亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本報告展示了為美陸軍2024年機動支援與防護集成實驗(MSPIX)演示準備的模擬研究成果。本研究旨在開發并測試一套面向復雜環境的自主導航系統,通過先進算法使機器人實現障礙物規避與安全高效路徑規劃。報告詳述了自主導航系統的開發與測試方法,包括利用仿真評估性能,并通過模擬測試結果凸顯該導航方案的有效性。

本報告響應《美陸軍多域情報:2021-2022財年科技重點領域》(陸軍副參謀長辦公室,2020年)設定的研究方向。具體而言,本研究契合“戰爭將以超高速和大規模形式進行,由機器人及自主系統(RAS)、機器學習(ML)和人工智能(AI)等技術主導,這些技術已廣泛可用、集成封裝并具備即用性”(第5頁)的論述。通過引入虛擬邊界、多航點設置及暫停導航堆棧功能,本系統達成構建更高效自主解決方案的目標。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本綜合研究項目探討如何將人工智能(AI)與機器學習(ML)技術融入聯合部隊規劃流程,重點研究如何通過技術增強聯合規劃中的通用作戰視圖(COP)與行動方案(COA)制定。通過分析AI/ML技術應用的技術、組織、資源和倫理維度,本研究識別出優化態勢感知與決策能力的關鍵機遇。這些AI/ML技術能夠處理海量數據、精簡規劃任務并提供可操作見解,同時強調健全的數據采集、結構化與管理體系的必要性。研究剖析了組織架構層面影響(包括角色轉換、分工調整及外部供應商引入機制),并探討作戰限制條件下資源需求與系統可持續性面臨的挑戰。倫理考量及“負責任人工智能”原則貫穿整個分析過程,確保技術應用與社會價值觀及軍事準則保持一致。

研究采用非結構化訪談與次級數據審查方式,評估軍隊內部自上而下與自下而上整合AI/ML技術的實踐效果。研究識別出數據標準化、跨密級數據訪問、組織實踐與新興技術適配性等多重整合障礙。核心發現強調建立集中化且具備適應性的框架機制至關重要,在此基礎上提出推進軍事規劃中AI/ML能力的具體建議。該研究為運用AI/ML保持戰略優勢的宏觀目標提供支撐,并為在復雜動態軍事環境中開發、應用及優化相關技術貢獻洞見。

核心發現

  1. 技術挑戰:成功的AI整合需要獲取海量經專業處理且適配AI/ML模型的結構化數據。盡管AI能自動執行重復性任務(如數據過濾與目標識別),但其效能依賴于結構化數據格式與強健的數字基礎設施。MAVEN智能系統(MSS)及STOMRBREAKER等新興工具證實,AI可通過提升傳感器數據融合與異常檢測能力來優化COP生成。

  2. 組織影響:AI整合要求文化與架構的雙重變革。規劃人員需提升技能以有效運用AI工具,軍事組織需將私營供應商納入規劃流程。AI的應用將重塑指揮部運作模式,重新分配職責并減輕人員負擔。

  3. 資源需求:AI系統需要穩定云基礎設施、帶寬資源及強大算力支撐,其在作戰環境中持續運維面臨挑戰。當前自下而上的實踐常缺乏長期資金支持,而自上而下的戰略部署亟需提升與作戰需求的契合度。

  4. 倫理考量:對AI輸出的可信度決定作戰成敗。AI系統必須遵循“可靠、透明、可監管”的負責任人工智能原則,同時規避數據偏見、過度依賴及幻覺(AI生成錯誤)等風險。

盡管AI為優化規劃流程帶來巨大機遇,但其成功應用取決于技術挑戰的突破、組織架構的重塑及可持續資源的投入。通過負責任地部署AI技術,美軍有望提升決策質量、保持作戰優勢,并在日益復雜的戰場環境中掌控主動權。

付費5元查看完整內容

將便攜式自主水下航行器(AUV)作為矢量磁力計的搭載平臺具備快速部署優勢。該能力可在作戰區域部署,根據作戰相關的局部磁場環境對艦船磁場特征進行實時測量。本項目旨在論證基于AUV的艦船磁力測距技術可行性。本科學報告分析了兩項試驗采集的磁力數據:試驗分別采用靜態與動態兩種AUV模式。鑒于測量數據集僅包含艦船有限次通過AUV的航次數據,通過等效磁源技術將數據擬合至艦船合成模型。經深度與航向校正的預估艦船磁場特征,被繪制在與固定站點消磁作業同規格的標準網格上。為驗證AUV生成磁場特征的可靠性,特將其與固定站點測量結果進行對比。誤差值處于可接受范圍,故試驗證實了便攜式AUV作為矢量磁力計搭載平臺的潛力,但仍需后續技術改進。

本研究分析了通過水下靜態或動態AUV搭載磁力計實施艦船磁力測距的可能性。試驗取得的積極成果表明,該新型測距方法可應用于各類艦船部署海域的磁場測量。這將使水雷對抗任務能在作戰地域及時空近距條件下高效執行。

傳統上,加拿大皇家海軍(RCN)艦船磁場特征需駛過母港海底鋪設的三軸磁力傳感器靜態陣列進行測量。但固定站點常遠離艦船作業區,故提出在作戰區域采用便攜式傳感器測量磁場特征的方案。近期RCN啟動開發以AUV為搭載平臺的便攜式磁測系統:本地化測量可調整消磁系統,補償因地磁場變化導致的感應磁場波動,并校正永久磁化強度偏差。現行方案通過在多個AUV搭載磁力計與慣性測量單元[1-4]實現移動水面艦船的磁場特征測量。盡管AUV水面航行時使用全球定位系統(GPS)定位,但水下磁力傳感器相對于艦船的精確位置標定仍具挑戰性。系列試驗旨在確立基于AUV的磁場特征測量最佳流程:首次試驗采用靜態AUV測量移動目標磁場;第二次采用動態AUV測量靜態目標;第三次以動態AUV測量逆向移動目標。試驗目標在于獲取艦船特定深度水平面("聲束深度")投影的磁場特征。因每臺AUV僅配備單一磁力傳感器,需多次航行方能完成一次特征測量。試驗期間艦船與AUV協同機動,分別測量艦船磁北、磁南、磁東和磁西四個航向的磁場特征。試驗采用IMOTUS-R [5]與IVER-3 [6]兩款AUV,其搭載的矢量磁力計可模擬固定磁測陣列單點傳感器功能。首階段于2022年11月在BC省薩尼奇附近海域實施,采用IMOTUS-R AUV與ORCA級巡邏訓練艇COUGAR。AUV懸停于水柱中,艦船以不同水平偏距通過,并以正交航線采集四向磁場數據。受時間限制,此階段僅完成有限測量。第二、三階段于2023年2月在新斯科舍省哈利法克斯開展,使用IVER-3 AUV與拖船:先固定北向艦船,AUV在16米深度沿南北/東西方向掃描磁場;隨后AUV在16米深度沿固定北-南/東-西軌道航行,艦船逆向移動。鑒于稀疏數據集(僅含數次通行記錄),通過等效磁源技術[4]將數據擬合至艦船合成模型計算特征值。作為基準對照,兩艘艦船分別在BC省維多利亞和NS省哈利法克斯的固定磁測站點進行測量。本報告的數據分析與磁建模目標在于獲取消磁作業規格的網格化磁場特征,并與固定站點測量結果進行對比分析。

付費5元查看完整內容

本報告提出一種基于“機器人操作系統(ROS)2”的新型仿真框架,旨在促進自主導航堆棧的開發與測試。報告詳述了導航堆棧的核心組件,包括“激光雷達里程計”“同步定位與建圖(SLAM)”及“前沿探索”。該導航堆棧的關鍵特性包括“實時性能”與“可擴展架構”。仿真成果已應用于實體機器人,使其成功實現建筑物內部自主測繪,并生成環境“二維占據柵格圖”與“三維點云”。

本報告響應《美陸軍多域情報:2021-2022財年科技重點領域》(陸軍副參謀長辦公室,2020年)設定的研究方向。具體而言,本研究契合以下論述:“戰爭將以超高速和大規模形式進行,由機器人及自主系統(RAS)、機器學習(ML)和人工智能(AI)等技術主導,這些技術已廣泛可用、集成封裝并具備即用性”(第5頁)。采用ROS 2確保開發框架的先進性與安全性,相較于ROS 1,其具備“跨平臺兼容性”“更優性能”及“增強的服務質量(QoS)”。

付費5元查看完整內容

深度學習是人工智能的一個子類別,在自動識別水下傳感器數據中的各種目標方面具有巨大潛力。這項工作的目標是支持未來使用深度學習的水下戰爭領域目標自動識別系統的發展,首先要展示什么是可能的,其次要讓研究人員深入了解如何通過建議和經驗教訓來構建這種定制系統。目標受眾是水下戰爭領域的研究人員,他們或是深度學習的新手,或是水下傳感器數據的新手。深度學習的基礎知識可以從許多在線課程中獲得。本參考文檔重點介紹如何應用這些工具識別目標,該領域不同于機器視覺和自然語言處理的常規應用。這些水下戰爭自動目標識別系統處理的不是標準圖像或文本,而是來自聲學傳感器的數據。這些小型定制神經網絡不是下載標準的現成網絡,利用充足的計算資源從大型訓練數據集中學習,而是設計用于從相對較小的訓練數據集中學習,而且往往受到硬件的計算限制。這項工作概述了定制神經網絡在各種水下戰爭自動目標識別任務中的應用,包括側視聲納中的類雷物體、寬帶聲納散射數據中的未爆彈藥、被動聲學數據中的水面艦艇以及主動聲納中的水下目標。此外,還分享了關于高效神經網絡設計和使用來自水下傳感器的小型訓練數據集的建議。

先進的自動目標識別系統可以快速自動分析傳入的傳感器數據,并對感興趣的目標進行探測、分類和定位,從而提高水下作戰能力。這有助于減少從獵雷到被動聲學監測、魚雷防御和反潛戰等各種應用中操作員的工作量。深度學習是在遠程和無人平臺上進行水下作戰自動目標識別應用的一種特別有前途的方法。越來越多的研究人員希望獲得相關建議,因此編寫了本文檔,以鼓勵和支持深度學習技術在未來自動目標識別系統開發中的應用,從而提高水下作戰領域的防御能力。

付費5元查看完整內容

本報告由兩部分組成,第二部分旨在介紹根據小型航行器自動目標識別(SCATR)數據集建立的雷達截面(RCS)預測模型。本部分提供了用于開發 RCS 模型的自適應機器學習策略的路線圖。介紹了分別基于五個自適應特征、兩個真實特征和四個全球定位系統(GPS)特征的 RCS 模型的八個變體。此外,每個 RCS 模型還考慮了 26 個子變體。這些模型子變體涵蓋了大量流行的回歸方法,我們的目標是找到一個最忠實地代表反合成孔徑雷達(ISAR)數據集的回歸器,用于 RCS 預測。性能結果以判定系數和均方根誤差表示。高斯過程回歸在 RCS 建模方面表現突出。報告末尾提出了重要的意見和結論。

加拿大政府(GoC)為其最新的監視衛星星座 RADARSAT Constellation Mission (RCM) 投資超過 15 億美元。國防部/加拿大武裝部隊(DND/CAF)極地 Epsilon 2 (PE2) 資本項目利用從加拿大的三顆 RCM 衛星獲得的合成孔徑雷達 (SAR) 圖像,對海上航道進行全天候監視,以完成其主要國防任務之一。從一開始,加拿大空軍就對其專用的 RCM 船舶探測模式 (SDM) 的性能質量提出了嚴格要求,以履行其保障加拿大海上進場的運行任務。PE2 目前的運行要求是在五級海況下探測大于 25 米的船只,對于大型船只的 RCS,存在相當簡單的半經驗模型,通常用于設計和評估 C 波段專用廣域 SDM 的性能。目標的 RCS 以物理單位平方米(m2)或相對于平方米的分貝(dBsm)為單位,用于衡量反射回雷達的能量大小。盡管 RCS 會因目標屬性(包括尺寸、方向、形狀、入射角、結構和材料等)的不同而產生數量級的變化,但所提出的簡單模型包含一個僅取決于艦船長度的平均值,而忽略了所有其他因素。

未來的下一代系統將面臨更嚴格的要求,例如,DND/CAF 最新版本的《天基監視要求文件》(SBS-RD)中[要求 400.7]規定的對小至 5 米的船只的探測。SBS-RD 正式確定了未來天基監視系統的設計和開發所需的 UNCLASSIFIED 監視要求,代表了整個 CAF 的業務和職能當局所確定的需求,為繼續研究和開發(R&D)提供了信息,并旨在影響未來任務中實施的設計。然而,對于此類小型艦艇而言,簡單的模型無法移植到其他同頻或異頻雷達上,而且任何射頻(RF)都不存在可靠的 RCS 模型。文獻[3]首次嘗試將文獻[1]中的簡單模型適用于 5 至 15 米的小型船只,但仍然只考慮了船只的長度。

本科學報告中的工作旨在向更復雜的 RCS 模型邁出一步,該模型包含多個相關的目標屬性,可用于行業設計符合更嚴格要求的特定 SDM,并評估小型船只的探測性能。這種 RCS 模型可用于可靠地預測未來雷達傳感器的性能和針對小型船只探測進行優化的模式,例如,為 DND/CAF 主要資本國防空間監視增強項目(DESSP)所設想的模式。

付費5元查看完整內容

威脅評估和武器分配應用是在海戰場景中取得成功結果的一個組成部分,無論是在保衛自身資產還是摧毀敵方目標方面都是如此。為了幫助應對日益復雜和快速變化的作戰環境,作戰人員需要獲得基于優化技術的實時決策輔助工具,以支持決策過程。本報告記錄了用于確定、開發和評估 "武器目標分配 "動態規劃算法的方法,經過更嚴格的測試后,該算法可用作概念演示器和實時作戰情況下的輔助決策工具。

圖 4-1 決策樹圖,顯示了五個目標、四種武器動態規劃場景下的目標階段(從左到右)和可能的武器狀態(從上到下)。

對作戰系統操作員來說,對海軍資產面臨的潛在威脅進行快速實時評估,并據此分配武器,已成為一項日益復雜和精密的任務。

隨著威脅評估和武器分配(TEWA)任務變得越來越復雜、變化越來越快,以及在時間緊迫的條件下需要處理的數據和信息量越來越大,研究能夠提供半自動化實時決策支持的優化技術變得更加迫切。TEWA 問題通常分為 TE 和 WA 兩部分。本報告只涉及武器分配問題,或按傳統術語稱為武器目標分配(WTA)。武器目標分配的目的是確定分配給特定目標的特定武器類型的數量,以便在現實限制條件下將總體目標威脅降至最低。

這項工作的目的是確定、開發和評估優化程序,以確定一種高效、實時的方法,優化海上場景中針對目標威脅的武器響應分配。從最簡單的靜態 WTA 環境開始,到確定性動態 WTA 的 "射擊-觀察-射擊 "分階段序列,介紹了 WTA 問題的幾個層次。為此,在 MATLAB 環境中開發了一種確定性動態算法。通過重現結果,例如以前在 Microsoft EXCEL 中處理過的問題,對算法進行了令人滿意但有限的驗證。要嚴格驗證該算法,并根據澳大利亞海上戰術程序調整其輸入和輸出,還需要開展補充工作。此外,還打算將成熟的 WTA 算法納入 DST 小組的軟件測試平臺,以便進一步測試和評估。

付費5元查看完整內容

利用無人地面飛行器(UGV)進行自主導航和未知環境探索極具挑戰性。本報告研究了一種利用小尺寸、低重量、低功耗和低成本有效載荷的測繪和探索解決方案。本文介紹的平臺利用同步定位和繪圖功能,通過尋找可導航路線來有效探索未知區域。該解決方案利用多種傳感器有效載荷,包括輪子編碼器、三維激光雷達、紅-綠-藍相機和深度相機。這項工作的主要目標是利用 UGV 的路徑規劃和導航功能進行測繪和探索,從而生成精確的 3D 地圖。所提供的解決方案還利用了機器人操作系統。

付費5元查看完整內容

本報告記錄了通過利用深度學習(DL)和模糊邏輯在空間和光譜領域之間整合信息,來加強多模態傳感器融合的研究成果。總的來說,這種方法通過融合不同的傳感器數據豐富了信息獲取,這對情報收集、數據傳輸和遙感信息的可視化產生了積極的影響。總體方法是利用最先進的數據融合數據集,為并發的多模態傳感器數據實施DL架構,然后通過整合模糊邏輯和模糊聚合來擴展這些DL能力,以擴大可攝入信息的范圍。這項研究取得的幾項進展包括:

  • 將DL模型實施到片上系統(SoC)硬件中
  • 高光譜圖像(HSI)數據的DL
    • 1.在HSI上建立DL,以獲得水的特性和底層深度
    • 2.在HSI上使用開放集識別方法
  • 框架內融合方法的消融研究
  • 使用DL和模糊聚合的HSI和LiDAR多模態傳感器融合的新框架
  • 探討神經模糊邏輯在遙感數據中復雜場景的不確定性下自動推理的作用和實用性

出版物[1, 2, 3, 4, 5]進一步詳細介紹了取得的進展。

付費5元查看完整內容

本報告是在 FA9453-19-1-0078 資助下編寫的。首先,提出了兩種數值方法來解決通信和導航中產生的非線性優化問題。其次,開發了兩個關于機器學習模型的解決方案質量和安全性的結果。

該研究項目的目標是開發高效的大規模非線性優化算法,以解決通信和導航方面的數據分析問題。這些問題被公認為在數學上具有挑戰性,并與空軍的利益直接相關。

在資助期間,我們成功研究了兩個研究方向。首先,我們設計了大規模非線性優化問題的最佳一階方法。在這個方向上,我們提出了兩個一階方法,可以對決策變量進行近似梯度更新。這兩種方法都可以解決分散通信的多Agent優化所產生的非線性優化問題。通過將多代理優化重新表述為約束性問題,我們開發的方法可以以最佳梯度/操作者評估復雜度來解決問題。我們開發的方法也可用于解決圖像重建問題。

第二,我們分析了機器學習模型中的解決方案質量和安全問題。在這個方向上,我們完成了兩個研究結果。我們的第一個成果是關于在多集群環境下,從二元結果的條件邏輯回歸模型中計算出來的估計值的屬性。我們表明,當每個單獨的數據點被無限次復制時,來自該模型的條件最大似然估計值漸進地接近最大似然估計值。我們的第二個結果是關于安全的矩陣乘法問題,我們設計了一種準確和安全地進行分布式矩陣乘法的方法。我們的安全協議可以確保在進行這種矩陣乘法的通信過程中沒有任何信息被泄露。

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容
北京阿比特科技有限公司