亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

科學用實驗來驗證關于世界的假設。統計學提供了量化這一過程的工具,并提供了將數據(實驗)與概率模型(假設)聯系起來的方法。因為世界是復雜的,我們需要復雜的模型和復雜的數據,因此需要多元統計和機器學習。具體來說,多元統計(與單變量統計相反)涉及隨機向量和隨機矩陣的方法和模型,而不僅僅是隨機單變量(標量)變量。因此,在多元統計中,我們經常使用矩陣表示法。與多元統計(傳統統計學的一個分支)密切相關的是機器學習(ML),它傳統上是計算機科學的一個分支。過去機器學習主要集中在算法上,而不是概率建模,但現在大多數機器學習方法都完全基于統計多元方法,因此這兩個領域正在收斂。多變量模型提供了一種方法來學習隨機變量組成部分之間的依賴關系和相互作用,這反過來使我們能夠得出有關興趣的潛在機制的結論(如生物或醫學)。

兩個主要任務: 無監督學習(尋找結構,聚類) 監督學習(從標記數據進行訓練,然后進行預測)

挑戰: 模型的復雜性需要適合問題和可用數據, 高維使估計和推斷困難 計算問題。

付費5元查看完整內容

相關內容

概率數值計算將機器學習和應用數學之間的聯系形式化。數值算法從可計算的量中逼近難以處理的量。他們通過被積函數的計算來估計積分,或者通過向量場的計算來估計微分方程所描述的動力系統的路徑。換句話說,他們從數據中推斷出潛在的數量。這本書表明,它是正式可能認為計算例程作為學習機,并使用貝葉斯推理的概念來構建更靈活,高效,或定制的算法的計算。文本迎合了碩士和博士學生,以及人工智能,計算機科學,統計和應用數學的研究生研究人員。提供了大量的背景材料以及大量的圖形、工作示例和練習(帶解決方案)。

我們的主要目標是研究不確定性在數值計算中的應用和作用,并利用這種不確定性來做出關于計算的最優決策

//www.probabilistic-numerics.org/

付費5元查看完整內容

在當今自動化、云計算、算法、人工智能和大數據的世界中,很少有話題像數據科學和機器學習那樣相關。它們最近之所以受歡迎,不僅是因為它們適用于現實生活中的問題,還因為它們自然地融合了許多不同的學科,包括數學、統計學、計算機科學、工程學、科學和金融學。對于開始學習這些主題的人來說,大量的計算技術和數學思想似乎是壓倒性的。有些人可能只滿足于學習如何使用現成的方法來應用于實際情況。這本書的目的是提供一個可訪問的,但全面的數據科學和機器學習的概述。它是為任何有興趣獲得更好的理解數學和統計,支持豐富的各種想法和機器學習算法的數據科學。我們的觀點是,計算機語言來來去去,但潛在的關鍵思想和算法將永遠存在,并將形成未來發展的基礎。

數據科學為理解和處理數據提供了必要的語言和技術。它涉及數值數據的設計、收集、分析和解釋,目的是提取模式和其他有用的信息。機器學習與數據科學密切相關,涉及從數據中學習的算法和計算機資源的設計。本書的組織大致遵循數據科學項目的典型步驟:收集數據以獲得關于研究問題的信息;數據的清理、匯總和可視化;數據建模和分析;將關于模型的決策轉化為關于研究問題的決策和預測。由于這是一本以數學和統計為導向的書,大部分重點將放在建模和分析上。

我們從第一章開始,使用Python中的數據操作包、結構化、總結和可視化數據。雖然本章中涉及的材料不需要數學知識,但它為數據科學形成了一個明顯的起點:更好地理解可用數據的性質。在第二章中,我們介紹統計學習的主要成分。我們區分監督和非監督學習技術,并討論我們如何評估(非)監督學習方法的預測性能。統計學習的一個重要部分是數據建模。我們介紹了數據科學中各種有用的模型,包括線性、多元高斯和貝葉斯模型。機器學習和數據科學中的許多算法使用蒙特卡洛技術,這是第3章的主題。蒙特卡洛可以用于模擬、估計和優化。第四章討論了無監督學習,其中我們討論了密度估計、聚類和主成分分析等技術。然后我們將注意力轉向監督式學習然后,我們將在第5章中把注意力轉向監督學習,并解釋一大類回歸模型背后的思想。在其中,我們還描述了如何使用Python的statmodels包來定義和分析線性模型。第6章建立在前一章回歸的基礎上,發展了核方法和正則化的強大概念,這使得第5章的基本思想可以以優雅的方式得到擴展,使用重建核希爾伯特空間的理論。在第7章中,我們繼續進行分類任務,它也屬于監督學習框架,并考慮了各種分類方法,包括貝葉斯分類、線性和二次判別分析、k近鄰和支持向量機。在第8章,我們考慮回歸和分類的通用方法,利用樹結構。最后,在第9章,我們考慮了神經網絡和深度學習的工作方式,并表明這些學習算法有一個簡單的數學解釋。在每一章的末尾都提供了廣泛的練習。

//www.routledge.com/Data-Science-and-Machine-Learning-Mathematical-and-Statistical-Methods/Kroese-Botev-Taimre-Vaisman/p/book/9781138492530#:~:text=The%20purpose%20of%20Data%20Science,and%20machine%20learning%20algorithms%20in

付費5元查看完整內容

大多數有關回歸的教科書側重于理論和最簡單的例子。然而,真正的統計問題是復雜而微妙的。這不是一本關于回歸理論的書。它是關于使用回歸來解決比較、估計、預測和因果推理等實際問題。與其他書籍不同,它側重于實際問題,如樣本量、缺失數據以及廣泛的目標和技術。它直接進入你可以立即使用的方法和計算機代碼。作者親身經歷的真實例子和故事,展示了回歸的作用及其局限性,并為理解實驗和觀察研究的假設和實施方法提供了實用建議。他們順利過渡到邏輯回歸和GLM。重點是R和Stan的計算,而不是推導,代碼可以在線獲得。圖形和演示有助于理解模型和模型擬合。

目錄內容: 介紹 數據和測量 數學和概率論中的一些基本方法 生成模型和統計推斷 模擬 回歸建模背景 單預測器線性回歸 擬合回歸模型 預測和貝葉斯推理 多預測因子線性回歸 假設、診斷和模型評估 轉換 邏輯回歸 使用邏輯回歸 其他廣義線性模型 設計和樣本大小的決定 后分層和缺失數據歸因 因果推理基礎和隨機實驗 使用對治療變量的回歸進行因果推斷 因果推理中更高級的主題 高級回歸和多級模型

現有的關于回歸的教科書通常混合了一些數學推導。我們寫這本書是因為我們看到了一種新的前進方式,專注于理解回歸模型,將它們應用于實際問題,并使用假數據模擬來理解模型是如何匹配的。讀完這本書并完成練習之后,您應該能夠在計算機上模擬回歸模型,并建立、批判性地評估它們,并將它們用于應用問題。我們的書的另一個特點,除了廣泛的例子和計算機模擬的重點,是它的廣泛的覆蓋,包括統計和測量的基礎知識,線性回歸,多元回歸,貝葉斯推理,邏輯回歸和廣義線性模型,從樣本到人口的外推,和因果推論。線性回歸是一個起點,但止步于此是沒有意義的:一旦你有了統計預測的基本概念,最好的理解方法是將它應用到許多不同的方式和不同的環境中。

在完成本書的第1部分后,您應該能夠使用數學、統計和計算工具,這些工具將允許您使用回歸模型。這些前幾章可以作為你在入門統計學課程中所學到的方法和思想的橋梁。

第1部分的目標包括顯示和探索數據,計算和繪制線性關系,理解基本的概率分布和統計推斷,以及模擬隨機過程來表示推斷和預測不確定性。

在完成第2部分之后,您應該能夠構建、適應、理解、使用和評估線性回歸模型的適應。本書這部分的章節在幾個應用和模擬數據示例的背景下開發相關的統計和計算工具。

完成第3部分后,您應該能夠類似地使用邏輯回歸和其他廣義線性模型。

第4部分涵蓋了從樣本到總體的數據收集和外推,第5部分我們涵蓋了因果推理,從使用受控實驗回歸的基本方法開始,然后考慮更復雜的方法來調整觀測數據的不平衡或利用自然實驗。

第6部分介紹了更高級的回歸模型,附錄包括一些快速提示和軟件的概述

付費5元查看完整內容

在過去的十年里,人們對人工智能和機器學習的興趣有了相當大的增長。從最廣泛的意義上說,這些領域旨在“學習一些有用的東西”,了解生物體所處的環境。如何處理收集到的信息導致了算法的發展——如何處理高維數據和處理不確定性。在機器學習和相關領域的早期研究階段,類似的技術在相對孤立的研究社區中被發現。雖然不是所有的技術都有概率論的自然描述,但許多都有,它是圖模型的框架(圖和概率論的結合),使從統計物理、統計、機器學習和信息理論的想法的理解和轉移。在這種程度上,現在有理由期待機器學習研究人員熟悉統計建模技術的基礎知識。這本書集中在信息處理和機器學習的概率方面。當然,沒有人說這種方法是正確的,也沒有人說這是唯一有用的方法。事實上,有人可能會反駁說,這是沒有必要的,因為“生物有機體不使用概率論”。無論情況是否如此,不可否認的是,圖模型和概率框架幫助機器學習領域出現了新算法和模型的爆炸式增長。我們還應該清楚,貝葉斯觀點并不是描述機器學習和信息處理的唯一方法。貝葉斯和概率技術在需要考慮不確定性的領域中發揮了自己的作用。

//www0.cs.ucl.ac.uk/staff/d.barber/brml/

本書結構

本書第一部分的目的之一是鼓勵計算機科學專業的學生進入這一領域。許多現代學生面臨的一個特別困難是有限的正規微積分和線性代數訓練,這意味著連續和高維分布的細節可能會讓他們離開。在以概率作為推理系統的一種形式開始時,我們希望向讀者展示他們可能更熟悉的邏輯推理和動態規劃的想法如何在概率環境中有自然的相似之處。特別是,計算機科學的學生熟悉的概念,算法為核心。然而,在機器學習中更常見的做法是將模型視為核心,而如何實現則是次要的。從這個角度來看,理解如何將一個數學模型轉換成一段計算機代碼是核心。

第二部分介紹了理解連續分布所需的統計背景,以及如何從概率框架來看待學習。第三部分討論機器學習的主題。當然,當一些讀者看到他們最喜歡的統計話題被列在機器學習下面時,他們會感到驚訝。統計學和機器學習之間的一個不同觀點是,我們最終希望構建什么樣的系統(能夠完成“人類/生物信息處理任務的機器),而不是某些技術。因此,我認為這本書的這一部分對機器學習者來說是有用的。第四部分討論了明確考慮時間的動態模型。特別是卡爾曼濾波器被視為圖模型的一種形式,這有助于強調模型是什么,而不是像工程文獻中更傳統的那樣把它作為一個“過濾器”。第五部分簡要介紹了近似推理技術,包括隨機(蒙特卡羅)和確定性(變分)技術。

付費5元查看完整內容

大量大維度數據是現代機器學習(ML)的默認設置。標準的ML算法,從支持向量機這樣的內核方法和基于圖的方法(如PageRank算法)開始,最初的設計是基于小維度的,在處理真實世界的大數據集時,即使不是完全崩潰的話,往往會表現失常。隨機矩陣理論最近提出了一系列廣泛的工具來幫助理解這種新的維數詛咒,幫助修復或完全重建次優算法,最重要的是提供了處理現代數據挖掘的新方向。本編著的主要目的是提供這些直覺,通過提供一個最近的理論和應用突破的隨機矩陣理論到機器學習摘要。針對廣泛的受眾,從對統計學習感興趣的本科生到人工智能工程師和研究人員,這本書的數學先決條件是最小的(概率論、線性代數和真實和復雜分析的基礎是足夠的):與隨機矩陣理論和大維度統計的數學文獻中的介紹性書籍不同,這里的理論重點僅限于機器學習應用的基本要求。這些應用范圍從檢測、統計推斷和估計,到基于圖和核的監督、半監督和非監督分類,以及神經網絡: 為此,本文提供了對算法性能的精確理論預測(在不采用隨機矩陣分析時往往難以實現)、大維度的洞察力、改進方法,以及對這些方法廣泛適用于真實數據的基本論證。該專著中提出的大多數方法、算法和圖形都是用MATLAB和Python編寫的,讀者可以查閱(//github.com/Zhenyu-LIAO/RMT4ML)。本專著也包含一系列練習兩種類型:短的練習與修正附加到書的最后讓讀者熟悉隨機矩陣的基本理論概念和工具分析,以及長期指導練習應用這些工具進一步具體的機器學習應用程序。

付費5元查看完整內容

機器學習中復雜的統計數據讓許多開發人員感到擔憂。了解統計學可以幫助你建立強大的機器學習模型,針對給定的問題陳述進行優化。這本書將教你所有需要執行復雜的統計計算所需的機器學習。您將獲得有關監督學習、非監督學習、強化學習等統計信息。了解真實世界的例子,討論機器學習的統計方面,并熟悉它。您還將設計用于執行諸如模型、參數擬合、回歸、分類、密度收集等任務的程序。

到本書結束時,你將掌握機器學習所需的統計數據,并能夠將你的新技能應用于任何類型的行業問題。

付費5元查看完整內容

學習使用Python分析數據和預測結果的更簡單和更有效的方法

Python機器學習教程展示了通過關注兩個核心機器學習算法家族來成功分析數據,本書能夠提供工作機制的完整描述,以及使用特定的、可破解的代碼來說明機制的示例。算法用簡單的術語解釋,沒有復雜的數學,并使用Python應用,指導算法選擇,數據準備,并在實踐中使用訓練過的模型。您將學習一套核心的Python編程技術,各種構建預測模型的方法,以及如何測量每個模型的性能,以確保使用正確的模型。關于線性回歸和集成方法的章節深入研究了每種算法,你可以使用書中的示例代碼來開發你自己的數據分析解決方案。

機器學習算法是數據分析和可視化的核心。在過去,這些方法需要深厚的數學和統計學背景,通常需要結合專門的R編程語言。這本書演示了機器學習可以如何實現使用更廣泛的使用和可訪問的Python編程語言。

使用線性和集成算法族預測結果

建立可以解決一系列簡單和復雜問題的預測模型

使用Python應用核心機器學習算法

直接使用示例代碼構建自定義解決方案

機器學習不需要復雜和高度專業化。Python使用了更簡單、有效和經過良好測試的方法,使這項技術更容易為更廣泛的受眾所接受。Python中的機器學習將向您展示如何做到這一點,而不需要廣泛的數學或統計背景。

付費5元查看完整內容

機器學習和人工神經網絡無處不在,它們對我們日常生活的影響比我們可能意識到的還要深遠。這堂課是專門針對機器學習在不同科學領域的使用的介紹。在科學研究中,我們看到機器學習的應用越來越多,反映了工業技術的發展。這樣一來,機器學習就成為了精確科學的通用新工具,與微積分、傳統統計學和數值模擬等方法并行其道。這就提出了一個問題,在圖2所示的科學工作流程中,這些新方法是最好的。

此外,一旦確定了一項特定的任務,將機器學習應用到科學領域就會面臨非常具體的挑戰: (i) 科學數據通常具有非常特定的結構,例如晶體圖像中近乎完美的周期性; (ii) 通常情況下,我們對應該反映在機器學習分析中的數據相關性有特定的知識; (iii) 我們想要了解為什么一個特定的算法會起作用,尋求對自然機制和法則的基本見解; (iv) 在科學領域,我們習慣于算法和定律提供確定性答案,而機器學習本質上是概率性的——不存在絕對的確定性。盡管如此,定量精度在許多科學領域是至關重要的,因此是機器學習方法的一個關鍵基準。

這堂課是為科學領域的科學家和學生介紹基本機器學習算法。我們將涵蓋:

  • 最基本的機器學習算法,
  • 該領域的術語,簡要解釋,
  • 監督和無監督學習的原理,以及為什么它是如此成功,
  • 各種人工神經網絡的架構和它們適合的問題,
  • 我們如何發現機器學習算法使用什么來解決問題

機器學習領域充滿了行話,對于不了解機器學習的人來說,這些行話掩蓋了機器學習方法的核心。作為一個不斷變化的領域,新的術語正在以快速的速度被引入。我們的目標是通過精確的數學公式和簡潔的公式來切入俚語,為那些了解微積分和線性代數的人揭開機器學習概念的神秘面紗。

如上所述,數據是本節課所討論的大多數機器學習方法的核心。由于原始數據在很多情況下非常復雜和高維,首先更好地理解數據并降低它們的維數往往是至關重要的。下一節,第2節將討論在轉向神經網絡的重型機器之前可以使用的簡單算法。

我們最關注的機器學習算法,一般可以分為兩類算法,即判別算法和生成算法,如圖3所示。判別任務的例子包括分類問題,如上述數字分類或分類為固體,液體和氣相給出一些實驗觀測。同樣,回歸,也就是估計變量之間的關系,也是一個判別問題。更具體地說,我們在給定一些輸入數據x的情況下,嘗試近似某個變量y (label)的條件概率分布P(y|x)。由于這些任務中的大部分數據都是以輸入數據和目標數據的形式提供的,這些算法通常采用監督學習。判別算法最直接地適用于科學,我們將在第3和第4節中討論它們。

人工智能的前景可能引發科學領域的不合理預期。畢竟,科學知識的產生是最復雜的智力過程之一。計算機算法肯定還遠沒有達到那樣復雜的水平,而且在不久的將來也不會獨立地制定新的自然法則。盡管如此,研究人員研究了機器學習如何幫助科學工作流程的各個部分(圖2)。雖然制定牛頓經典力學定律所需的抽象類型似乎難以置信地復雜,但神經網絡非常擅長隱式知識表示。然而,要準確地理解它們是如何完成某些任務的,并不是一件容易的事情。我們將在第6節討論這個可解釋的問題。

第三類算法被稱為強化學習(reinforcement learning),它不完全符合近似統計模型的框架. 機器學習的成功很大程度上與科學家使用適當算法的經驗有關。因此,我們強烈建議認真解決伴隨練習,并充分利用練習課程。

付費5元查看完整內容

機器學習是數學統計和計算機科學交叉的跨學科領域。機器學習研究統計模型和算法,以從經驗數據中得出預測因子或有意義的模式。機器學習技術主要應用于搜索引擎、語音識別和自然語言處理、圖像檢測、機器人技術等領域。在我們的課程中,我們將討論以下問題:學習的數學模型是什么?如何量化一個學習問題的難度/難度/復雜性?如何選擇學習模型和學習算法?如何衡量機器學習的成功?

我們的課程大綱:

  1. 監督學習,非監督學習,強化學習。

  2. 機器學習泛化能力

  3. 支持向量機,核機

  4. 神經網絡和深度學習

付費5元查看完整內容

解鎖數據的力量,第二版繼續使用這些直觀的方法,如隨機化和自舉間隔介紹統計推斷的基本思想。這些方法通過真實相關的例子被賦予生命,通過易于使用的統計軟件,并可在課程的早期階段使用。這個項目包括更傳統的方法,如t檢驗,卡方文本等,但只有在學生對隨機方法的推理有了強烈的直覺理解之后。整個課程的重點是數據分析,主要目標是讓學生能夠有效地收集數據,分析數據,并解釋從數據中得出的結論。程序是由真實的數據和真實的應用驅動的。

付費5元查看完整內容
北京阿比特科技有限公司