亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本綜合研究項目探討如何將人工智能(AI)與機器學習(ML)技術融入聯合部隊規劃流程,重點研究如何通過技術增強聯合規劃中的通用作戰視圖(COP)與行動方案(COA)制定。通過分析AI/ML技術應用的技術、組織、資源和倫理維度,本研究識別出優化態勢感知與決策能力的關鍵機遇。這些AI/ML技術能夠處理海量數據、精簡規劃任務并提供可操作見解,同時強調健全的數據采集、結構化與管理體系的必要性。研究剖析了組織架構層面影響(包括角色轉換、分工調整及外部供應商引入機制),并探討作戰限制條件下資源需求與系統可持續性面臨的挑戰。倫理考量及“負責任人工智能”原則貫穿整個分析過程,確保技術應用與社會價值觀及軍事準則保持一致。

研究采用非結構化訪談與次級數據審查方式,評估軍隊內部自上而下與自下而上整合AI/ML技術的實踐效果。研究識別出數據標準化、跨密級數據訪問、組織實踐與新興技術適配性等多重整合障礙。核心發現強調建立集中化且具備適應性的框架機制至關重要,在此基礎上提出推進軍事規劃中AI/ML能力的具體建議。該研究為運用AI/ML保持戰略優勢的宏觀目標提供支撐,并為在復雜動態軍事環境中開發、應用及優化相關技術貢獻洞見。

核心發現

  1. 技術挑戰:成功的AI整合需要獲取海量經專業處理且適配AI/ML模型的結構化數據。盡管AI能自動執行重復性任務(如數據過濾與目標識別),但其效能依賴于結構化數據格式與強健的數字基礎設施。MAVEN智能系統(MSS)及STOMRBREAKER等新興工具證實,AI可通過提升傳感器數據融合與異常檢測能力來優化COP生成。

  2. 組織影響:AI整合要求文化與架構的雙重變革。規劃人員需提升技能以有效運用AI工具,軍事組織需將私營供應商納入規劃流程。AI的應用將重塑指揮部運作模式,重新分配職責并減輕人員負擔。

  3. 資源需求:AI系統需要穩定云基礎設施、帶寬資源及強大算力支撐,其在作戰環境中持續運維面臨挑戰。當前自下而上的實踐常缺乏長期資金支持,而自上而下的戰略部署亟需提升與作戰需求的契合度。

  4. 倫理考量:對AI輸出的可信度決定作戰成敗。AI系統必須遵循“可靠、透明、可監管”的負責任人工智能原則,同時規避數據偏見、過度依賴及幻覺(AI生成錯誤)等風險。

盡管AI為優化規劃流程帶來巨大機遇,但其成功應用取決于技術挑戰的突破、組織架構的重塑及可持續資源的投入。通過負責任地部署AI技術,美軍有望提升決策質量、保持作戰優勢,并在日益復雜的戰場環境中掌控主動權。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告展示了為美陸軍2024年機動支援與防護集成實驗(MSPIX)演示準備的模擬研究成果。本研究旨在開發并測試一套面向復雜環境的自主導航系統,通過先進算法使機器人實現障礙物規避與安全高效路徑規劃。報告詳述了自主導航系統的開發與測試方法,包括利用仿真評估性能,并通過模擬測試結果凸顯該導航方案的有效性。

本報告響應《美陸軍多域情報:2021-2022財年科技重點領域》(陸軍副參謀長辦公室,2020年)設定的研究方向。具體而言,本研究契合“戰爭將以超高速和大規模形式進行,由機器人及自主系統(RAS)、機器學習(ML)和人工智能(AI)等技術主導,這些技術已廣泛可用、集成封裝并具備即用性”(第5頁)的論述。通過引入虛擬邊界、多航點設置及暫停導航堆棧功能,本系統達成構建更高效自主解決方案的目標。

付費5元查看完整內容

超視距空戰(BVR)作為現代空戰的核心形態,依賴先進雷達、導彈系統與決策支持技術。本文系統綜述仿真與機器學習(ML)工具在BVR空戰分析中的應用,涵蓋方法論、實踐場景與技術挑戰。研究聚焦機器學習如何賦能自適應戰術以提升行為識別與威脅評估能力,從而增強態勢感知效能。本文追溯BVR空戰的歷史演進,解析探測、導彈發射與戰后評估等關鍵交戰階段,重點探討仿真環境在構建實戰化空戰場景、支撐飛行員訓練及驗證AI驅動決策策略中的作用。通過對比前沿仿真工具的多智能體協同與實時適應性研究能力,分析其優勢與局限。本綜述的核心貢獻包括:闡述機器學習在BVR空戰中的具體應用、評估仿真工具效能、識別研究缺口并指明未來方向,為傳統仿真方法與人工智能在動態對抗環境中融合構建先進人機決策體系提供全景式解析。

超視距空戰(BVR)作為現代空戰的核心要素,其典型特征為飛行員目視范圍外的遠程交戰。該作戰模式高度依賴先進雷達系統、遠程導彈與探測跟蹤技術,旨在實現目視接觸前摧毀敵方目標。隨著空戰形態演進,BVR交戰重要性日益凸顯,需創新性方案應對遠程對抗挑戰。BVR的戰略價值在于其能賦予兵力先發制人能力并維持戰術優勢,但其復雜性要求跨學科技術整合——包括傳感器融合、目標跟蹤、決策算法與導彈制導系統——以提升交戰效能、確保任務成功并增強飛行員態勢感知(SA)。

視距內空戰(WVR)發生于較短距離,常依賴機動性、速度與瞄準精度進行近距格斗。相比之下,BVR通過先進傳感器與遠程導彈壓制對手。盡管存在差異,BVR可能隨戰機逼近轉為WVR交戰,因此需兼備兩種域作戰能力。

本文全面綜述BVR空戰前沿方法與技術,聚焦最新進展與戰略路徑。首先追溯BVR歷史沿革,從早期空對空導彈(AAM)系統演進至現代多傳感器平臺,解析關鍵技術突破及其對戰法的影響。其次剖析BVR交戰核心階段(探測、導彈發射、支援與規避機動),闡釋本文所述方法如何提升作戰效能。隨后評述關鍵方法論,包括動態環境自適應決策的機器學習(ML)算法與人工智能(AI)在交戰及自主戰術中的作用,其應用涵蓋飛行員決策支持系統至無人機(UAV)作戰。最后強調仿真工具在戰術開發、飛行員訓練與算法驗證中的價值,討論通用與專用平臺在復雜作戰場景建模中的適用性。

據所知,此為首次針對BVR空戰中仿真與ML應用的專題綜述。現有空戰綜述多泛化論述或將BVR作為次要議題。多數遠程交戰ML研究僅見于論文相關章節,缺乏方法論與應用的系統整合。本文突破既往研究局限,跨多領域文獻提供ML與仿真增強決策與交戰策略的全景視角,分析現有仿真工具能力邊界及適用場景,識別未解挑戰與研究缺口,為未來研究指明方向。

本綜述核心貢獻包括:系統梳理BVR中ML方法體系及其在自主戰術決策中的作用;對比仿真工具在實戰化場景建模中的能力與局限;揭示ML與仿真技術融合提升戰術決策的瓶頸問題;展望研究趨勢,提出開放性問題并規劃領域發展路徑。

超視距空戰研究的多維應用

BVR空戰研究涵蓋自主決策、多智能體協同與飛行員訓練等多元領域。本節分類梳理近期進展,聚焦新興技術與方法如何提升戰術效能、適應性與任務成果。

A. 自主決策

自主決策涉及分析、選擇與執行可增強態勢控制與作戰效能的行動。研究提出多種方法支撐該能力,重點探索智能體如何建模戰術行為、執行目標推理(GR)并在復雜場景中輔助或替代人類飛行員。

文獻[61]提出基于粒計算的戰術特征降維方法;文獻[15][52]在計算機生成兵力(CGF)與GR框架下研究行為建模,使自主系統能在動態場景中作出適應性戰術決策。此類能力支持開發可分擔威脅應對或支援機動等任務的自主空戰智能體,與人類飛行員形成互補。文獻[48]開發了生成戰術對抗策略的飛行員輔助系統。

文獻[49]提出遺傳規劃(GP)框架以發掘空戰場景中的新型行為模式,賦能更具適應性與不可預測性的戰術;文獻[50][51]利用文法演化生成自適應CGF與人類行為模型(HBM),提升訓練仿真的真實性與適應性。

文獻[12]解析無人機空戰決策流程,將其劃分為態勢評估、攻擊規劃、目標分配與機動決策四階段;文獻[2]基于飛行員知識構建分層框架,將空戰拆解為多個子決策系統。

文獻[17]綜述深度強化學習(DRL)在BVR空戰中的應用;文獻[57]在高保真空戰仿真環境中探索新戰術的自主學習;文獻[53]開發基于DRL的智能體,通過自博弈模擬戰斗機戰術并生成新型空戰策略,使人類飛行員可與AI訓練體交互以提升決策與適應性;文獻[58]構建強化學習(RL)環境以實現空戰戰術自主學習與機動創新。

多篇研究將RL應用于一對一空戰場景。例如,文獻[54]提出自博弈訓練框架以解決長時域交戰中的動作控制問題;文獻[55]設計基于DRL的決策算法,通過定制化狀態-動作空間與自適應獎勵函數實現多場景魯棒性;文獻[59]通過改進Q網絡使智能體能從優勢位置接近對手以優化機動決策;文獻[56]提出基于真實武器仿真的DRL智能體構建方法;文獻[60]開發混合自博弈DRL智能體,可維持對不同對手的高勝率并提升適應性與性能。

B. 行為識別

行為識別對理解與預測敵方行動、支撐決策與戰略規劃至關重要。多項研究探索了復雜不確定作戰條件下識別與預測敵方行為的方法。

文獻[62]提出集成規劃與識別算法,證明主動觀測收集可加速行為分類;基于案例推理(CBR)框架,文獻[63][64][65]開發案例驅動行為識別(CBBR)系統,通過時空特征標注智能體行為,提升GR控制無人機的識別能力;文獻[66]結合對手建模與CBR識別敵方編隊行為。

針對數據不完整問題,文獻[70]提出基于多粒度粗糙集(MGRS)的意圖識別方法;文獻[68]將Dempster-Shafer理論與深度時序網絡融合以優化分類效能;文獻[71]采用決策樹與門控循環單元(GRU)實現一對一空戰狀態預測;文獻[1]提出基于級聯支持向量機(CSVM)與累積特征的分層方法進行多維度目標分類。

為識別戰術意圖,文獻[69]開發注意力增強型群體優化與雙向GRU模型(A-TSO-PBiGRU)檢測態勢變化;文獻[67]應用動態貝葉斯網絡(DBN)推斷飛行狀態與戰術動作的因果關系,提升編隊識別與態勢感知能力。

C. 制導與攔截

制導與攔截機制對提升導彈命中率(尤其針對高速機動目標)具有關鍵作用。

文獻[72]通過對比制導策略,識別可最小化攔截時間與機動負載的配置方案,優化不同作戰條件下的交戰選項;文獻[73]通過增強導彈特定攻角命中能力改進高超音速目標攔截效能,優化終段交戰條件;文獻[74]在無人作戰飛行器(UCAV)中采用自主制導技術提升瞄準精度,實現對機動空目標的有效打擊。

文獻[75]優化導彈飛行中的機動決策以支撐交戰規劃并提升模擬作戰成功率;文獻[76]通過動態攻擊區(DAZ)概率建模實現實時航跡修正,確保環境不確定性下的打擊精度;文獻[77]通過協同制導模型提升雷達與導彈協同效能,增強防空體系整體精度。

文獻[78]量化數據鏈質量對導彈效能的仿真影響,揭示更新延遲與誤差對導引頭激活及整體成功率的作用機制;文獻[79]改進雙脈沖發動機導彈點火控制與彈道修正技術,強化遠程目標攔截能力。

D. 機動規劃

機動規劃旨在計算運動基元序列以獲取戰術優勢。

該領域早期研究側重結構化評估與決策模型。文獻[80]提出包含態勢評估模型、機動決策模型與一對一對抗評估模型的框架;文獻[81]基于環境條件、威脅分布、武器性能與空戰規則開發戰術決策系統;文獻[82]整合戰術站位與武器能力的多維度要素,探索提升資源分配效能的目標分配(TA)策略。

近期研究聚焦學習驅動方法。文獻[83][84][85]應用深度強化學習(DRL)進行機動規劃,增強動態場景下的威脅規避與目標打擊能力,通過多初始交戰條件訓練提升智能體適應性;文獻[86]采用雙延遲深度確定性策略梯度(TD3)算法開發一對一對抗中的自主導彈規避策略;文獻[87]基于敵我相對方位與距離設計機動決策方法;文獻[88]結合DRL與蒙特卡洛樹搜索(MCTS),探索無需先驗飛行員知識或價值函數的機動規劃路徑。

E. 導彈交戰

導彈攻防需優化發射時機與機動策略以最大化攻擊效能與生存概率。

進攻方面:文獻[38]采用監督學習(SL)估算最優導彈發射時機以提升任務效能;文獻[89]提出雷達盲區機動控制方法實現隱蔽接敵;文獻[92]通過分析導彈捕獲區與最小規避距離,確定編隊空戰協同場景下的最佳發射距離與防御策略。

防御方面:文獻[90]為無人作戰飛行器(UCAV)設計基于分層多目標進化算法(EA)的自主規避機動策略以提升生存能力;文獻[91]將導彈規避問題建模為雙團隊零和微分博弈,其中一架戰機需在遠離來襲導彈的同時逼近非攻擊性目標。

協同作戰領域:文獻[93]提出基于武器有效區(WEZ)的協同占位方法;文獻[94]解決空對空導彈(AAM)發射后信息盲區難題。

F. 多智能體協同

多智能體協同作戰通過自主平臺間的協作決策、聯合戰術執行與響應優化,賦能協同攻擊策略、動態編隊重構及人機協同等應用場景。

文獻[95]將多無人機戰術策略應用于空對空對抗分解,將復雜交戰拆解為一對一單元案例以提升機動效率與作戰成功率;文獻[96]將協同站位分配與目標分配(TA)建模為零和博弈,采用混合雙Oracle算法與鄰域搜索在時限約束下優化解質量。

文獻[97]擴展戰術戰斗管理器功能,構建分布式系統檢測跨智能體任務數據差異以強化協同效能;文獻[98]通過面向角色的框架推進目標推理(GR)技術,增強通信受限自主智能體的協同能力;文獻[99]提出AlphaMosaic架構,將人類反饋整合至作戰管理系統(BMS),實現動態任務中基于信任的人機協作。

文獻[100]將群體智能適配固定翼無人作戰飛行器(UCAV),實現編隊飛行、自主重組與戰損后動態調整等行為;文獻[101]采用集中式AI規劃系統協調全態勢可觀測與可驗證的多智能體任務方案;文獻[102]通過兵棋推演驗證艦隊協同行為,優化戰術參數以提升均勢對抗任務成效。

文獻[42]利用仿真評估優化無人機戰術編隊應對不確定敵方行為;文獻[103]提出兩階段協同追擊策略,結合誘敵戰術與混合A*路徑規劃提升攔截成功率;文獻[104]設計多目標函數與GDT-SOS元啟發式驅動的自適應制導方法優化無人機占位效能。

文獻[3]通過分層強化學習架構使多智能體團隊通過自博弈與場景分解學習高低階戰術;文獻[105]將多智能體近端策略優化(PPO)應用于UCAV協同,將領域知識融入獎勵函數以提升性能;文獻[106]構建基于圖神經網絡的推理模型,結合專家知識建模復雜協作模式并簡化大規模交戰決策。

文獻[107]采用對抗自博弈與分層策略梯度算法學習超越專家基線的涌現策略;文獻[108]在集群機動中應用深度確定性策略梯度,聯合學習智能體協作與目標打擊;文獻[109]融合神經網絡與人工勢場技術,支持針對自適應對手的協同路徑規劃。

G. 作戰分析

作戰分析(OA)通過仿真、模型與評估指標衡量作戰效能、支撐戰術規劃并支持作戰決策。

文獻[11][40]應用隨機博弈模型分析不確定性下的多機對抗,解析超視距(BVR)場景中的協同策略與導彈分配;文獻[46][110][111]通過含人類操作員的仿真評估實戰條件下飛行員與團隊表現,聚焦作戰規程遵循度、認知負荷與共享態勢感知(SA)。

多項研究構建了面向訓練、戰術測試與作戰規劃的仿真平臺:文獻[8]開發戰術級空戰仿真系統以支持智能決策;文獻[112]設計用于評估巴西空軍軍事場景的ASA框架;其云端擴展版ASA-SimaaS實現可擴展自主仿真服務[113];AsaPy工具集通過統計與機器學習(ML)方法提供仿真后分析功能[114]。

文獻[115]采用體系(SoS)仿真評估飛機設計、平臺互操作性及生存性、武器使用等任務級效能指標;參數化研究探究雷達截面積、導彈射程、飛行高度與通信延遲等變量對殺傷概率與整體作戰效能等指標的影響[116][120][121];文獻[117]通過基于智能體的模型探索行為特征對仿真可信度的影響,增強對稱與非對稱BVR場景的驗證方法。

文獻[118]設計雙模通信協議以適配協同空戰網絡條件;文獻[119]強調仿真架構的可擴展性與靈活性,提出需構建能管理AI驅動實體與分布式決策流程的多智能體系統;文獻[122]開發高動態飛行條件驗證環境,評估大機動動作下光電系統性能。

文獻[123]建模網絡中心戰分析傳感器、指控系統與火控協同水平對作戰效能的影響;文獻[124][125][126]分別基于多準則決策(MCDM)、相關向量機與改進極限學習機(ELM)模型提出決策支持工具,為戰機性能與戰術配置提供量化評估。

H. 飛行員訓練

飛行員訓練通過先進仿真環境、績效評估與自適應學習技術提升戰備水平與作戰效能,旨在強化復雜空戰場景中的決策與態勢感知(SA)能力。

文獻[127]提出的回顧性績效評估方法為識別改進領域、指導針對性訓練調整提供洞見;文獻[130]探索行為建模技術以優化高壓條件下飛行員決策,增強訓練演習真實度。

文獻[131]探討的實況、虛擬與構造(LVC)環境集成方案,通過融合真實與仿真要素構建高擬真沉浸式訓練場景,使飛行員體驗多樣化作戰情境以提升環境適應性;文獻[129]提出績效加權系統優化訓練成效,確保飛行員高效達成能力基準。

文獻[18]綜述自適應訓練方法學,強調基于飛行員表現的AI驅動個性化內容生成技術進展;文獻[10][128]探討空戰行為快速適配與訓練仿真驗證方法,確保仿真系統精準映射真實作戰動態,通過提升響應速度與態勢理解能力提供直接影響訓練效能的實用工具。

I. 態勢感知

態勢感知(SA)是理解戰術環境(涵蓋敵我位置、行動與意圖)的核心能力,支撐交戰、占位與規避的明智決策,最終提升作戰效能與生存概率。

文獻[132]探索實時數據處理方法,賦能飛行員高效解析復雜信息;文獻[133]將SA擴展至團隊層級,驗證協同數據共享對任務連貫性與績效的增益。

威脅評估方面:文獻[137][152]解析敵方武器有效區(WEZ)判定方法,為飛行員提供戰略規避或對抗的空間感知;文獻[141]開發的實時威脅分析工具持續更新態勢數據,確保戰術動態調整;文獻[134][139][135]整合目標意圖預測至威脅評估體系,構建戰場態勢分析與威脅指數系統。

AI驅動SA方法:文獻[138][143]應用機器學習(ML)進行威脅檢測,加速飛行員威脅預判與響應;文獻[136]采用基于蒙特卡羅的概率評估方法優化不確定態勢下的風險管理;文獻[47]提出基于防御性制空(DCA)作戰指標的接戰決策支持工具;文獻[140]分析深度神經網絡(DNN)在WEZ最大射程估算中的應用。

文獻[142]利用機載傳感器數據與神經網絡實時評估擊落概率;文獻[6]提出對抗條件下機動靈活性估算方法,支撐編隊級決策。

J. 目標分配

目標分配(TA)涉及高效配置空對空導彈、防空導彈及戰機等資源以壓制敵方威脅,需在優化交戰效能的同時最小化資源消耗。

多篇研究聚焦提升作戰效能的分配方法:文獻[146][147][149]探討動態分配導彈與戰機至多目標的多目標分配(MTA)策略;文獻[148]提出多友機對多敵機的協同攻擊分配方法。

文獻[144][150]研究基于任務目標與約束的武器-威脅最優配對算法,以最大化殺傷概率并保存資源;文獻[145]引入融合目標優先級與交戰時序的改進分配模型;文獻[151]探索結合優化技術與實時戰術調整的混合方法以應對動態戰場。

仿真工具

仿真環境與工具對推進超視距(BVR)空戰研究至關重要,其能夠建模復雜場景、評估決策算法并優化作戰策略。此類工具涵蓋通用平臺至定制化系統,各具獨特功能以應對BVR空戰的不同維度。

多數平臺通過高層體系結構(HLA)與分布式交互仿真(DIS)等標準支持互操作性,促進跨仿真系統集成與實時同步。本節概述BVR空戰研究中常用工具,文末附表格總結核心工具特性、編程語言與互操作能力。

A. AFSIM:仿真、集成與建模高級框架

美國空軍研究實驗室開發的AFSIM[153]是BVR空戰研究中的主流平臺,支持靈活建模作戰環境、系統集成與任務規劃決策流程,常用于認知控制、行為識別與人工智能研究[15][62][63][64][65][66][97][99][101]。AFSIM支持與其他模型集成,實現戰略與戰術層級的實時交互仿真,賦能作戰管理與任務規劃研究。該平臺非開源,受美國政府法規管控。

B. ASA:空天仿真環境

巴西空軍開發的ASA(葡萄牙語Ambiente de Simula??o Aeroespacial縮寫)[112][113]是基于C++的面向對象仿真框架,專用于復雜空天行動建模,支撐態勢感知(SA)、任務規劃與作戰決策研究[38][42][47][53][114][117][140]。ASA支持機器學習技術與傳統仿真融合,優化戰術并預測敵方行為,其架構可精細建模任務參數、航空器系統與武器性能。該平臺非公開,受巴西政府法規管控。

C. 定制系統

定制系統采用Python、C++或MATLAB開發,專用于商用工具無法滿足的研究場景。由于電子戰模型、導彈制導與BVR技術多涉密,商用系統難以滿足開放性研究對復雜性、安全性與適應性的需求,故定制系統成為主流解決方案[8][11][40][55][56][59][61][67][68][70][72][73][74][76][77][79][81][82][83][84][88][89][92][93][94][95][96][98][103][104][105][108][110][111][116][118][122][123][124][125][126][135][137][139][142][145][147][148][149][151]。此類工具支持快速開發,適用于敏感領域研究。

D. DCS World:數字戰斗模擬器世界

DCS World[154]是商業化高保真戰斗飛行模擬器,以真實飛行動力學與精細模型著稱,廣泛應用于決策制定與強化學習(RL)作戰研究[54][86]。其開放式架構支持自定義模塊開發,賦能研究者模擬動態高烈度BVR空戰場景,成為真實作戰條件下測試AI驅動智能體的理想平臺。

E. FLAMES:靈活分析與建模效能系統

FLAMES[155]是模塊化商業仿真框架,支持開發與運行實況-虛擬-構造(LVC)仿真,具備實時可視化、場景管理與作戰分析(OA)功能,適用于任務規劃與作戰模擬[38]。盡管靈活性高,但其商業許可可能限制可訪問性,且復雜架構對快速原型開發或資源受限研究構成挑戰。

F. FLSC:瑞典空軍戰斗模擬中心

瑞典國防研究局開發的FLSC整合LVC仿真分析空戰場景,用于飛行員訓練、任務規劃、決策支持研究及人機協作評估[130][131]。其功能特性可增強聯合作戰中的態勢感知(SA)與決策能力。FLSC由瑞典國防研究院(FOI)運營,訪問受限,但國防項目研究者可通過合作渠道申請使用。

G. JSBSim

JSBSim[156]是開源飛行動力學模型,廣泛應用于需高精度航空器仿真的強化學習BVR研究,支持決策制定、機動優化與作戰接戰等任務[3][6][58][60][138][143]。常與Unity(IAGSim)及定制環境集成,構建計算高效的動態場景自主決策仿真。

MATLAB[157]與Simulink[158]廣泛用于仿真、控制理論與優化研究。MATLAB數學能力支撐決策與作戰研究[1][50][51][69][75][78][80][90][91][102][109][120][121][141][146][150];Simulink通過圖形化動態系統建模工具擴展功能,適用于控制策略開發。

I. Python與R

Python是開發仿真環境與機器學習(ML)模型的核心工具,借助TensorFlow[159]、PyTorch[160]等庫支持任務規劃、強化學習實施與優化[71][85][100][136],其靈活性賦能快速原型開發及跨平臺集成研究。R語言偶爾用于空戰數據分析與仿真相關統計建模[140]。

J. 其他工具

以下工具亦支持超視距(BVR)空戰研究:

ACE-2:定制化仿真器,用于測試空戰機動中的遺傳優化技術[49]。
ACEM:實況-虛擬-構造(LVC)仿真環境,用于空戰中人類表現分析[46]。
FTD (F/A-18C):F/A-18C飛行訓練設備,用于高保真模擬飛行員行為、協同與訓練場景[127][129][133]。
IAGSim (Unity + JSBSim):結合JSBSim飛行動力學與Unity實時渲染的定制仿真器,專為自主空戰研究設計[2]。
MACE[161]:現代空戰環境(MACE),可擴展分布式仿真平臺,用于作戰分析(OA)與戰術空戰場景測試[115]。
NLR四機編隊模擬器:荷蘭航空航天中心(NLR)開發的仿真器,用于多機對抗中的飛行員訓練與人機交互研究[128]。
STAGE:快速生成空戰場景的框架,適用于人工智能(AI)與強化學習(RL)訓練[10]。
Super Decisions:集成層次分析法(AHP)與網絡分析法(ANP)的決策支持軟件,用于空戰威脅排序與任務規劃[134]。
UnBBayes-MEBN:基于多實體貝葉斯網絡(MEBN)的概率推理框架,應用于不確定條件下的態勢感知與決策[132]。
WESS:自適應戰術決策仿真工具,用于動態作戰行為建模[50][51]。
Wukong:強化學習(RL)驅動的多智能體戰術決策平臺,專為BVR場景設計[57][106][107]。
X-Plane[162]:高保真商業飛行模擬器,用于自主行為驗證與作戰規劃[48]。

K. 工具總覽

表2匯總了核心工具、主要應用場景、功能特性、編程語言及互操作能力。該表涵蓋本文分析的120項研究中的116項,其余4項為未使用具體工具的綜述類研究。各列信息如下:
? 仿真工具:工具或框架名稱

? 核心功能:與BVR空戰研究相關的主要特性

? 編程語言:開發或定制化使用的主要語言/平臺

? 互操作性:支持標準仿真協議(如HLA、DIS)、定制接口或無相關信息

? 引用文獻:使用該工具的研究編號

開放挑戰與未來趨勢

盡管強化學習(RL)等先進技術在空戰決策領域取得顯著進展,仍存在諸多開放挑戰,為未來研究提供機遇。

  • 場景復雜性
     當前方法(如NFSP RL與DQR驅動的DRL)多基于簡化的一對一對抗驗證[54][84]。需將其擴展至反映真實空戰復雜性的多智能體環境。基于DDPG的集群策略與H3E分層方法等框架為應對此挑戰指明方向[2][108]。此外,目標分配(TA)、探測與制導研究多假設雷達、戰機及通信節點同質化[118][144][148][149][163][164][165],未來需探索異質化模型以更精準刻畫現實系統復雜性。

  • 全觀測假設局限
     MCTS、PPO與CSVM等方法常假設環境全觀測,忽略雷達目標搜索等關鍵要素[1][88][166]。BVR場景中KAERS等技術通過處理部分可觀測性提升模型魯棒性與實戰適用性,具備借鑒價值[57]。

  • 計算強度制約
     MCTS等方法雖有效但計算耗時[88],需優化連續動作空間處理并提升計算效率以適配實時應用。基于TD3算法優化導彈攻防決策的近期研究展現進展[86]。

  • 初始條件敏感性
     課程學習與IQN方法在不利初始配置下表現欠佳[59][167]。基于GP的演化行為樹(BT)等自適應學習率與魯棒課程設計可緩解敏感性并增強泛化能力[49]。

  • 可擴展性與實時適應性
     多智能體方法(如MAPPO)與分層框架(如H3E)在動態大規模環境中面臨可擴展性挑戰[2][105]。需開發高效方法應對協同場景,如目標分配研究所示[96][146]。

  • 不確定性整合不足
     博弈論、貝葉斯網絡(BN)與監督學習(SL)等方法多假設確定性環境[1][76],融入隨機要素與不確定性可提升模型對復雜空戰的現實刻畫能力。

  • 多樣化場景驗證缺失
     SAE網絡戰術認知模型與DRL集群模型多在靜態環境驗證[108][141],需擴展至動態高維場景(如實時決策與多變作戰條件)。基于ANN與粒計算的協同空戰研究為此提供范例[61][151]。

  • 跨學科融合需求
     強化學習(RL)、深度學習(DL)與控制理論結合可顯著增強BVR決策模型。分層RL與行為樹(BT)等技術為協調高層戰術與底層機動提供可擴展框架[48][61],此類方法有望催生更魯棒、可解釋的模型。

  • 訓練效率優化
     遺傳規劃(GP)雖在策略優化中潛力顯著,但低維問題處理與計算開銷仍存挑戰。課程式RL與敵方意圖識別技術可提升學習效率與決策能力[54]。

  • 實戰化應用瓶頸
     先進方法需通過高保真仿真驗證實戰適用性。與軍事及航空機構合作可彌合研究與部署鴻溝,集群策略與協同無人作戰飛行器(UCAV)研究已體現仿真驗證價值[105][108]。

  • 仿真工具未來趨勢
    隨著BVR場景復雜度攀升,仿真工具需沿以下方向演進:
     ? 高保真多智能體仿真:在AFSIM、ASA、DCS World與FLSC等平臺支持大規模集群協同與實時高保真仿真。

? 增強互操作性:通過HLA與DIS標準實現有人機、無人機及導彈等異構系統仿真集成。

? AI/ML深度整合:嵌入自適應智能體實現實時任務規劃與決策[105]。

? 計算效能提升:優化仿真架構以應對復雜度增長,支撐實時動態適配。

突破上述挑戰將推動開發復雜、可擴展且自適應的BVR決策模型,為高動態對抗空戰環境中的自主系統奠定基礎。

付費5元查看完整內容

本體論為知識的組織與利用提供系統化框架,助力更智能高效的決策。為推動當代網絡行動相關情報的資本化與增強,本研究提出的"影響力作戰本體論"界定了核心實體與關聯關系,用于建模威脅行為體通過信息環境針對公眾實施的攻擊戰術與技術。其旨在激發該領域研究與發展,催生對抗影響力行動的創新應用,尤其聚焦情報、安全與防御領域。

根據世界經濟論壇《2025年全球風險報告》,虛假與誤導信息被列為短期首要威脅,社會極化位列第四大風險。惡意行為體正利用此類威脅,通過操控公眾認知與影響公民,危害國家完整性。此類通過欺騙性非法手段操縱民眾、破壞社會完整性的協同行動,統稱為影響力行動(IOs)。歐洲網絡安全機構指出,影響力行動位列該地區十大最普遍且重大威脅之中。為此,歐洲正積極構建威脅分析通用框架,并為各國配備有效反制措施。然而,影響力行動的多學科特性使得信息環境及其關鍵要素(如攻擊實施渠道、在線網絡社群、擴散敘事等)的建模分析面臨特殊挑戰。本研究提出影響力行動本體論,旨在系統刻畫信息環境的多維領域。該方案聚焦網絡威脅情報(CTI),促進與語言及CTI共享平臺的互操作性,并基于主流框架與關鍵提案開發,實現知識整合于統一分析工具,以標準化方式提升分析效能與情報共享能力。

圖:影響力作戰本體

付費5元查看完整內容

本文探討了人機協同(HMT)和人機自主協同(HAT)在加強歐洲陸軍維持行動方面的變革潛力。文章探討了這些模式如何通過將人類的適應性與自主的精確性和效率相結合,徹底改變后勤、戰場維修和醫療支持。通過探討動態和有爭議的環境中日益增長的需求,本文強調了歐洲軍隊采用這些技術的戰略重要性,以便在未來大規模作戰場景中實現更強的應變能力和作戰效能。

在作戰環境日益復雜的時代,先進機器和自主系統的集成有可能重塑未來戰爭的實施方式。隨著軍事理論轉向多域作戰,以應對多極世界和大規模沖突的回歸,軍隊必須創新其維持戰略,以滿足現代戰爭的復雜需求。這一發展對于增強軍隊的機動性、應變能力以及在有爭議和動態沖突地區支持分散、聯合和技術一體化部隊的能力至關重要。在這方面,人機協同(HMT)和人機自主協同(HAT)這兩個新興范例尤其具有發展前景,它們將人類的適應性與自動化和機器人技術的精確性和效率相融合,在各種軍事后勤和醫療活動中具有變革潛力。雖然這兩個概念涉及維持網絡的不同方面,但它們協同合作,有望更快地為關鍵支持功能提供更強大、更準確的解決方案。

因此,本文探討了這些范例在重新定義歐洲陸軍前方維持行動方面的潛力,強調了它們在軍隊(再)補給、戰場維修/維護和醫療支持服務方面的作用。本文強調,雖然這些創新會帶來挑戰,包括技術限制和行動整合障礙,但歐洲軍隊必須適應并為未來鋪平道路,在未來,人類專長和自主能力將相互促進,以維持任務并確保行動效力。

付費5元查看完整內容

本文探討了如何在軍隊中開發和訓練強大的自主網絡防御(ACD)智能體。本文提出了一種架構,將多智能體強化學習(MARL)、大型語言模型(LLM)和基于規則的系統組成的混合人工智能模型集成到分布在網絡設備上的藍色和紅色智能體團隊中。其主要目標是實現監控、檢測和緩解等關鍵網絡安全任務的自動化,從而增強網絡安全專業人員保護關鍵軍事基礎設施的能力。該架構設計用于在以分段云和軟件定義控制器為特征的現代網絡環境中運行,從而促進 ACD 智能體和其他網絡安全工具的部署。智能體團隊在自動網絡操作 (ACO) gym中進行了評估,該gym模擬了北約受保護的核心網絡,可對自主智能體進行可重復的培訓和測試。本文最后探討了在訓練 ACD 智能體理過程中遇到的主要挑戰,尤其關注訓練階段的數據安全性和人工智能模型的穩健性。

圖 1:四個網絡位置(A-D)容納五個藍色智能體(1-5)的情景。

本文探討了為自主網絡防御(ACD)智能體訓練混合人工智能(AI)模型時所面臨的挑戰和機遇,尤其是在戰術邊緣環境中。這些挑戰源于此類環境所特有的獨特、不可預測和資源受限的設置。北約研究任務組 IST-162 和 IST-196 的工作重點是 “軍事系統的網絡監控和檢測”[1]、[2] 和 “虛擬化網絡中的網絡安全”。虛擬化網絡中的網絡安全"[3] 至 [5],本研究旨在利用混合人工智能框架推進 ACD 智能體的設計和功能,以確保整個聯盟網絡的穩健網絡安全。多智能體強化(MARL)、大型語言模型(LLM)和基于規則的系統的采用構成了我們 ACD 架構的核心,增強了智能體在戰術邊緣環境中普遍存在的斷開、間歇、有限(DIL)帶寬條件下有效執行自主網絡防御任務的能力。這些條件要求系統具有彈性,能在網絡和資源嚴重變化的情況下保持高性能水平,這對傳統的網絡安全系統來說是一個重大挑戰。例如,將深度強化學習(DRL)與生成式人工智能相結合,有利于開發能夠進行復雜決策和自適應學習的智能體,提高其在動態網絡環境中應對復雜網絡威脅的能力[3]。此外,本文還討論了如何將 ACD 智能體集成到模擬的北約啟發的受保護核心網絡環境中,并在此環境中針對一系列網絡威脅對其進行評估。智能體利用人工智能技術的戰略組合,自動執行監控、檢測和緩解等關鍵防御行動,支持對關鍵軍事和民用網絡基礎設施的持續保護。

本文的貢獻如下: 第一,在一個集成了 MARL、LLM 和基于規則的系統的代理層次結構中使用代理智能體范例的方法論,以增強自主網絡防御能力。第二,討論在戰術邊緣環境中為 ACD 智能體訓練混合人工智能模型的挑戰和機遇。第三,定義一套評估指標,用于衡量 ACD 代理在數據和訓練保護方面的性能。本文的組織結構如下: 第二節回顧了相關文獻并解釋了研究原理。第三節詳細介紹了使 ACD 智能體適應戰術邊緣環境的方法。第四節介紹了我們的實證評估結果。最后,第 V 節總結了本研究的意義并概述了未來的研究方向。

付費5元查看完整內容

本論文研究了人工智能在城市軍事行動中的整合,特別關注以色列國防軍在城市戰爭中對人工智能技術的應用。研究首先定義了城市環境,為探測城市環境在戰爭中的特殊性奠定了基礎,討論了關于人工智能變革戰爭潛力的理論觀點,然后通過考察以色列國防軍自 2021 年以來的行動,進入人工智能在城市作戰中的實際應用。通過分析人工智能在城市作戰中的應用,該報告試圖了解人工智能在城市作戰中的作用及其塑造未來城市戰爭態勢的潛力。

過去十年中,軍事創新領域取得了重大發展,自主性和人工智能(AI)隨著技術的快速進步而占據了中心位置。這一技術飛躍使自主性和人工智能成為軍事戰略和作戰文獻中的焦點,人們越來越關注它們在提高軍事能力方面的潛力。另一方面,在更廣泛的現代軍事行動中,特別是在 21 世紀,城市戰成為一個關鍵的關注領域。盡管城市戰可能不再像 21 世紀初那樣是一個時髦的話題,但它仍然具有一定的現實意義。全球城市化的快速發展,尤其是在欠發達國家和發展中國家,意味著城市沖突的可能性仍然是一個具有潛在意義的相關問題。這種雙重演變為探索人工智能與城市戰爭的交集可能帶來什么提供了一個令人好奇的舞臺。人工智能有望改變各個領域的游戲規則,尤其是全球經濟領域。人們普遍期望,人工智能憑借其巨大的潛力,可以改變甚至徹底改變生活的方方面面,包括軍事行動。在這種情況下,人工智能的潛在影響可能會對城市戰爭產生重大影響,有助于應對在城市地區開展軍事行動的復雜挑戰。鑒于人工智能所帶來的引人入勝的可能性,該領域的專家對這一話題尤為感興趣。考慮到這些現實情況,本研究探討了人工智能與城市軍事行動之間的關系。通過深入探討城市作戰的特殊性,并將其與人工智能技術的飛速發展并列起來,本研究試圖對人工智能在城市戰爭背景下的變革潛力的局限性進行介紹性探索。它旨在概述當前的能力,預測未來的發展,并探討軍事人工智能在城市環境中的戰略和作戰影響。

重要的是,要研究人工智能的實際應用和帶來的益處,而不是其炒作所產生的假設。與此同時,本論文提出了以下研究問題,以探討人工智能在最近的城市戰斗中的應用: “以色列國防軍(IDF)在當代城市戰斗中使用人工智能應用的效果如何?這項調查將試圖解決對人工智能軍事能力的臆測與人工智能在城市戰場上的實際效用之間的差距。現有關于軍事人工智能潛力的大量文獻提出了截然不同的觀點,從將人工智能描繪成重現戰爭性質和特征的革命性力量,到僅僅擴展現有能力,不一而足。因此,有必要對軍事戰斗進行實證分析,以確定利用新型人工智能機制的實際案例。通過關注國家行為體,特別是那些擁有先進技術軍隊(如以色列國防軍)的國家行為體開展的具體軍事行動/戰役,本研究致力于篩選圍繞軍事人工智能應用的炒作。通過對以色列國防軍在城市行動中使用人工智能的實證研究,將對人工智能的實際影響與其預測潛力進行有依據的評估,從而為人工智能在城市戰爭中的動態應用前景提供一個視角。

之所以選擇以色列國防軍使用人工智能作為本研究的主要重點,是因為有幾個關鍵方面與研究目標密切相關,特別是在城市戰中使用人工智能方面。首先,以色列國防軍在采用和實施無人駕駛飛行器 (UAV)、先進電子戰系統 (EWS) 和自動導彈防御系統等新型軍事技術方面一直走在前列。這凸顯了以色列在軍事技術領域的先鋒作用。正如在接下來的章節中所討論的,以色列雄心勃勃的人工智能議程進一步凸顯了其將新技術融入國防戰略的實際承諾。其次,以色列國防軍是最早將人工智能技術應用于廣泛實戰場景的軍隊之一,這為研究這些工具提供了更大的來源,為分析提供了更豐富的基礎。第三,也是最重要的一點,以色列國防軍主要在城市作戰環境中應用人工智能技術,這與本研究的重點不謀而合。這使以色列國防軍的戰役有別于近期其他戰爭中對人工智能支持系統的使用,如在納戈爾諾-卡拉巴赫、利比亞以及最近的烏克蘭戰爭中,交戰通常發生在更為開闊和人口密度較低的地區。以色列國防軍在城市戰中使用人工智能提供了一個令人信服的案例研究,涵蓋了城市環境特有的復雜方面和作戰考慮因素。

為此,第 1 章探討了城市戰的演變、城市環境的主要特征及其對軍事行動的深遠影響。它認識到城市環境的獨特性,如密集的基礎設施、平民的存在和復雜的地形,這些都帶來了巨大的挑戰。總之,它為理解在當代世界政治中成功開展城市戰爭所面臨的一些重大挑戰奠定了基礎。第 2 章從城市戰的理論基礎轉向人工智能和自主性在軍事行動中的實際影響。本章分析了當前關于人工智能在戰爭中的革命性潛力的爭論,將觀點大致分為保守派和革命派。最后對人工智能在軍事行動中的應用進行了評估,如自主監視、目標識別和決策支持系統,這些都可能徹底改變城市戰斗的動態。第 3 章研究了 2021 年和 2023 年以來以色列國防軍在加沙行動中對人工智能(AI)的實際應用,旨在綜合城市戰爭和人工智能的討論。報告首先解釋了以色列國防軍的技術實力、創新戰爭戰略和人工智能相關能力是如何得到認可的。接著介紹在城市環境中使用的人工智能支持的目標生成系統。在第三章之后,本研究的最后部分是案例發現和更廣泛的理論辯論,旨在討論戰略利益和作戰挑戰,并作為結論。

付費5元查看完整內容

深度學習是人工智能的一個子類別,在自動識別水下傳感器數據中的各種目標方面具有巨大潛力。這項工作的目標是支持未來使用深度學習的水下戰爭領域目標自動識別系統的發展,首先要展示什么是可能的,其次要讓研究人員深入了解如何通過建議和經驗教訓來構建這種定制系統。目標受眾是水下戰爭領域的研究人員,他們或是深度學習的新手,或是水下傳感器數據的新手。深度學習的基礎知識可以從許多在線課程中獲得。本參考文檔重點介紹如何應用這些工具識別目標,該領域不同于機器視覺和自然語言處理的常規應用。這些水下戰爭自動目標識別系統處理的不是標準圖像或文本,而是來自聲學傳感器的數據。這些小型定制神經網絡不是下載標準的現成網絡,利用充足的計算資源從大型訓練數據集中學習,而是設計用于從相對較小的訓練數據集中學習,而且往往受到硬件的計算限制。這項工作概述了定制神經網絡在各種水下戰爭自動目標識別任務中的應用,包括側視聲納中的類雷物體、寬帶聲納散射數據中的未爆彈藥、被動聲學數據中的水面艦艇以及主動聲納中的水下目標。此外,還分享了關于高效神經網絡設計和使用來自水下傳感器的小型訓練數據集的建議。

先進的自動目標識別系統可以快速自動分析傳入的傳感器數據,并對感興趣的目標進行探測、分類和定位,從而提高水下作戰能力。這有助于減少從獵雷到被動聲學監測、魚雷防御和反潛戰等各種應用中操作員的工作量。深度學習是在遠程和無人平臺上進行水下作戰自動目標識別應用的一種特別有前途的方法。越來越多的研究人員希望獲得相關建議,因此編寫了本文檔,以鼓勵和支持深度學習技術在未來自動目標識別系統開發中的應用,從而提高水下作戰領域的防御能力。

付費5元查看完整內容

本文介紹了在戰場數字孿生框架內使用貝葉斯優化(BO)、遺傳算法(GA)和強化學習(RL)等先進技術優化軍事行動的綜合方法。研究重點關注三個關鍵領域:防御作戰中的部隊部署、火力支援規劃和下屬單位的任務規劃。在部隊部署方面,BO 用于根據戰場指標優化營的部署,其中湯普森采樣獲取函數和周期核取得了優異的結果。在火力支援規劃中,采用了 GA 來最小化威脅水平和射擊時間,解決了資源有限條件下的資源受限項目調度問題(RCPSP)。最后,為任務規劃開發了一個 RL 模型,該模型結合了多智能體強化學習 (MARL)、圖注意網絡 (GAT) 和層次強化學習 (HRL)。通過模擬戰場場景,RL 模型展示了其生成戰術演習的有效性。這種方法使軍事決策者能夠在復雜環境中提高行動的適應性和效率。研究結果強調了這些優化技術在支持軍事指揮和控制系統實現戰術優勢方面的潛力。

基于戰場數字孿生的 COA 生成概念

戰場數字孿生是一個數字復制品,代表了真實戰場環境的組成部分和行為特征。它可以通過接收來自實際戰場的實時或接近實時的戰場、敵方和友軍單位信息,并將其動態反映到數字孿生中,從而對數字孿生模型進行評估和調整。換句話說,模型可以根據真實世界的數據不斷更新,以實現更具適應性的分析。這一概念與深綠的自適應執行相一致,后者也依賴于動態更新的信息。通過這種方式,可以向真實戰場系統提供改進的決策反饋,幫助用戶根據數字孿生模型做出更好的決策,而數字孿生模型是根據實際作戰數據更新的。

本節提出了 “基于戰場數字孿生的作戰行動選擇生成與分析 ”概念,通過各種技術方法,利用戰場數字孿生生成作戰行動選擇。然后對這些選項進行評估、效果比較,并推薦最合適的 COA 選項。基于戰場數字孿生的作戰行動選擇生成和分析的基本概念是,利用戰場數字孿生的預測模擬生成作戰行動選擇,同時考慮若干戰術因素(METT+TC:任務、敵人、地形和天氣、可用部隊和支持、可用時間和民用因素)。然后,可在數字孿生環境中對生成的作戰行動方案進行快速評估。圖 2 展示了這一流程的概念圖。生成和分析 COA 的四個關鍵輸入--威脅分析、相對戰斗力分析結果、戰場信息以及指揮官和參謀部的指導--假定來自其他分析軟件模塊和用戶輸入,從而完成智能決策支持系統。有關鏈接分析軟件模塊的更多信息,請參閱 Shim 等人(2023,2024)。

圖 2:基于戰場數字孿生系統的 COA 生成和分析概念。

可以按照圖 1 中概述的戰術規劃流程生成并詳細說明 COA 選項。然而,如前所述,規劃過程中的許多任務都需要人工干預,而人工智能技術的應用仍然有限。因此,我們將重點放在 COA 生成階段,在研究適用技術的同時,找出可以實現自動化和智能化的方面。本研究介紹了在 COA 生成過程中可實現自動化和智能化的三個概念:確定友軍部隊部署、規劃間接火力支援和規劃部隊戰術任務。友軍部隊部署是指部隊到達戰場后如何安排和使用,而部隊部署則是指如何將部隊轉移到指定的大致位置。我們將貝葉斯優化方法應用于友軍部署優化問題,作為 COA 方案生成的一部分。隨著人工智能技術的快速發展,許多研究都探索了基于最先進機器學習算法的全局優化方法。其中,使用高斯過程的貝葉斯優化法作為一種針對實驗成本較高的黑盒函數的全局優化方法受到了廣泛關注(Brochu,2010 年)。對于炮兵作戰,我們將火力支援調度問題歸結為一個項目調度問題,該問題力求在遵守資源限制的同時,最大限度地減少敵方總威脅和發射時間。將項目調度與資源管理相結合的任務被稱為資源約束項目調度問題(RCPSP)。最后,我們利用強化學習(RL)技術為下屬單位規劃戰術任務,以找到最優行動策略。強化學習已經證明,它是在動態和不確定環境中解決復雜決策問題的有效框架。特別是,我們利用多智能體強化學習(MARL)、分層強化學習(HRL)和圖注意網絡(GAT)的原理,為多個單位有效地學習任務及其相應參數,同時從每個智能體的角度考慮其重要性。

在使用所提出的方法生成一系列作戰行動(COA)選項后,將在戰場數字孿生系統中對這些選項進行模擬評估。然后對模擬結果進行評估,以推薦最合適的 COA 選項。在下一章中,將詳細解釋用于實現所建議的 COA 生成概念的技術方法,并提供全面的實驗評估結果,以突出所建議方法的有效性。

圖 8:強化學習的擬議架構。

付費5元查看完整內容

本論文通過測量成功和不太成功的戰術表現背后的參數,研究當代戰斗中有效的軍事戰術。因此,戰術知識能讓戰爭研究領域的從業人員、學者和科學家更好地了解戰斗結果。論文的目的是對現有理論進行檢驗,以創建一個新的理論,說明是什么影響了戰斗中的戰術結果,并對導致戰術勝利的原因做出解釋。勝利可以用影響戰斗成功的戰術要素來解釋。此外,與決斗失敗者相比,勝利的戰斗可以通過戰術家所掌握的一些技能得到部分解釋。此外,本論文還是一種批判性評估戰術能力的方法,可以確定什么是成功的戰術,以及理論如何與實踐經驗保持一致。隨著對誰以及戰術如何影響戰斗勝負的深入了解,我們有機會提高研究、分析和實踐戰爭的軍事和戰術領域的技能發展。論文由四篇獨立文章組成。這些文章將專業知識水平、態度、一般智力和個人決策風格等個人能力與勝利水平聯系起來。總結所有四篇文章可得出三大結論:(1) 當類似對手交戰時,當代機動戰包含可衡量的成功要素。(2) 遵循代表 "戰術最佳實踐 "的理想模型中的步驟的戰術人員會增加他們在決斗中獲勝的機會,尤其是在對手沒有同時遵循任何或較少步驟的情況下。(3) 個人決策風格影響戰斗中的戰術結果。這些結論對今后制定有效的戰術以及戰術專家檔案具有重要意義。

圖 1. 《沖突建模的形式》,倫敦國王學院戰爭研究系菲利普-薩賓教授所著。

付費5元查看完整內容

機器人是一個具有挑戰性的領域,需要軟件和硬件的融合來完成所需的自主任務。任何工作流程的關鍵是在部署到生產環境之前對軟件進行自動構建和測試。本報告討論了美國陸軍作戰能力發展司令部陸軍研究實驗室(ARL)的無人自主車輛軟件研究平臺MAVericks的軟件開發過程中使用的持續集成/持續交付工具的重要性和創建情況。這個工具在ARL進行的快速研究和開發中起著至關重要的作用--包括模擬和嵌入式硬件目標的自動構建測試,以及驗證軟件在環模擬中的預期行為。

持續集成/持續交付(CI/CD)是軟件開發中常用的工具,用于自動構建、測試和部署代碼。這個工具對于提高研究的速度和效率至關重要,同時確保在增加或改變新功能時功能不受阻礙。在CI/CD之前,軟件開發過程是具有挑戰性的,隨著越來越多的合作者修改代碼庫,任何新的開發都有可能破壞現有的功能--比如代碼不再構建,自主行為和故障保護裝置不再按預期工作。

本報告重點關注美國陸軍作戰能力發展司令部(DEVCOM)陸軍研究實驗室(ARL)的MAVericks無人自主飛行器(UAV)軟件平臺的CI/CD集成,該平臺建立在開源平臺ROS2和PX4之上。ROS2是一套用于構建機器人應用的軟件庫和工具,而PX4是一個強大的無人機飛行控制軟件。利用這兩個平臺,MAVericks是一個專注于敏捷飛行的大型合作項目,在模擬和機器人平臺上都能發揮作用。MAVericks的目標是在ModalAI的VOXL和RB5硬件平臺上運行,因為它提供了尺寸、重量和功率,同時也是藍色無人機項目的合作伙伴,這意味著他們得到了國防創新部門的資助,以符合2020年國防授權法第848條的規定。

合作者包括美國軍事學院的西點軍校,作為分布式和協作式智能系統和技術項目的一部分;加州大學伯克利分校,作為規模化和穩健的自治項目的一部分;以及馬里蘭大學的人工智能和多代理系統的自治項目--而且這個名單一直在增加。此外,ARL一直在尋求提高其算法的穩健性和成熟的能力,以過渡到DEVCOM和國防部的其他組織。隨著許多合作者加入MAVericks,重要的是要確保每次修改后有最低限度的可用功能,以鼓勵快速加入和貢獻。MAVericks是一個由一百多個軟件包組成的大型研究平臺,重要的是每個軟件包都能可靠地構建和運行。通常情況下,合作者只關心幾個軟件包,他們可以很容易地進行修改和添加,而不需要對不相關的問題進行排查,這一點至關重要。由于這種不斷增長的社區,很容易偶然地引入錯誤或破壞不相關的功能。因此,CI/CD是一個很好的解決方案,它將為不同的用戶群體提高平臺的可靠性和可用性。

CI/CD管道實現了許多簡化開發的功能。它可以完全構建整個平臺,確保新用戶的依賴性安裝成功,在模擬環境中運行和測試平臺,以確保自主行為正常工作,并快速構建壓縮的工作空間,以防止在無人機上構建。

在自主系統的軟件開發中,一個有問題的情況是,用戶修改了幾個包,但只構建和測試了一個特定包。這樣,代碼就被合并到了生產中,而沒有驗證它對其他人是否有效。如果未經測試的修改被合并,依賴這些修改的包可能不再構建或通過所有的測試案例。

從用戶的角度來看,CI/CD是由用戶創建代碼合并請求(MR)來觸發的,將他們的修改添加到主分支。這就啟動了CI/CD,建立了一個管道。該管道包括四個階段:構建-依賴、構建-完整、測試和部署。對于每個階段,可以并行地運行多個作業來完成該階段。在每個作業中,流水線首先將合并后的變化復制到一個新的環境中,并完成一個特定的任務。在流水線的最后,一個完全構建的版本被上傳,并準備在無人機上閃現。如果任何步驟失敗,其余的管道階段將被中止,并通知用戶到底是什么地方出了問題,以便他們能夠解決任何問題。管線的概述見圖1。

在本報告中,描述了MAVericks CI/CD的基礎,然后詳細介紹了管道中的每個階段,以及所克服的幾個挑戰。

付費5元查看完整內容
北京阿比特科技有限公司