的范圍和完善的作戰和技術要求集。MSG-085通過幾次實驗活動證明了概念的正確性。他們首先確認了現有C2SIM互操作性方法的操作相關性并衡量了其效益。他們還確定了現有技術的局限性和需要改進的地方,并有助于向更廣泛的社區通報C2SIM互操作性的最新情況。最重要的是,從這些活動中獲得的經驗教訓有助于為正在制定C2SIM互操作性標準的SISO標準化機構制定一套建議。一個主要的建議是,C-BML和MSDL應該基于一個共同的數據模型,并合并成一個C2SIM標準。

1.4.3 北約ET-038技術活動

探索小組在2015年提出的范圍是探索和定義北約未來需要執行的技術工作,以實現C2SIM的互操作性。事實上,在改進C2SIM方面還有很多技術工作。MSDL和C-BML都需要有下一代的開發,以促進它們的合作以及它們能夠實現的互操作性的范圍。MSDL應該滿足廣泛的國家和北約系統的需求,而C-BML應該提高它所能代表的復雜性和使用它來代表復雜情況的便利性。利益相關者對合并這兩項活動以產生一個統一的、更易于管理和部署的C2SIM互操作性解決方案的共識進行了分析,以確定未來TA的范圍。這催生了MSG-145。

付費5元查看完整內容

引言

本文件是北約 IST-151 研究任務組 (RTG) 活動的最終報告,題為“軍事系統的網絡安全”。該 RTG 專注于研究軍事系統和平臺的網絡安全風險評估方法。 RTG 的目標如下:

? 協作評估軍事系統的網絡安全,并在 RTG 的北約成員國之間共享訪問權限;

? 在 RTG 的北約成員國之間共享風險評估方法和結果;

? 將 RTG 的北約成員國使用的評估方法整合到一個連貫的網絡安全風險評估方法中,以使北約國家受益。

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。他們大量使用數據總線,如 MIL-STD-1553A/B、CAN/MilCAN、RS-422/RS-485、AFDX 甚至普通以太網,以及戰術通信的舊標準,如 MIL-STD-188C 和 Link 16。此外,捕獲器、傳感器、執行器和許多嵌入式系統是擴展攻擊面的額外無人保護的潛在輸入。結果是增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務的成功和公共安全至關重要。

軍事系統和平臺是網絡攻擊的首選目標,不是因為它們像消費電子產品那樣普遍,而是因為它們潛在的戰略影響。一旦受到影響,就可以實現各種短期和長期影響,從拒絕能力到秘密降低其有效性或效率。因此,軍隊必須在各個層面解決網絡安全問題:戰略層面,同時獲取平臺和系統;作戰層面,同時規劃軍事任務和戰術。

北約國家擁有大量可能面臨網絡攻擊的軍事平臺和系統。因此,北約將受益于利用當前的流程和方法來設計更安全的系統并評估當前系統的網絡安全。

本報告介紹了針對軍事系統和平臺量身定制的網絡安全評估方法,該方法由 RTG 團隊成員合作開發,并建立在他們的經驗和專業知識之上。團隊成員已經使用的流程被共享、分析、集成和擴充,以產生本報告中描述的流程。本報告的目標受眾是愿意評估和減輕其軍事系統的網絡安全風險的決策者。

圖一:網絡安全評估過程的五個主要步驟。

報告結構

第 2 節介紹了 RTG 團隊在其存在的三年中用于開發流程的方法。第 3 節列出了可以應用該過程的系統的一些特征。最后,第 4 節描述了評估流程,而第 5 節總結本報告。

執行總結

軍事平臺比以往任何時候都更加計算機化、網絡化和受處理器驅動。這導致增加了網絡攻擊的風險。然而,這些平臺的持續穩定運行對于軍事任務和公共安全的成功至關重要。

絕對的網絡安全是不存在的。必須通過迭代風險評估持續管理網絡安全。傳統 IT 系統存在許多網絡安全風險管理框架和流程。然而,在軍事平臺和系統方面,情況遠非如此。本文檔介紹了針對軍事系統量身定制的網絡安全風險評估流程。該流程由北約 IST-151 研究任務組 (RTG) 活動的團隊成員開發,該活動名為“軍事系統的網絡安全”。該過程可以應用于傳統的 IT 和基于固件的嵌入式系統,這些系統在軍事平臺和系統中無處不在。

付費5元查看完整內容

第一章 引言

在北約內部和成員國使用建模和仿真 (M&S) 對支持國防訓練、能力發展、任務演練和采購過程中的決策支持提出了越來越高的要求 [1]。因此,M&S 是聯盟及其國家的一項重要能力。然而,當前的 M&S 系統對高度動態的軍事作戰環境的代表性有限,其中物理環境的狀態會影響部隊的行為(例如,天氣對地面車輛機動性的影響)以及軍事物理(動能)行為會影響環境狀況(例如,彈藥對建筑物、基礎設施等的破壞)。目前在仿真系統中實現動態元素時,它們通常以定制和預先編寫好的方式執行,這限制了仿真互操作性的能力和范圍。

圖 1-1:任務期間遭遇的動態環境

?2016 年,北約 MSG 探索小組 ET-045“分布式仿真的動態合成自然環境”成立,以調查分布式仿真中相關動態合成環境的主題是否需要進一步研究。這確定了實現相關動態地形的主要挑戰 [2]。結論是存在許多與相關動態合成環境 (DSE) 相關的未解決問題,這些問題將限制未來北約分布式仿真的可用性。這些問題中的大多數都屬于技術性質,包括沒有開放標準或未經過驗證的方法來實現跨分布式 M&S整合天氣、天氣影響和物理(動力)戰爭對環境的影響。為響應 ET-045 的調查結果,一項為期 3 年的任務組 (TG) 技術活動提案 (TAP) 已提交給 2017 年春季的北約 MSG 商務會議,即MSG-156,于 2017 年 9 月開始。

1.1 定義

本報告包含由 ET-045 定義的幾個常用術語,即:

? 合成環境 (SE) 是代表物理世界的元素集合,系統的(模擬)模型在其中存在并相互作用(即地形、天氣、海洋、空間)。它包括表示環境的元素、它們對系統的影響,以及系統對環境變量影響的模型數據。

? 動態合成環境(DSE) 是一種在模擬過程中元素可以改變的SE,例如雨水對地形表面的影響。這可能是由于環境內的交互(例如,影響地形條件的天氣)、來自模擬實體的交互(例如,武器效果或單位挖掘)或由于外部交互(例如,教練驅動的變化)。

ET-045 和 MSG-156 并不認為 SNE 一詞涵蓋了 SE 中的所有環境方面,因為還存在需要表示的非自然元素。因此,MSG-156 TG 決定在本報告中采用 SE。在此之后,TG 已經意識到,在下一版 AMSP-01 [3] 中,SNE 一詞將被合成物理環境 (SPE) 取代,這樣可以更好地捕捉范圍。由于 MSG-156 已經使用 SE 一詞撰寫了幾篇出版物和大部分報告,因此決定在本報告中繼續使用 SE。

圖 3-9:DSE 的概念解決方案架構

1.2 目標

MSG-156 任務組 (TG) 的目標定義為:

  1. 定義最佳實踐、所需方法、技術,并為在未來分布式仿真練習中實現相關動態 SE 所需的標準提供信息;

  2. 通過概念實驗,評估方法和技術。

1.3 工作計劃

為實現上述目標,MSG-156 定義了一個工作計劃,其中包括以下活動(見圖 1-2):

圖1-2:MSG-156工作計劃

a. 識別DSE要求:確定分布式仿真中 DSE 的功能要求,包括現實世界操作的哪些方面對于在仿真中表示至關重要;這將在第 2 章中討論。

b.調查現有解決方案:了解 DSE 的當前最先進技術,以確定需要解決的差距以實現相關 DSE;這將在第 2 章中進一步討論。

c.定義用例:確定相關的操作場景,作為評估支持 DSE 架構的方法和技術的基礎;這些用例將在第 3 章中進一步討論。

d. 定義解決方案概念:定義解決方案概念以在分布式仿真中實現相關 DSE。第 3 章介紹了一些相關動態效果的選定用例和概念圖,例如可通行性,小組將其用作開發解決方案概念的架構基礎。第 4 章和第 5 章更詳細地介紹了該小組討論的兩個主要主題,即動態地形和動態天氣,涵蓋相關的動態效果、數據源和現有標準。第 6 章將所有這些發現結合到 MSG-156 提出的 DSE 解決方案架構中。

e. 概念論證:對解決方案概念進行(部分)實施,使其可行性得到論證,并吸取實踐經驗,以及解決方案概念是否有效并滿足確定的要求,以及哪些領域需要進一步研究。第 7 章將更詳細地討論概念演示。

f. 撰寫技術報告:最后一項活動是撰寫這份報告,并將所有經驗教訓結合起來,為 M&S 社區提供實現相關 DSE 的建議;這包括確定合適的技術和方法,并就應制定的標準提出建議。

圖 3-5:地形和天氣對車輛通行性影響的概念模型圖

圖 3-6:由于武器效應引起的地形和物體變形的概念模型圖

圖 3-7:受天氣影響的飛行器飛行動力學概念建模圖

圖 3-8:受天氣影響的傳感器性能的概念建模圖

圖 8-1:動態綜合環境架構

執行總結

建模和仿真 (M&S) 的使用是北約聯盟及其伙伴國家在國防聯合、集體和聯盟訓練、能力發展、任務規劃和戰備以及決策支持方面的一項重要能力。防御作戰環境是高度動態的,其中物理環境狀態會影響部隊行為(例如,天氣對地面車輛機動性的影響),而物理(動力)作戰行為會影響環境狀態(例如,彈藥損壞建筑物、基礎設施等)。目前 M&S 的實踐、標準和技術主要是基于公共環境數據集和重復使用環境數據庫,在分布式仿真中實現外部世界環境的靜態表示。在當前仿真系統中表示動態元素的情況下,它們通常以預先編寫好的方式實現,并且特定于給定系統。這限制了分布式異構仿真系統的互操作性的能力和范圍,并影響了 M&S 在聯合訓練等應用中的使用,這需要對作戰環境進行通用和一致的表示,以確保公平的戰斗條件。

MSG-156 始于 2017 年,作為一個為期 3 年的任務組 (TG),旨在解決代表 M&S 系統中現實世界操作環境挑戰的需求與現有技術能力之間的差距,目的是研究如何將相關聯的動態合成環境 (DSE) 可以在未來的分布式模擬中表示。 TG 由來自北約伙伴國政府、研究機構和行業的主題專家 (SME) 組成,包括模擬和合成環境 (SE) 的開發者(提供者)和消費者(用戶)。

MSG-156 TG 開展的研究活動將為北約 M&S 總體規劃的主要目標之一提供信息,即“為仿真應用和支持材料開發一個北約標準互操作性架構”。

在調查了仿真系統中動態環境的現有功能,并調查了仿真和娛樂游戲中最先進的技術和算法之后,TG 開發了基于用例的概念建模圖,以確定 DSE 環境中所需的關鍵交互。建模和仿真即服務 (MSaaS) 概念構成了 DSE 概念解決方案架構的基礎。TG 研究了動態地形和真實天氣的細節,以將概念方法改進為詳細的解決方案架構,允許跨異構分布式模擬系統一致表示動態合成環境。

該解決方案架構的關鍵概念是共同服務負責在模擬練習中管理和分發環境數據。這意味著 M&S 聯盟將使用 Terrain Service 來獲取有關地形的信息,并使用 Wea??ther Service 來獲取有關天氣的信息。通過讓一項服務負責管理這些數據,可以緩解許多相關問題。此外,當對操作環境的合成表示進行動態更改時,特定的專業服務負責執行修改,從而消除在每個單獨系統中本地實施此類修改時可能出現的相關問題。這些數據修改服務將其更改傳達給地形服務,允許所有聯邦成員從那里訪問更新的數據。

隨著 DSE 概念架構的開發,MSG-156 進行了概念驗證演示,使用該體系結構部署、集成和執行了聯邦模擬和服務,這些模擬和服務由參與國使用不同行業合作伙伴提供的工具和產品進行。盡管可用的聯邦模擬和服務的數量有限,但演示證明了解決方案架構是可行的,并且這種架構將有助于確保可以在分布式模擬中以一致的方式進行動態更改和表示。概念演示還有助于確定架構的哪些方面需要進一步研究以達到技術準備水平 (TRL) 以支持操作模擬練習。

由于時間和規模的限制,在提議的基于 MSaaS 的 DSE 架構中使用的技術目前還沒有被證明足夠成熟以實施到操作模擬系統中。因此,任務組建議應該進行更大規模的實驗,以評估解決方案架構在更真實的測試用例中服務受到壓力的環境中的執行情況。

DSE 架構依賴于不同服務之間的標準化接口。盡管其中一些接口已經成熟,例如用于分發地理信息的 OGC 接口,但作為未來開放標準的一部分,還需要考慮進一步開發其他接口。此外,應探索新格式的選項,以共享 3D 內容,支持將 3D 模型內容分發和流式傳輸到仿真系統,或在仿真執行期間對 3D 模型內容進行動態更改。

事實證明,獲取真實世界的天氣數據對 TG 來說是一個挑戰。無法免費獲得所需的更高分辨率數據,國家 MOD 和氣象局之間的現有合同不包括為研究項目提供此類數據。如果未來的模擬演習需要天氣數據,則需要將這一要求包含在現有的國家合同中,或者最好讓北約為所有參與者提供對此類數據的訪問。

建議將 MSG-156 的輸出提交給新的 SISO 研究組 (SG),以評估和確定如何解決 DSE 的特定方面。這應包括審查現有的 SISO“環境數據和流程的重用和互操作 (RIEDP)”產品開發組 (PDG) 活動和“基于云的 M&S”(CBMS),因為這些可能已經涵蓋了一些所需的標準。 MSG-156 的輸出還應用于為作為 NATO MSG-193 專家組“聯邦任務網絡 (FMN) 中的建模和模擬標準”的一部分開展的活動提供信息。

最后,建議北約和/或成員國應考慮提供和托管 DSE 所需的關鍵服務。提供地形服務、氣象服務和各種修改服務將顯著減輕建立由 DSE 支持的未來分布式模擬練習的負擔。

付費5元查看完整內容

摘要

北約和各國迫切需要進行團結和聯合集體訓練,以確保任務準備就緒:目前和未來的行動是多國性質的,任務和系統慢慢變得更加復雜,需要詳細準備和迅速適應不斷變化的情況。由于可用資源少、訓練范圍有限、避免對手關注第五代戰術和系統能力的挑戰以及政治決策和部署之間準備時間有限,多國背景下的現場訓練和任務準備的機會減少了。模擬已經成為解決我們軍隊訓練需求的重要工具,各國正朝著通過分布式模擬(MTDS)能力采用國家任務訓練的方向發展。聯合部隊正在尋找實況和模擬訓練與演習之間的新平衡,以提供兩全其美的效果。

北約建模和仿真組(NMSG)的若干倡議為北約MTDS愿景和行動概念的發展貢獻了寶貴的投入(MSG-106 NETN, MSG-128 MTDS, MSG-169 LVC-T)。基于這些結果,當前/最近的NMSG活動(MSG-163北約標準演變、MSG-165 MTDS- ii、MSG-180 LVC-T)致力于為聯合和聯合作戰開發一個通用MTDS參考體系結構(MTDS RA)。最近完成的MTDS RA版本以構建模塊、互操作性標準和模式的形式定義了指導方針,用于實現和執行分布式模擬支持的綜合集體訓練和演習,獨立于應用領域(陸地、空中、海上)。此外,MSG-164 (M&S作為服務II)開發了一種技術參考體系結構(MSaaS TRA),其中包含用于實現所謂MSaaS能力的構建塊。這些構建模塊可以與MTDS RA相結合,以包括作為服務執行綜合集體訓練和演習的指導方針。

MTDS RA的當前版本提供了一個基線,以詳細說明和確定應進行進一步需求/技術開發的領域。未來更新的主題包括網絡作戰和影響、危機管理、實時系統集成、多域或混合作戰等。

聯合MTDS對北約和國家戰備至關重要。本文提供了MTDS RA的背景、目標和原則,以及實現持久的北約范圍內綜合性集體訓練能力的前進方向。聯合MTDS RA的維護和繼續發展將是幾個北約國家、伙伴國家和組織在NMSG主持下的合作努力。

付費5元查看完整內容
北京阿比特科技有限公司