摘要: 數據稀疏和冷啟動是當前推薦系統面臨的兩大挑戰. 以知識圖譜為表現形式的附加信息能夠在某種程度上緩解數據稀疏和冷啟動帶來的負面影響, 進而提高推薦的準確度. 本文綜述了最近提出的應用知識圖譜的推薦方法和系統, 并依據知識圖譜來源與構建方法、推薦系統利用知識圖譜的方式, 提出了應用知識圖譜的推薦方法和系統的分類框架, 進一步分析了本領域的研究難點. 本文還給出了文獻中常用的數據集. 最后討論了未來有價值的研究方向.
個性化推薦系統能夠根據用戶的個性化偏好和需要,自動、快速、精準地為用戶提供其所需的互聯網資源,已成為當今大數據時代應用最廣泛的信息檢索系統,具有巨大的商業應用價值。近年來,隨著互聯網海量數據的激增,人工智能技術的快速發展與普及,以知識圖譜為代表的大數據知識工程日益受到學界和業界的高度關注,也有力地推動推薦系統和個性化推薦技術也邁入到知識驅動與賦能的發展階段。將知識圖譜中蘊含的豐富知識作為有用的輔助信息引入推薦系統,不僅能夠有效應對數據稀疏、語義失配等傳統推薦系統難以避免的問題,還能幫助推薦系統產生多樣化、可解釋的推薦結果,并更好地完成跨領域推薦、序列化推薦等具有挑戰性的推薦任務,從而提升各類實際推薦場景中的用戶滿意度。本文將現有融入知識圖譜的各種推薦模型按其采用的推薦算法與面向的推薦場景不同進行分類,構建科學、合理的分類體系。其中,按照推薦方法的不同,劃分出基于特征表示的和基于圖結構的兩大類推薦模型;按推薦場景劃分,特別關注多樣化推薦、可解釋推薦、序列化推薦與跨領域推薦。然后,我們在各類推薦模型中分別選取代表性的研究工作進行介紹,還簡要對比了各個模型的特點與優劣。此外,本文還結合當下人工智能技術和應用的發展趨勢,展望了認知智能推薦系統的發展前景,具體包括融合多模態知識的推薦系統,具有常識理解能力的推薦系統,以及解說式、勸說式、抗辯式推薦系統。本文的綜述內容和展望可作為推薦系統未來研究方向的有益參考。
//jcs.iie.ac.cn/xxaqxb/ch/reader/view_abstract.aspx?file_no=20210503&flag=1
隨著互聯網和信息計算的飛速發展,衍生了海量數據,我們已經進入信息爆炸的時代。網絡中各種信息量的指數型增長導致用戶想要從大量信息中找到自己需要的信息變得越來越困難,信息過載問題日益突出。推薦系統在緩解信息過載問題中起著非常重要的作用,該方法通過研究用戶的興趣偏好進行個性化計算,由系統發現用戶興趣進而引導用戶發現自己的信息需求。目前,推薦系統已經成為產業界和學術界關注、研究的熱點問題,應用領域十分廣泛。在電子商務、會話推薦、文章推薦、智慧醫療等多個領域都有所應用。傳統的推薦算法主要包括基于內容的推薦、協同過濾推薦以及混合推薦。其中,協同過濾推薦是推薦系統中應用最廣泛最成功的技術之一。該方法利用用戶或物品間的相似度以及歷史行為數據對目標用戶進行推薦,因此存在用戶冷啟動和項目冷啟動問題。此外,隨著信息量的急劇增長,傳統協同過濾推薦系統面對數據的快速增長會遇到嚴重的數據稀疏性問題以及可擴展性問題。為了緩解甚至解決這些問題,推薦系統研究人員進行了大量的工作。近年來,為了提高推薦效果、提升用戶滿意度,學者們開始關注推薦系統的多樣性問題以及可解釋性等問題。由于深度學習方法可以通過發現數據中用戶和項目之間的非線性關系從而學習一個有效的特征表示,因此越來越受到推薦系統研究人員的關注。目前的工作主要是利用評分數據、社交網絡信息以及其他領域信息等輔助信息,結合深度學習、數據挖掘等技術提高推薦效果、提升用戶滿意度。對此,本文首先對推薦系統以及傳統推薦算法進行概述,然后重點介紹協同過濾推薦算法的相關工作。包括協同過濾推薦算法的任務、評價指標、常用數據集以及學者們在解決協同過濾算法存在的問題時所做的工作以及努力。最后提出未來的幾個可研究方向。
//jcs.iie.ac.cn/xxaqxb/ch/reader/view_abstract.aspx?file_no=20210502&flag=1
摘要: 推薦系統致力于從海量數據中為用戶尋找并自動推薦有價值的信息和服務,可有效解決信息過載問題,成為大數據時代一種重要的信息技術。但推薦系統的數據稀疏性、冷啟動和可解釋性等問題,仍是制約推薦系統廣泛應用的關鍵技術難點。強化學習是一種交互學習技術,該方法通過與用戶交互并獲得反饋來實時捕捉其興趣漂移,從而動態地建模用戶偏好,可以較好地解決傳統推薦系統面臨的經典關鍵問題。強化學習已成為近年來推薦系統領域的研究熱點。文中從綜述的角度,首先在簡要回顧推薦系統和強化學習的基礎上,分析了強化學習對推薦系統的提升思路,對近年來基于強化學習的推薦研究進行了梳理與總結,并分別對傳統強化學習推薦和深度強化學習推薦的研究情況進行總結;在此基礎上,重點總結了近年來強化學習推薦研究的若干前沿,以及其應用研究情況。最后,對強化學習在推薦系統中應用的未來發展趨勢進行分析與展望。
摘要: 知識圖譜的概念由谷歌于2012年提出,隨后逐漸成為人工智能領域的一個研究熱點,已在信息搜索、自動問答、決策分析等應用中發揮作用。雖然知識圖譜在各領域展現出了巨大的潛力,但不難發現目前缺乏成熟的知識圖譜構建平臺,需要對知識圖譜的構建體系進行研究,以滿足不同的行業應用需求。文中以知識圖譜構建為主線,首先介紹目前主流的通用知識圖譜和領域知識圖譜,描述兩者在構建過程中的區別;然后,分類討論圖譜構建過程中存在的問題和挑戰,并針對這些問題和挑戰,分類描述目前圖譜構建過程中的知識抽取、知識表示、知識融合、知識推理、知識存儲5個層面的解決方法和策略;最后,展望未來可能的研究方向。
近年來,隨著互聯網及智能移動設備的發展和普及,豐富了廣告的推送方式和投放平臺.但是傳統的廣告推送無法滿足用戶對個性化廣告的需求,導致用戶對廣告產生抵觸情緒,給廣告推送帶來極大的挑戰.個性化廣告推薦系統作為應對這些挑戰的有效手段,成為個性化服務領域的研究熱點之一.個性化廣告推薦系統獲取用戶興趣偏好,利用多種個性化廣告推薦技術,通過PC端、移動終端等多平臺為用戶提供個性化廣告,并且已經在一些應用系統中取得不錯的效果.本文對個性化廣告推薦系統的研究進展進行系統地綜述,從個性化廣告推薦的概述出發,對近年來個性化廣告推薦的關鍵技術進行深入分析,包括數據采集與預處理、用戶偏好獲取、個性化廣告推薦技術等.統計分析了個性化廣告推薦中使用的多種數據集和評價指標,總結當前個性化廣告推薦在傳統互聯網、移動服務、數字標牌、IPTV等場景下的應用.最后對個性化廣告推薦系統存在問題和未來深入研究的方向進行討論和展望.
//cjc.ict.ac.cn/online/onlinepaper/zyj-202128100325.pdf
景點推薦系統可以幫助游客過濾大量的無關信息, 還能輔助商家發掘潛在的顧客. 然而, 現有 的基于傳統方法的推薦系統, 如基于內容的推薦或協同過濾系統, 雖推薦過程相對透明直觀, 但由于數 據稀疏性的存在, 推薦結果往往不夠準確; 基于深度學習的推薦方法, 雖在一定程度上提高了推薦結 果的精度, 但由于缺乏可解釋性和透明度, 難以滿足部分用戶理解推薦依據的愿望, 也阻礙了此類方法 的推廣應用. 為了解決當前方法所存在的局限, 本文引入基于知識圖譜的景點推薦框架, 將推薦過程 與知識圖譜嵌入相結合, 推斷用戶興趣在知識圖譜上的傳播路徑, 以此作為推薦依據. 此外, 本文通過 對真實旅游數據的多角度時空分析, 探究旅游活動的時空規律, 并將其應用于景點推薦框架中, 提出一 種面向旅游的基于知識圖譜的可解釋推薦方法 —— Geo-RippleNet, 并通過構建基于開放網絡資源的 旅游知識圖譜, 對 Geo-RippleNet 進行了全面的實驗驗證. 結果表明, 本文提出的基于知識圖譜的景點 推薦方法, 不僅可以最大限度地吸收知識圖譜豐富的語義信息, 從而實現可觀的性能提升, 還能充分 利用圖譜的關系知識, 推理興趣傳播路徑, 以增強推薦結果的可解釋性. 此外, 將旅游活動的時空規律 融入到上述推薦框架中, 能夠還原用戶出游和決策的時空過程, 進一步提高方法的性能表現.
以研究科學創新與演化規律為目的的科學學近年來迎來了進一步的發展, 科技大數據領域知識圖譜在其中發揮了重大的作用. 本文將從科技大數據知識圖譜構建及應用研究角度, 對科學學研究過程中發揮重大推動作用的科技領域知識圖譜技術進行系統、深入的綜述, 闡述科技大數據知識圖譜構建過程中涉及的科技實體抽取、科技實體消歧、科技關系抽取、科技關系推斷等問題, 對科技實體推薦、科技社區發現、科技實體評價、學科交叉以及學科演化等科技大數據知識圖譜分析挖掘方法進行系統梳理, 并給出科技大數據知識圖譜未來的研究及應用方向.
//engine.scichina.com/publisher/scp/journal/SSI/50/7/10.1360/SSI-2019-0271?slug=abstract
推薦系統旨在為用戶推薦個性化的在線商品或信息, 其廣泛應用于眾多Web場景之中, 來處理海量信息數據所導致的信息過載問題, 以此提升用戶體驗. 鑒于推薦系統強大的實用性, 自20世紀90年代中期以來, 研究者針對其方法與應用兩方面, 進行了大量廣泛的研究. 近年來, 很多工作發現知識圖譜中所蘊含的豐富信息可以有效地解決推薦系統中存在的一系列關鍵問題, 例如數據稀疏、冷啟動、推薦多樣性等. 因此, 本文 針對基于知識圖譜的推薦系統這一領域進行了全面的綜述. 具體地, 首先簡單介紹推薦系統與知識圖譜中的一些基本概念. 隨后, 詳細介紹現有方法如何挖掘知識圖譜不同種類的信息并應用于推薦系統. 此外, 總結了相關的一系列推薦應用場景. 最后, 提出了對基于知識圖譜的推薦系統前景的看法, 并展望了該領域未來的研究方向.
題目: A Survey on Knowledge Graph-Based Recommender Systems
摘要:
為了解決信息爆炸問題,提高用戶在各種在線應用中的體驗,人們開發了推薦系統來模擬用戶的偏好。盡管人們已經為更個性化的推薦做了很多努力,但是推薦系統仍然面臨著一些挑戰,如數據稀疏和冷啟動。近年來,以知識圖為輔助信息的推薦生成引起了人們的極大興趣。這種方法不僅可以緩解上述問題,使推薦更加準確,而且可以為推薦項目提供解釋。本文對基于知識圖的推薦系統進行了系統的研究。我們收集了最近在這一領域發表的論文,并從兩個角度對其進行了總結。一方面,我們通過研究論文如何利用知識圖進行精確和可解釋的推薦來研究所提出的算法。另一方面,我們介紹了這些工作中使用的數據集。最后,提出了該領域的幾個潛在研究方向。