亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

隨著機器人在自主檢查、家庭輔助和搜救等更廣泛挑戰中的應用超越工業環境,人們對其在越來越大、無結構和未知環境中自主導航和執行有意義任務的需求也在增長。盡管硬件、傳感和計算技術的改進使機器人具有更強的靈活性和感知能力,但其軟件,特別是自主映射和導航能力,仍然是一個顯著的瓶頸。體積地圖提供了一個通用、安全且與任務無關的環境表示,但其過高的計算和內存需求限制了其在小型和經濟實惠機器人上的實際使用。、 本博士論文研究了使用自適應表示作為解決這些挑戰的方法,重點是增強體積地圖的可擴展性、效率和準確性。認識到體積地圖的價值取決于它們對下游任務的益處,我們研究了局部和全局規劃作為兩個代表性應用。利用層次化、多分辨率的方法,本研究旨在根據任務的需求動態平衡細節和計算成本之間的權衡。 本論文的主要貢獻是開發了一種名為wavemap的數學上嚴格的多分辨率映射框架,該框架根據環境幾何調整地圖分辨率而不依賴于啟發式方法。MRA理論保證了使用小波分解,新觀測可以安全且高效地以由粗到細的方式整合到地圖中。通過計算效率的提高以及積分器的早期停止標準,我們可以使用更復雜的測量模型,從而更好地捕捉細小物體,提高機器人操作的安全性和可靠性。該框架在合成和真實數據上進行了廣泛評估,證明了其在高效重建大規模環境的同時精確捕捉細節的能力。除了在可擴展性和地圖質量方面的顯著改進外,該框架的靈活性也使其能夠應用于各種傳感器和應用場景。 我們的第二和第三個貢獻是開發了高效的反應性避障方法和確定性全局路徑規劃方法,利用層次化表示和算法以及wavemap框架,實現了在復雜環境中快速、可靠的導航。在不同真實環境的地圖上進行的實驗評估以及在微型空中車輛上的部署,證明了這些方法在效率、準確性和靈活性方面優于現有方法,強調了其在顯著推進機器人映射和導航領域中的潛力。 總之,本博士論文為機器人領域中體積映射和規劃的挑戰提出了一個全面的解決方案,為更多自主、高效和多功能的機器人系統在多樣化和變化環境中的操作鋪平了道路。

付費5元查看完整內容

相關內容

博士論文是由攻讀博士學位的研究生所撰寫的學術論文。它要求作者在博士生導師的指導下,選擇自己能夠把握和駕馭的潛在的研究方向,開辟新的研究領域。由此可見,這就對作者提出了較高要求,它要求作者必須在本學科的專業領域具備大量的理論知識,并對所學專業的理論知識有相當深入的理解和思考,同時還要具有相當水平的獨立科學研究能力,能夠為在學科領域提出獨創性的見解和有價值的科研成果。因而,較之學士論文、碩士論文,博士論文具有更高的學術價值,對學科的發展具有重要的推動作用。

機器學習(Machine Learning, ML)越來越多地用于驅動復雜應用,如大規模網頁搜索、內容推薦、自動駕駛汽車以及基于語言的數字助理。近年來,這些系統變得主要依賴數據驅動,通常以端到端學習復雜函數的深度學習模型為基礎,這些模型通過大量可用數據進行訓練。然而,純粹的數據驅動特性也使得所學習的解決方案不透明、樣本效率低下且脆弱。

為了提高可靠性,生產級解決方案通常采用混合形式的ML系統,這些系統利用深度學習模型的優勢,同時通過系統中的其他組件來處理諸如規劃、驗證、決策邏輯和政策合規等輔助功能。然而,由于這些方法通常是在完全訓練后的黑箱深度學習模型上后期應用的,它們在提高系統可靠性和透明性方面的能力有限。 在本論文中,我們研究了如何通過使用具有結構化中間表示(Structured Intermediate Representations, StructIRs)的機器學習模型來構建更可靠且透明的機器學習系統。與神經網絡激活等非結構化表示相比,StructIRs 是通過優化明確的目標直接獲得的,并且具有結構約束(例如歸一化嵌入或可編譯代碼),同時仍然具有足夠的表達能力來支持下游任務。因此,它們通過增加模塊化并使建模假設顯式化,可以使得所產生的ML系統更加可靠且透明。

我們探討了StructIRs在三種不同機器學習系統中的作用。在我們的第一個工作中,我們使用由神經網絡參數化的簡單概率分布來構建一個有效的ML驅動的數據中心存儲策略。在第二項工作中,我們展示了將文本生成嵌入到結構良好的向量表示空間中,可以通過簡單、可解釋的向量運算有效地轉換文本的高層屬性,如時態和情感。最后,在第三項工作中,我們進行了人類受試者研究,表明基于Bandit的推薦系統背后的平穩性假設在實踐中并不成立,強調了驗證ML系統背后假設和結構的重要性。

付費5元查看完整內容

大型基礎模型在實現人工智能領域的最新突破中發揮了核心作用。通過同時將數據集和模型規模擴展到前所未有的水平,這些基礎模型在蛋白質結構預測、圖像/視頻生成、代碼生成、聊天機器人等許多領域表現出色。然而,它們的計算和內存成本也急劇增長,使得這些基礎模型在實際應用中的部署變得困難,尤其是在資源受限的邊緣設備上。此外,巨大的訓練成本也顯著阻礙了新基礎模型的發展,并引發了對巨大能源消耗和二氧化碳排放的擔憂。為了解決這些問題,構建有效的模型加速技術對于縮小計算供需之間的差距至關重要。 本論文將涵蓋模型加速的三個重要方面。首先,我們將討論高效表示學習,包括用于高分辨率視覺的EfficientViT(一種新的視覺Transformer架構)和用于條件圖像生成的條件感知神經網絡(一個新的控制模塊)。其次,我們將介紹硬件感知的加速技術,以創建針對不同硬件平臺和效率限制的專用神經網絡。第三,我們將介紹TinyTL,這是一種內存高效的遷移學習技術,用于實現設備上的模型定制。通過我們的設計,我們可以顯著提高深度神經網絡在硬件上的效率,而不損失準確性,使它們更易于訪問并降低其服務成本。例如,我們的模型在A100 GPU上實現了48.9倍的吞吐量提升,同時在零樣本實例分割性能上略微優于最新的模型。在條件圖像生成方面,我們的方法實現了52倍的計算成本降低,而性能沒有下降。

大型基礎模型在許多人工智能領域(包括自然語言處理[1], [2]、計算機視覺[3]–[5]、科學領域的AI應用[6]等)引發了革命性的變化。通過擴大模型規模并在網絡規模的數據集上訓練,這些基礎模型展示了驚人的少樣本/零樣本學習能力,能夠解決復雜的任務。這些卓越的表現引發了在實際應用中使用這些基礎模型的熱潮,將人工智能引入了我們的工作和日常生活。 然而,由于模型規模和計算成本的增加,這些基礎模型的訓練和推理成本非常高昂。例如,GPT-3[7]模型擁有1750億個參數,僅存儲它就已經超出了目前最強大的GPU(如NVIDIA H100 GPU)的容量。這對在云平臺上提供這些模型服務或在邊緣設備上部署它們提出了巨大挑戰。此外,高昂的訓練成本還導致了巨大的能源消耗和二氧化碳排放,引發了對這些AI基礎模型的可持續性問題的擔憂。 在本論文中,我們旨在研究模型加速技術,以提高深度神經網絡的效率,從而應對這一挑戰。我們的方法從三個方面加速深度神經網絡。首先,我們將討論高效的表示學習,旨在構建高效的構建模塊/神經網絡架構,從原始數據中提取有用信息。其次,我們將討論硬件感知的加速方法,旨在為不同的硬件平臺和效率約束定制專用的神經網絡,以獲得精度和硬件效率之間的最佳平衡。第三,我們將討論高效的模型定制,允許內存高效的設備端學習,以提供定制化的AI服務而不犧牲隱私。我們總結了本論文的主要內容如下:

**1.1 論文大綱

  • 第2章 描述了高效表示學習的技術。內容基于[8]和[9]。首先,Transformer架構是當前大型基礎模型的核心組件。然而,Transformer架構在處理長序列時表現不佳,因為其計算成本隨著輸入序列長度的增加而呈二次增長。我們提出了EfficientViT,這是一種用于高分辨率視覺的新型視覺Transformer架構。它通過僅使用硬件高效的操作,達到了全局感受野和強大的容量。EfficientViT在不同的硬件平臺上提供了顯著的性能提升。其次,添加控制是將圖像/視頻生成模型轉化為人類生產工具的關鍵步驟。我們提出了條件感知神經網絡(CAN),這是一種為圖像生成模型添加控制的新方法。與以往的條件控制方法并行,CAN通過動態操控神經網絡的權重來控制圖像生成過程。CAN在擴散Transformer模型中持續帶來顯著改進。

  • 第3章 介紹了硬件感知的AutoML技術,以有效地為不同的硬件平臺和效率約束定制專用的深度神經網絡。內容基于[10]和[11]。不同的硬件平臺具有不同的屬性(例如并行度、緩存大小、帶寬等)。針對不同的目標硬件平臺和不同的效率約束,我們需要定制化的神經網絡以實現性能與效率之間的最佳平衡。然而,手動為每個案例定制神經網絡是不可擴展的。因此,我們提出了硬件感知的AutoML技術來應對這一挑戰。我們的方法在不同的硬件平臺上提供了顯著的加速,包括手機、CPU、GPU、FPGA等。此外,我們的方法在多個低功耗計算機視覺挑戰賽中獲得了第一名。

  • 第4章 介紹了TinyTL[12],一種用于內存高效的設備端學習技術。TinyTL凍結了權重,只學習內存高效的偏置模塊,因此不需要存儲中間激活。為了保持適應能力,我們引入了一種新的內存高效偏置模塊,即輕量殘差模塊,通過學習小的殘差特征圖來優化特征提取器,僅增加了3.8%的內存開銷。廣泛的實驗表明,TinyTL在與微調整個網絡相比僅有微小的準確性損失的情況下,顯著節省了內存。

付費5元查看完整內容

優化和機器學習是當今決策領域的兩個主要領域。近年來,數據的日益豐富促進了這兩個領域交叉點的進展,從而催生了更好的決策支持工具。優化通過改進傳統機器學習模型的訓練方法顯著提升了這些模型的性能,而機器學習則通過準確的預測能力改進了許多優化算法,從而實現了更優的決策。

然而,將優化理論與現代機器學習方法(如神經網絡和核函數)相結合面臨兩大主要挑戰。首先,這些模型不滿足優化理論中的基本凸性假設。其次,這些模型主要用于具有大量參數和高維數據的任務,因此需要高度高效且可擴展的算法。這種對效率的關注限制了對離散變量和優化中典型的一般約束的考慮。本論文介紹了應對這些挑戰的新算法。

本文分為四章,涵蓋嚴格的理論、計算工具和多樣化的應用。在第一章中,我們將穩健優化的最新工具擴展到非凸和非凹的環境中,從而使得生成對輸入擾動具有魯棒性的神經網絡成為可能。在第二章中,我們開發了一個整體的深度學習框架,通過適當修改損失函數,共同優化神經網絡的魯棒性、穩定性和稀疏性。在第三章中,我們介紹了TabText,這是一種靈活的方法論,它利用大語言模型的力量從表格數據中預測患者流動。最后,在第四章中,我們提出了一種基于數據驅動的方法,通過稀疏化核方法解決多階段隨機優化問題。

付費5元查看完整內容

優化算法是機器學習和統計推斷的基石。隨著大規模數據集的出現,計算挑戰日益增加,迫使人們追求更高效的算法。現代優化技術通常針對特定的機器學習問題進行定制,這些方法利用問題的獨特結構特征,使其比當前應用于這些問題的方法效率更高。另一個關鍵方面是理解所得到估計量的估計精度。在某些情況下,盡管在訓練集上實現精確優化可能不切實際,但某些簡單而有效的啟發式方法在適當的統計框架內可以表現出令人贊嘆的估計精度。 在本文中,我們從優化和統計的角度研究了幾種大規模算法。第2章和第3章研究了兩種針對結構約束的連續優化算法。第2章集中討論了具有圓柱形約束的無界約束的一種廣義Frank-Wolfe方法。第3章則研究了具有少量極點的多面體約束的類似坐標下降(CD)方法。這兩種方法由于對問題結構的敏感性而表現出最先進的性能。 第4章研究了一種帶有解釋器-響應對之間可能存在不匹配的線性回歸變體。我們研究了一種簡單且高效的啟發式方法,并在統計環境中對其估計誤差進行了嚴格分析。 第5章和第6章研究了兩種決策樹算法。第5章研究了最優決策樹的計算,并引入了一種新的分支定界方法,用于具有一般連續特征的最優決策樹。第6章則轉向在足夠雜質減少條件下對CART算法的分析。我們為滿足該條件的信號函數證明了嚴格的誤差界,并討論了一些滿足該條件的函數類。 第7章研究了一種具有形狀約束的密度估計問題。我們提出了一種立方-牛頓法框架用于計算,并研究了有限混合的逼近性質。

付費5元查看完整內容

在快速發展的機器學習領域,計算能力和數據的激增推動了深度學習成為學術研究的前沿。隨著模型和數據集規模的不斷擴大,越來越多的注意力集中在算法改進上,以應對日益增長的計算和內存需求。此外,由于其在廣泛應用中的成功,該領域見證了多種多樣的神經網絡架構的涌現,每種架構都有其獨特的訓練挑戰。本論文介紹了利用模型結構來提高資源和算法效率的流行神經網絡架構的高效訓練方法。 在第一部分中,我們首先提出了針對隱式深度學習模型和基于變壓器的語言模型的具有較低計算和內存需求的新訓練算法。具體來說,我們首先提出了一種高效的順序訓練方法,用于隱式平衡模型,消除了在現有訓練過程中求解計算昂貴的固定點方程和投影步驟的需求。然后,我們引入了方差減少的零階方法,以僅使用內存高效的推理過程來有效微調大型語言模型。

在第二部分中,我們轉向探索可微分優化在元優化和矢量量化中的訓練增強應用。具體來說,對于前者,我們提出了一種利用可微分凸優化結構來參數化新型一階優化器的方法。對于后者,我們引入了可微分凸優化作為一種改進通過矢量量化層反向傳播的技術。

我們希望這項工作能為研究社區提供新的視角,并作為進一步發展深度學習高效訓練策略的基礎。 在過去的十年中,人工智能(AI)領域取得了前所未有的進展,這些進展使其在自然語言處理和計算機視覺等多個專門任務領域達到了超越人類的表現。深度學習架構創新和計算改進的協同作用促進了AI的飛躍發展 [1], [2]。

直到最近,深度學習領域的研究通常是專門化的,聚焦于特定領域,如自然語言處理(NLP)或視覺。在每個應用領域,研究的目標是開發旨在解決特定應用挑戰的定制神經網絡架構。例如,循環神經網絡(RNN)及其變體用于處理NLP中常見的序列數據。而視覺應用則常使用卷積神經網絡(CNN),因為它們能夠高效處理視覺數據。這種專門化被認為是必要的,因為不同的數據模態需要定制的處理方法來學習其潛在模式。這促使了各個領域中架構類型的激增。

最近,變壓器和隱式深度學習的引入帶來了從開發領域特定架構的轉變。變壓器模型建立在注意力機制的基礎上,這種機制能夠處理序列數據中的長期依賴關系,支持并行處理,并且與反向傳播兼容。尤其是基于變壓器的架構現在在NLP和視覺任務中都成為了最先進模型的標準,設立了性能基準。隱式深度學習則摒棄了將神經網絡視為顯式、前饋層堆疊的概念,而是通過一組輸出應滿足的條件隱式地表示它們。這種范式提供了一種具有多種實例的表達模型類別,包括神經常微分方程、可微優化和深度平衡模型。具體而言,文獻[3]中展示了隱式模型在許多流行深度學習架構中的推廣,并在各種示例應用中表現出色。

新興的、更具表現力的深度學習架構突顯了開發高效優化策略以釋放其全部性能潛力的重要性。更具體地說,針對不同架構類型開發優化策略是高效模型訓練的基礎,它能有效地從數據中學習。這強調了需要不斷改進訓練技術和架構設計,以充分實現深度學習技術的潛力。

本論文為應對最先進深度學習架構的獨特需求,貢獻了開發定制訓練策略的更廣泛努力。第一部分中,我們首先審視了現有隱式深度學習和變壓器模型訓練方法的資源密集特性,并提出了新算法以克服計算和內存需求的障礙。第二部分我們重點探討如何利用特定的隱式深度學習實例——可微優化作為一種技術來增強元優化和矢量量化中的訓練過程。

第一部分:深度神經架構的高效訓練策略

在這一部分中,我們關注流行架構類型在訓練中面臨的挑戰,并提出旨在緩解這些特定挑戰的優化算法。具體來說,我們旨在克服現有隱式深度學習和基于變壓器的語言模型訓練方法中禁止性的計算和內存需求。

**第二章

我們強調了通過固定點方程描述的隱式模型的現有訓練方法的缺點:這種端到端優化方案利用了計算繁重的隱式微分和投影步驟。我們提出了一種新的順序、分塊訓練算法,適用于上三角隱式深度模型,從而減輕了隱式微分和投影步驟的需求。

**第三章

我們解決了在微調基于變壓器的語言模型(LM)時一階方法的大內存需求。基于零階(ZO)方法僅使用內存高效的推理過程來估計梯度的觀察,我們將ZO方法與方差減少技術結合,以增強基于推理的LM微調的穩定性和收斂性。我們的實驗表明,相比于現有的ZO微調基準,我們的方法在保持顯著較低內存占用的同時,性能也有了持續的改善。

第二部分:通過可微優化增強訓練

在第二部分中,我們集中探討了如何應用可微優化來改進元優化和矢量量化中的學習過程。

**第四章

我們展示了如何利用凸優化來推廣許多現有的一階更新規則。隨后我們提出了一種新的數據驅動優化算法設計方法,利用可微凸優化(DCO)。這種利用以往優化經驗的方法可以提出新的更新規則,能夠高效解決來自相同基礎問題類的新優化任務。通過示例實驗,我們展示了DCO優化器在實際應用中能夠超越流行的一階方法。

**第五章

我們利用DCO來緩解矢量量化(VQ)層帶來的訓練挑戰。嵌入VQ的模型在圖像和語音生成等多個應用中顯示出令人印象深刻的結果。VQ作為一種參數化的K均值算法,在前向傳遞中使用單個代碼本向量對輸入進行量化。盡管強大,該技術面臨實際挑戰,包括代碼本坍塌、不可微性和有損壓縮。為緩解上述問題,我們提出了軟凸量化(SCQ),作為VQ的直接替代。SCQ像一個可微凸優化(DCO)層一樣工作:在前向傳遞中,我們求解出量化輸入的最佳凸組合代碼本向量。在反向傳遞中,我們利用前向解決方案的最優性條件進行微分。隨后,我們介紹了SCQ優化的可擴展放松,并在CIFAR-10 [4]、GTSRB [5]和LSUN [6]數據集上驗證了其有效性。我們訓練了強大的SCQ自動編碼器模型,這些模型顯著超越了匹配的基于VQ的架構,在圖像重建和代碼本使用方面表現出數量級的提升,同時保持了可比的量化運行時間。

付費5元查看完整內容

動態穩定移動操縱器的使用正從受控研究實驗室擴展到真實世界。然而,自主操縱技能仍然專門用于單一任務,并且只能處理對象物理屬性的有限變化,這阻礙了機器人在非結構化人類環境中的部署。本論文關注于動態穩定移動操縱器的整體運動規劃和控制,以及為控制器提供實時適應由于與物體交互而引起的機器人動力學變化。

動態穩定移動操縱器,即配備機器人手臂的積極平衡移動機器人,在為人類設計的環境中工作潛力非常大。然而,它們的靈活性和順應性需要高控制復雜性。傳統的控制策略將移動和操縱問題分別處理,需要額外的啟發式方法來實現整體協調。此外,基于逆動力學的控制器不考慮系統未來的演變,這對平衡控制至關重要。另一方面,在本論文中,我們提出了一種基于模型預測控制(MPC)的整體運動規劃和控制公式。我們的方法利用了完整的機器人動力學,并共同優化平衡、基座追蹤、末端執行器追蹤和環境交互。我們在一個球平衡操縱器的廣泛實驗中驗證了所提出的整體MPC控制器。

當機器人動力學不準確或操縱新物體時,模型不確定性可能嚴重影響MPC的性能和通用性。為了解決這個問題,我們提出了兩種在線適應方案,用于MPC系統動力學中的物體參數,我們在一個球平衡操縱器的開門和舉起物體任務中展示了這一點。盡管我們最初將外部環境建模為線性系統,但對于更復雜的操縱任務或機器人動力學中的不確定性,需要更具描述性的表示。因此,我們提出將模型誤差近似為三角函數基函數的線性組合。假設當機器人執行類似操縱任務時,動力學的基本結構不會發生顯著變化,我們從相關實驗中收集的數據學習基函數的超參數,例如,讓機器人打開具有不同剛度系數的門。執行新任務時,基函數的超參數保持不變,而線性參數在線適應。我們在仿真和硬件實驗中測試了得到的多任務學習MPC控制器,并與其他自適應MPC控制器進行了廣泛比較。

最后,為了在參數不確定性下獲得更好的跟蹤性能,我們將機器人操縱器自適應控制中導出的控制Lyapunov函數(CLF)約束納入最優控制問題的不等式集合中。因此,我們獲得了一種結合了CLFs和MPC優勢的自適應控制器,在機器人與未知物體交互時提供了改進的性能,并減少了對MPC預測范圍調整的依賴。我們通過與幾個基線的比較展示了所提方法的優勢,并在一個四足機器人搬運磚塊和拖拽重箱的硬件測試中驗證了它。

付費5元查看完整內容

計算機視覺系統自從分類手寫數字的時代以來取得了巨大的進步。特別是,監督學習已經成為解決科研之外任務的普遍方法。這些系統被部署在從自動駕駛汽車到自動醫療診斷和天氣預報等多個行業的眾多產品中。這些進步可以歸因于深度學習算法、專業庫和專用硬件的進步,以及用于模型訓練的大型標注數據集的增加。然而,仍然存在一些任務,其中僅僅捕獲和標注更多數據的標準范式并不是一個可行的解決方案。 在這篇論文中,我們調查如何最好地利用多模態數據來解決獲取足夠質量或完整性數據困難的計算機視覺任務。我們專注于兩個特定任務:引導式超分辨率和細粒度分類。引導式超分辨率涉及通過將低分辨率數據與輔助模態結合來進行放大,而細粒度分類需要利用邊際信息,使分類算法能夠捕捉到細粒度類別之間細微的外觀差異。最初,我們在缺乏地面真實數據的情況下為引導式超分辨率提供解決方案。首先,我們提出了一種將引導式超分辨率視為學習從引導到源域的像素到像素映射的新穎無監督公式。我們使用多層感知器參數化來保留高頻細節。其次,我們提出了一種新穎的混合模型,以在保持解決測試時優化問題的嚴謹性的同時,最好地利用深度學習方法。關鍵是一個可微分優化層,它作用于一個學習的親和圖,確保目標對源的高保真度,因此對未見域具有高泛化性。隨后,我們提出了一種自動識別社區科學家照片中細粒度植物標本的統一方法。該方法旨在利用社區科學家觀察中通常可用的各種先驗知識,包括地理和時間背景以及植物分類學,以學習跨類似物種的可轉移表示。最后,我們提出了2021年半地球植物標本館數據集,這是我們作為機器學習競賽的一部分創建的一個大型策劃和開放獲取的植物標本數據集,以鼓勵進一步研究從照片中自動識別細粒度植物物種。 近年來,計算機視覺領域取得了顯著進步。當然,這些進步可以歸因于深度學習研究、專業庫和專用硬件的進展,但最重要的是,這些進步得益于大量數據的可用性,例如像ChatGPT(OpenAI,2022年)和Stable Diffusion(Rombach等,2021年)這樣的生成模型分別在互聯網上爬取了數十億的文本和圖像進行訓練。 然而,并非所有任務都能使用現成的互聯網規模數據集來解決。許多重要問題,如自動檢測惡性腫瘤、評估自然災害造成的損害或繪制瀕危物種的地理分布,仍然是放大數據收集不是解決方案的挑戰。這些挑戰可以大致分為兩類。首先,由于傳感器捕獲它們的固有技術限制,感知特定模態存在困難,例如遙感器如航空或衛星成像或主動傳感器如激光掃描儀、ToF相機或MRI掃描儀。其次,觀察罕見事件或特定數據類型的多樣性困難,因為在現實世界的數據收集工作中不經常遇到某些場景或類別。例如,捕捉所有容易發生事故的駕駛場景,或收集所有生物物種的足夠數據就是這種情況。

為了解決數據收集質量挑戰性應用中傳感器可用性的限制,一個可行的解決方案是利用更常見的傳感器捕獲的數據來增強傳感器的輸出。這種設置在許多計算機視覺任務中都很常見,特別是在低分辨率傳感器與捕獲不同模態圖像的高分辨率傳感器配對時。這項任務,被稱為引導式超分辨率,涉及在高分辨率引導圖像的幫助下增加低分辨率源圖像的分辨率。一個常見的實際應用是在RGB圖像的指導下對深度圖進行超分辨率。這種配置在配備有深度傳感器和常規攝像機的各種設備上都能找到,如增強/虛擬現實頭戴式顯示器(AR,VR),現代手持設備,機器人和自動駕駛汽車。事實上,消費級深度攝像頭捕獲的深度圖分辨率較低;類似地,激光掃描儀獲得的稀疏深度測量可以在相對較大的印記上進行平均。相反,即使是入門級相機現在也能以非常高的分辨率捕獲圖像。這種設置也經常用于環境監測,例如樹高、生物量或物種分布概率等關鍵指標的地圖通常可用的分辨率遠低于現代遙感器的地面采樣距離(Keil和Jetz,2014年,Metzger等,2022年)。因此,一個自然的問題是如何利用這些系統捕獲的成對圖像來提高低分辨率傳感器的質量,從高分辨率傳感器傳輸細節。 獲取大量高質量注釋的挑戰甚至可能比數據收集過程本身更加困難。這是至關重要的,因為監督學習在計算機視覺的成功中發揮了核心作用,可以追溯到深度學習早期的開創性工作,如AlexNet(Krizhevsky等,2012年)贏得ImageNet ILSVRC-2012挑戰賽(Deng等,2009a)。事實上,全球數據標注市場預計到2028年將達到82.2億美元(Grand View Research),凸顯了其重要性。例如ImageNet這樣的基準通常為每個類提供大量的訓練圖像,在這種設置下,分類算法取得了令人印象深刻的結果。然而,一旦我們減少每個訓練類的圖像數量,它們的性能就會迅速下降。然而,由于各種原因,簡單地收集更多數據和注釋并不總是可行的。例如,自然界展示了物種的長尾分布,導致大量類別不平衡,某些物種罕見或難以觀察。此外,某些地區數據的可用性變化和觀察者偏見可能會進一步加劇獲取全面注釋的難度,如圖1.1所示。此外,標注這些數據集需要專業的分類學專業知識,因此許多這些觀察結果仍未標注。這是大多數描述生物多樣性的大型圖像集合的現實,例如那些從相機陷阱、社區科學家觀察、無人機調查或植物標本館(Tuia等,2022年,Bebber等,2010年)中獲得的。因此,我們認為自動物種識別工具的需求迫切。這項任務,通常被稱為細粒度分類,涉及將圖像分類為更廣泛類別內的子類別,例如物種,并且以區分基于微妙視覺線索的標本為特征。我們認為,僅憑外觀信息不足以區分細粒度類別,因為學習這種微妙模式的數據有限。幸運的是,物種觀察通常伴隨著側面信息,例如捕獲圖像的時空背景,這些信息可以與環境先驗結合使用。這個問題再次強調了開發利用多模態數據來增強自動識別標本的方法的需要。

付費5元查看完整內容

數十年來,機器人在我們的日常生活中扮演了重要而隱秘的角色。我們每天依賴的許多產品,如汽車和藥品,都是通過機器人自動化生產的。這些系統將以更直接的方式進入我們的日常生活,他們的影響力不可避免地會減小。特別是腿部機器人,近期的進步終于使這些系統商業上可行,并將很快看到它們在物流、景觀工作和在建筑工地上協助工人的角色。然而,隨著它們的持續改進,操作它們的軟件和算法將需要能夠執行目前無法實現的更抽象的任務。毫無疑問,實現這一目標的方式之一將涉及利用機器學習技術的并發進步。

//www.research-collection.ethz.ch/handle/20.500.11850/614549

這篇博士論文正朝著這個目標努力,旨在幫助彌合現代機器人技術和機器學習技術之間的鴻溝。這項研究解決了實現更強大機器人系統所必需的兩個方面,即軟件和算法,并專注于深度強化學習(DRL)技術在解決腿部機器人,特別是四足機器人系統的運動控制問題的應用。為了統一上述領域,我們需要軟件系統能夠利用在Python中實現的DRL算法,并讓需要C++接口的研究人員和開發人員可以使用。因此,這項工作通過引入一個多功能的軟件工具箱,為機器人應用使用DRL算法做出了貢獻。它利用了最先進的機器學習平臺TensorFlow的Python API,用于構建包含神經網絡模型、梯度計算和隨機梯度下降優化器等組件的計算圖。這些圖可以在C++運行時環境中使用,以執行如訓練和部署等圖操作。此外,該工具箱在上述核心元素的基礎上,提供了對DRL的有用抽象,實現了幾種最先進的算法以及其他有用的實用工具。有了這個工具箱,我們提供了一個端到端的解決方案,用于設計、建模、訓練和部署神經網絡策略,這種策略專門為四足機器人ANYmal設計和測試。此外,復雜地形的行動對于有腿的機器人來說構成了重大挑戰。為了讓像ANYmal這樣的系統能夠在這樣的環境中自主運行,它們必須擁有謹慎規劃適合地形的立足點的方法,同時執行保證穩定性的運動。為了解決這個問題,本博士論文通過提出一種解決四足系統穿越非結構化地形的立足點選擇和步態生成問題的新方法,對算法的第二個方面做出了貢獻。這項工作主要圍繞一個框架進行,該框架用于制定馬爾科夫決策過程(MDPs),采用最新的基于模型的軌跡優化技術來評估動態可行性,取代了物理模擬。當與最先進的DRL算法一起使用時,這些MDPs會生成能夠在具有挑戰性的3D環境中規劃基礎姿勢、立足點位置和步態參數序列的地形感知神經網絡策略。這些所謂的步態規劃(GP)網絡,在與其他針對運動規劃和控制問題的最先進方法結合時,會產生有效的行動。這種方法已經在模擬中以及在ANYmal的物理平臺上得到了實驗驗證。

付費5元查看完整內容

隨著時間的推移,更復雜、更強大的深度神經網絡的設計不斷推動各種任務的最新水平。在追求增加性能的過程中,計算復雜性常常受到嚴重阻礙,這體現在參數數量的顯著增加、需要的浮點運算以及延遲。盡管深度神經網絡的巨大進步增加了人們在下游應用(如機器人技術和增強現實)中使用它們的興趣,但這些應用需要計算效率高的替代方案。這篇論文關注的是設計高效的深度神經網絡,具體來說,是在給定的計算約束下提高性能,或者在性能下降不大的情況下降低復雜性。首先,我們介紹了一種新穎的卷積操作重參數化及其在多任務學習中的應用。通過重參數化卷積操作,我們可以以總參數數量的一部分實現與單任務模型相當的性能。其次,我們進行了廣泛的研究,評估自我監督任務作為多任務學習框架中的輔助任務的效果。我們發現,與自我監督任務一起訓練目標任務可以提高性能和魯棒性,常常優于有標簽的輔助任務,而且不需要修改部署時使用的架構。

第三,我們提出了一種新穎的用于高效單物體視覺跟蹤的變換器層。我們證明了實時單物體追蹤器的性能可以在不影響延遲的情況下顯著提高,同時始終優于其他變換器層。最后,我們研究了適應利用點檢測和描述神經網絡用于計算能力有限的平臺的有效性。我們發現,網絡組件的混合精度量化,結合二元描述符歸一化層,可以在性能稍有下降的同時,至少提高一個數量級的稀疏3D地圖的大小、匹配速度和推理速度。總結來說,這篇論文關注的是在計算限制下設計深度神經網絡。隨著對高效深度網絡的興趣和需求的增加,我們預見所提出的工作將為更高效的方法鋪平道路,彌合與性能更好的替代方案之間的差距。

1. 引言

通過計算機自動視覺感知和理解物理世界是計算機視覺研究的一個基本目標。受人類視覺系統的啟發,計算機視覺研究旨在構建能利用視覺輸入(如圖像)的算法,使機器能對視覺輸入內容有高級理解。在這個范圍內,研究關注的是自動提取、分析和理解重要且有用的信息。早期的計算機視覺嘗試可以追溯到Lawrence Roberts的工作[Rob63],但直到David Marr的開創性工作,該領域才有了顯著的改進[Mar76; Mar82]。Marr的框架遵循自下而上的場景理解方法,利用低級線索,如角和邊緣,作為獲得高級信息目標的基礎模塊。這個框架最早和最突出的例子之一是將Canny邊緣檢測器[Can86]與Hough變換[Bal81]結合,以獲取形狀信息,如線和圓。在各種任務上,如立體匹配[Mor81]、運動跟蹤[HS+88; Har93]、圖像匹配[Zha+95]和圖像檢索[SM97],利用低級線索的持續成功激發了對更強大、更描述性的低級特征的興趣。一些最知名的手工特征提取器包括SIFT[Low04]、HOG[DT05]和SURF[BTG06]。將這些特征與機器學習方法(如SVM[CV95])結合,使得更具挑戰性的高級任務,如圖像分類成為可能[Csu+04; SWP05]。然而,這種特性的手動設計性質使得它們在設計假設不成立時變得次優。

受到手工特征提取器限制的啟發,深度神經網絡(DNNs)旨在通過直接優化期望的行為來聯合學習自下而上的特征提取器和預測頭,如分類器[LBH15]。DNNs基于線性函數、非線性激活函數和池化操作的組合。這些模型使用捕獲期望的輸出行為的成本函數進行優化,例如分類的交叉熵,和大規模數據集。自從Krizhevsky等人[KSH12]贏得了ImageNet分類挑戰[Rus+15],大幅超過了使用傳統手工特征提取器的方法,計算機視覺社區就大量采用了DNNs,尤其是卷積神經網絡(CNNs)[LeC+89]。自那時以來,CNNs不僅被用來改進圖像分類[SZ15; Sze+15; Sze+16; He+16; ZK16],還被用來執行廣泛的任務。這些任務包括但不限于語義分割[YK16a; Che+17; Zha+17; Yu+18; Che+18a]、人體姿態估計[NYD16; Cao+17; Sun+19; Cao+19]、單目深度估計[Zho+17; Fu+18; God+19]、物體檢測[Gir+14; Gir15; Ren+15; Red+16]和視覺物體跟蹤[Ber+16; Bha+19]。

為了提高CNNs的表示能力,網絡變得更深[SZ15; He+16]、更寬[ZK16; Sun+19],甚至用更具描述性的替代品替換卷積操作[Dos+21; Tol+21]。我們在圖1.1a中描繪了隨著時間推移在ImageNet分類基準[Rus+15]上的進展。如圖所示,雖然隨著時間的推移,我們看到了持續的性能提高,但這些進步往往以增加的計算復雜性為代價,例如參數的數量(圖1.2a)和FLOPs的數量(圖1.2b)。在一定程度上,這些進步主要需要高端的圖形處理單元(GPUs)和張量處理單元(TPUs),這些通常可以在云服務器上找到。

DNNs的巨大進步進一步激發了人們對其在機器人、增強現實(AR)、虛擬現實(VR)、自動駕駛汽車、物聯網(IoT)和移動電話[Sar+22]中的應用的興趣。然而,云計算的限制阻止了其在這些應用中進行推理的使用。首先,不穩定或丟失的網絡連接使得使用云處理成為不可能。其次,根據數據保護規定,如通用數據保護規定(GDPR)[Cus+19],禁止處理和存儲敏感數據。最后,隨著任何設備或服務的用戶數量的增加,云服務器需要處理增加的數據傳輸以及增加的處理需求,使得云計算不可行且成本效益低。為了緩解這些問題,上述應用依賴于在板上處理,也稱為邊緣計算。DNNs的在板處理解決了云計算的所有限制,并有可能提供確定的和實時的體驗[DD17]。然而,與云服務器、大型機和工作站不同,嵌入式平臺有限的存儲、內存、計算能力、電池壽命,且通常需要更快和更小的軟件更新。這些限制可以,部分地,通過結合以下方法來解決,具體取決于設備特定的約束:

拓撲優化:拓撲優化旨在通過改變網絡的架構來提高每操作的精度或每參數的精度。值得注意的例子包括MobileNets [How+17; San+18; How+19],ShuffleNets [Zha+18a; Ma+18],EfficientNets [TL19; TL21],等等 [Gho+18; Hua+18; Zop+18; Liu+18a; LSY18; Rad+20]。

硬件感知優化:嵌入式平臺通常對全精度(FP)運算提供有限的甚至沒有支持。此外,它們通常被優化為執行SIMD(單指令,多數據)整數(Int)運算 [Ign+18]。盡管標準的深度學習庫使用32位FP表示法 [Pas+19; Mar+15],但對Int表示法的需求呼喚量化神經網絡(QNNs)。通過用Int操作數替換FP,QNNs減少了相對于等效DNNs的存儲和內存需求,同時復雜的FP運算可以被更簡單的Int運算所替代。由于這些性質,QNNs可以以更高的吞吐量(每周期的操作數)和算術強度(每內存事務的算術操作數)執行 [CBD15; KS15; Ras+16; LZP17; Zhu+17; Liu+18b; Jac18; Nag+19; LS20]。

知識蒸餾:從一個大模型(稱為“教師”)開始,目標是將知識轉移到一個更適合部署的小模型(稱為“學生”) [HVD15]。具體來說,這可能包括同一架構家族的模型之間的知識轉移,從ResNet-101 [He+16] 到 ResNet-50 [He+16],也可能是不同的架構,例如從ResNet-101 [He+16] 到 MobileNet [How+17]。知識蒸餾可以被看作是兩個網絡之間的函數匹配,并在實踐中展示了優異的結果 [HVD15; Rom+15; TV17; MM18; CH19; SS20; Xie+20; Bey+22]。

模型剪枝和分解:由于DNNs的過度參數化,剪枝方法旨在識別并消除網絡中的冗余操作。這可能包括剪枝獨立的神經元 [Han+15; HMD16],但通常整個過濾器都用新的具有規則形狀的內核 [Li+17; Gor+18; Yan+18]。與剪枝類似,分解方法用低秩近似替換現有的過濾器。這可能是在二維過濾器上 [Den+14; JV 多任務學習:到目前為止討論的方法主要關注于每個任務學習一個網絡。不同的是,多任務學習(MTL)專注于用單個網絡學習多個任務。MTL最初是為了通過利用額外相關任務的訓練信號作為歸納偏差來提高目標任務的性能而提出的 [Car97]。然而,神經網絡的自下而上的方法使得不同任務之間可以共享參數和計算,使它們成為不僅可以提高任務性能 [Mis+16; Xu+18; Ran+19; Hoy+21; Bru+21] ,也可以減少總參數數量和FLOPs [Kok17; RBV17; BV17; RPC17; RBV18; MRK19; Bru+20; Sta+20]的優秀框架。

付費5元查看完整內容

機器人和自主系統在現代經濟中扮演著重要的角色。定制機器人顯著提高了生產率、操作安全性和產品質量。然而,人們通常通過編程操作這些機器人來完成較小的領域的特定任務,而無法快速適應新任務和新情況。廉價、輕便和靈活的機器人硬件的出現為將機器人的自主能力提升到前所未有的水平提供了機會。新的機器人硬件在日常環境中的一個主要挑戰是處理現實世界的持續變化性和不確定性。為了應對這一挑戰,我們必須解決感知和行動之間的協同作用:一方面,機器人的感知自適應地指導其行動,另一方面,它的行動產生了新的感知信息,用于決策。我認為,實現通用機器人自治的關鍵一步是將感知和動作緊密地結合起來。

新興的人工智能計算工具已經證明了成功的希望,并構成了在非結構化環境中增強機器人感知和控制的理想候選。機器人的實體本質迫使我們超越現有的從無實體數據集學習的范式,并激勵我們開發考慮物理硬件和動態復雜系統的新算法。

本論文的研究工作是建立可通用的機器人感知和控制的方法和機制。我們的工作表明,感知和行動的緊密耦合,有助于機器人通過感官與非結構化的世界進行交互,靈活地執行各種任務,并適應地學習新任務。我們的研究結果表明,從低級的運動技能到高級的任務理解三個抽象層次上解剖感知-動作循環,可以有效地促進機器人行為的魯棒性和泛化。我們規劃的研究工作是處理日益復雜的任務,展現出我們朝著圣杯目標的路線圖:在現實世界中構建長期的、通用的機器人自治。

付費5元查看完整內容
北京阿比特科技有限公司