亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人工智能技術的最新進展促使了模型規模的前所未有增長,特別是大型語言模型(LLMs)的出現。

雖然這些模型在多個領域展示了出色的能力,但它們的指數級擴展也帶來了顯著的推理時間開銷,例如內存需求增加、延遲增加和計算成本上升,從而使高效的部署和服務變得具有挑戰性。本文通過全棧方法應對這些挑戰,旨在提升人工智能推理棧四個關鍵組件的效率:模型優化、推理方法、模型架構和應用。在模型優化方面,我們引入了量化技術來優化推理時的計算和內存需求。

I-BERT通過采用僅整數量化來優化計算,這實現了最高3.5倍的延遲加速,并使Transformer架構能夠在僅支持整數運算的硬件上部署。SqueezeLLM采用極低位寬的權重量化,有效降低了內存需求,同時在LLM推理過程中不犧牲精度。在推理方法的優化方面,我們提出了Big Little Decoder框架,

這是一種通過小模型和大模型之間的協作加速自回歸LLM推理的推測解碼框架,能夠實現最高2倍的加速。關于模型架構,我們提出了一種高效的語音識別設計,采用了Temporal U-Net結構,

通過縮短輸入序列長度來提高推理效率。最后,在應用層面,我們引入了LLMCompiler,

這是一個高效編排LLM應用中多個函數調用的框架,通過將復雜的用戶輸入分解為更小、更易處理的任務,降低了執行延遲和成本,并提高了系統的魯棒性。這些貢獻共同提供了一種全棧策略,用于優化人工智能模型推理,從低層次的系統到高層次的應用,推動了最先進AI解決方案的高效部署和服務。

人工智能技術在自然語言處理、計算機視覺和語音識別等多個領域取得了前所未有的進展。

然而,當前普遍采用的擴展模型規模的策略帶來了顯著的推理時間開銷,導致在高效部署和服務最先進模型時面臨挑戰。例如,如圖1.1所示,自2017年引入具有6500萬個參數的Transformer架構[266]以來,模型規模呈指數級增長——每兩年增長410倍——開啟了大型語言模型(LLMs)時代,代表性模型如擁有1750億參數的GPT-3和其他數十億參數級的模型。這一增長遠遠超過了GPU內存的擴展,后者僅每兩年翻倍。因此,模型規模的擴展不僅導致了巨大的內存需求,通常超過單個GPU的容量,還引發了延遲、能效和運行這些大型模型的計算成本等方面的挑戰。為了解決這一問題并減少人工智能解決方案的運行時開銷,全棧優化在人工智能推理棧中的應用至關重要。 如圖1.2所示,本文將涵蓋提高推理棧中四個關鍵組件的效率,這些組件分別處于不同的層次:模型優化、推理方法、模型架構和應用。它們涵蓋了從面向硬件的底層到面向用戶的上層,全面解決從低層系統到高層應用的效率問題。模型優化。

模型優化是通過減少模型規模并更有效地利用底層硬件資源(如計算和內存)來高效部署模型的一種關鍵方法。常見的技術包括量化,它通過使用低位精度(如8位)而非標準的32位或16位浮點數(即FP32或FP16)來壓縮模型的權重和激活值,以及剪枝,它去除模型中不重要的權重。這些方法通常在模型架構設計和訓練完成后應用,使得模型能夠在顯著降低計算和內存需求的同時保持相似的準確性,從而使模型更適用于資源受限的環境。本論文介紹了旨在提高Transformer推理過程中計算和內存效率的量化技術。

在第二章中,我們提出了I-BERT,這是一種通過利用僅整數量化來提高計算效率的方法。通過使用整數算術進行整個推理過程,I-BERT不僅實現了最高3.5倍的延遲加速,還使得Transformer模型能夠在僅支持整數計算的硬件上部署。第三章介紹了SqueezeLLM,這是一種通過極低位寬權重量化優化LLM推理中內存效率的量化技術。由于內存操作通常在LLM的自回歸生成任務中成為主要瓶頸,SqueezeLLM提供了一種精確的量化策略,通過降低位寬(例如3位或4位)來保持底層權重分布,從而顯著降低內存需求,而不犧牲模型的準確性。

推理方法

為了高效服務大規模模型,理解它們的推理動態至關重要,以最小化冗余操作并最大化資源利用率。在第四章中,我們介紹了Big Little Decoder(BiLD),一種旨在解決LLM自回歸推理中內存操作低效的推測解碼框架。自回歸生成通常是內存受限的,因為每生成一個標記都需要執行一個昂貴的內存操作來加載一個大的權重矩陣。因此,減少運行時內存流量是提高推理效率的關鍵。BiLD通過小模型和大模型之間的協作來解決這一挑戰——小模型快速生成多個標記,而大模型間歇性地檢查和完善小模型的預測。這種方法使得大模型能夠執行非自回歸操作,在單次迭代中處理多個標記,從而實現2倍的推理加速,同時不影響生成結果的質量。

模型架構

增強效率的后訓練方法,如模型優化和更好的推理方法,由于其在模型設計和訓練完成后可以靈活應用,已經變得越來越流行;然而,進一步的效率提升通常需要開發針對特定領域的新型模型架構。這個過程中的一個關鍵因素是歸納偏置的使用,它在指導模型設計中起著至關重要的作用。歸納偏置[185]指的是學習算法所做的假設,這些假設使得算法能夠從有限的訓練數據中推廣到領域的通用模型。例如,卷積神經網絡(CNN)使用局部性作為計算機視覺中圖像任務的歸納偏置,展示了領域特定的歸納偏置如何指導更好的架構設計。Transformer模型在提供大量數據時展示了出色的性能,盡管其歸納偏置較少。然而,對于較小的模型或數據相對匱乏的領域,這種方法可能效果不佳。在這些場景中,設計具有強歸納偏置的領域特定架構可以導致更高效、更有效的模型性能,特別是在數據或計算資源有限時。為此,在第五章中,我們提出了一種用于語音識別的更緊湊的架構。通過專注于連續語音信號在時間軸上的冗余,我們提出了一種Temporal U-Net結構,通過有效縮短輸入序列長度顯著提高了效率。該設計在固定資源預算內提升了語音識別模型的準確性,增強了性能和效率。

人工智能應用

LLM推理能力的最新進展使其潛力超越了內容生成,能夠解決更復雜的問題。推動這種問題解決能力擴展的關鍵因素之一是其功能(或工具)調用能力,使LLM能夠調用外部功能并集成其輸出以輔助任務完成。LLM的這種集成功能調用的能力促使了LLM應用開發方式的范式轉變,推動了代理式應用的興起。在這些應用中,LLM通過執行動作和通過外部功能收集信息,主動與環境互動,從而使它們能夠自主完成用戶任務。因此,為了提高這些基于LLM的應用的效率,單純優化單一模型的效率——無論是通過模型優化、改進推理方法還是更高效的模型架構——是不夠的。 同樣重要的是要增強LLM與外部功能之間動態交互的效率,從而構建更高效、可擴展和響應迅速的代理式應用。在第六章中,我們介紹了LLMCompiler,它通過將用戶輸入分解為可執行任務及其相互依賴關系來高效地編排多個功能調用。LLMCompiler通過并行運行獨立任務顯著減少了執行延遲和成本,同時通過將復雜任務分解為更小、更易管理的任務,增強了任務的魯棒性。該方法邁出了構建更高效、可擴展的代理式應用的步伐,這些應用能夠處理日益復雜的工作流。

付費5元查看完整內容

相關內容

 機器學習的一個分支,它基于試圖使用包含復雜結構或由多重非線性變換構成的多個處理層對數據進行高層抽象的一系列算法。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

多模態學習使神經網絡能夠處理和整合來自不同感知模態(如視覺、語言和聲音)的信息,在情感計算、醫療健康和高級多模態聊天機器人等應用中日益重要。盡管多模態學習具有廣闊的潛力,但仍面臨諸多挑戰,尤其是在數據效率方面。構建高質量的大規模多模態數據集的需求構成了巨大的障礙,限制了大規模多模態模型的可擴展性和可獲取性。 本論文研究了數據高效的深度多模態學習中的關鍵問題,重點關注不均衡的多模態數據選擇、多模態主動學習中的冷啟動問題,以及大型視覺-語言模型(VLMs)中的幻覺問題。 首先,我們分析了傳統主動學習策略的局限性,這些策略往往偏向于主導模態,導致模型在訓練過程中忽略較弱的模態,從而形成不平衡的多模態表示。為了解決這一問題,我們提出了一種梯度嵌入調制(gradient embedding modulation)方法,以確保數據選擇過程中對不同模態的公平性,從而提升模型對強模態和弱模態的均衡利用能力。 基于我們在熱啟動(warm-start)主動學習方面的研究,我們進一步研究了多模態主動學習中的冷啟動(cold-start)問題,即在沒有初始標注數據的情況下如何有效進行數據選擇。為此,我們提出了一種兩階段方法

  1. 多模態自監督學習:通過使用單模態原型(unimodal prototypes)來統一不同模態的表示,從而縮小模態間的表示差距。
  2. 數據選擇階段:引入正則化項以最大化模態對齊度,在不增加數據量的前提下提升模型性能,相較于現有方法取得了更優結果。

在從數據選擇擴展到訓練數據利用的研究中,我們進一步探討了大型視覺-語言模型(VLMs)中的幻覺(hallucination)問題,即模型在生成內容時產生與輸入圖像上下文不符的錯誤信息。我們研究了幻覺現象與視覺依賴性(visual dependence)之間的關系,揭示了某些特定 token 對幻覺的貢獻遠高于其他 token。基于這一發現,我們提出了一種訓練權重調整策略,根據 token 的視覺依賴性來調整訓練過程中的權重分配,從而在無需額外訓練數據或推理成本的情況下有效降低幻覺率。 本論文的貢獻在于推動數據高效的多模態學習,通過優化多模態數據選擇、解決冷啟動問題,以及減少大型視覺-語言模型中的幻覺,本研究為更實用、可擴展的多模態學習系統奠定了基礎,使其在降低數據和計算成本的同時提升模型性能

付費5元查看完整內容

深度學習因其卓越的高維特征表示學習能力而變得越來越受歡迎。許多算法和模型已經被開發出來,以增強深度學習在各種現實任務中的應用,包括圖像分類、自然語言處理和自動駕駛。然而,深度學習模型容易受到后門威脅的影響,攻擊者通過操控訓練過程或數據,導致模型在含有特定觸發器的惡意樣本上做出錯誤預測,同時在正常樣本上保持正常性能。隨著深度學習的發展,包括不斷演化的訓練方案以及對大規模訓練數據的需求,后門領域的新威脅不斷出現。另一方面,后門也可以被用來保護深度學習模型,例如通過水印技術。在本論文中,我們從三個新穎的角度深入探討了后門技術。

在論文的第一部分,我們展示了新興的深度學習訓練方案可能引入新的后門風險。具體而言,預訓練的自然語言處理(NLP)模型可以輕松地適應多種下游語言任務,顯著加速語言模型的開發。然而,預訓練模型成為這些下游模型的單點故障。我們提出了一種新的任務無關的后門攻擊方法,針對預訓練的NLP模型,在這種攻擊中,攻擊者無需事先了解下游任務即可將后門植入預訓練模型中。任何從這個惡意模型轉移的下游模型將繼承后門,即使在經過廣泛的遷移學習后,這揭示了預訓練基礎模型在面對后門攻擊時的嚴重脆弱性。 在論文的第二部分,我們開發了適應新威脅場景的創新后門攻擊方法。深度學習模型的快速擴展需要大規模的訓練數據,其中大部分是未標注的,并外包給第三方進行注釋。為了確保數據安全,大多數數據集對訓練樣本是只讀的,防止添加輸入觸發器。因此,攻擊者只能通過上傳惡意注釋來實現數據中毒。在這種實際場景中,所有現有的數據中毒方法都無法在輸入中添加觸發器。因此,我們提出了新的后門攻擊方法,這些方法僅通過中毒標簽而不修改任何輸入樣本來實現。

在論文的第三部分,我們利用后門技術主動保護我們的深度學習模型,特別是在知識產權保護方面。考慮到深度學習任務的復雜性,生成一個訓練良好的深度學習模型需要大量的計算資源、訓練數據和專業知識。因此,保護這些資產并防止版權侵權至關重要。受到后門攻擊的啟發,后門攻擊可以通過精心設計的樣本誘發目標模型特定的行為,已經提出了幾種水印方法來保護深度學習模型的知識產權。模型所有者可以訓練他們的模型,以便對某些精心制作的樣本產生獨特的輸出,并利用這些樣本進行所有權驗證。盡管為監督學習的深度學習模型設計了各種提取技術,但在將它們應用于深度強化學習模型時會遇到挑戰,因為模型特性和場景的不同。因此,我們提出了一種新的水印方案,以保護深度強化學習模型免受未經授權的分發。與傳統深度學習模型中使用空間水印不同,我們設計了時間水印,這種水印在盡量減少對受保護深度強化學習模型潛在影響和損害的同時,能夠實現高保真度的所有權驗證。 總之,本論文探討了深度學習技術發展過程中后門威脅的演變,并研究了如何利用后門技術在知識產權保護中發揮積極作用。

付費5元查看完整內容

在過去十年的繁榮發展之后,視頻理解的研究已到達一個關鍵的節點,單純依賴海量數據和復雜的架構已不再是適用于所有情況的萬能解決方案。數據不平衡的普遍存在阻礙了深度神經網絡(DNNs)有效學習潛在的因果機制,導致在遇到分布變化時(如長尾不平衡和擾動不平衡)性能顯著下降。這一現象促使研究者開始探索替代方法,以捕捉視頻數據中的因果模式。為了應對這些挑戰并提高DNNs的魯棒性,因果建模作為一種原則被提出,旨在發現觀察到的相關性背后的真實因果模式。

本文主要研究視頻語義理解領域,探索因果建模在推進兩個基礎任務中的潛力:視頻關系檢測(Video Relation Detection, VidVRD)和視頻問答(Video Question Answering, VideoQA)。

總結來說,本論文的主要貢獻如下:

  • 我們提出了一種干預性視頻關系檢測方法,稱為IVRD,旨在解決VidVRD中關系的長尾不平衡問題。盡管尾部關系具有信息性,但由于其在數據集中稀少,難以預測。我們特別提出了一套分層的關系原型,這迫使關系推理模塊關注實體之間動態交互的視覺內容,而非依賴于對象與關系標簽之間的偽相關性。通過引入因果推理,IVRD為改善長尾不平衡情況下的視頻理解提供了一個有前景的方向,使模型能夠更好地泛化到現實世界場景中,特別是在稀有或不常見的關系在場景理解中扮演關鍵角色時。
  • 我們引入了一種視頻問答中的不變性定位方法,稱為IGV,這是一種與模型無關的學習框架,旨在解決由答案-環境之間的偽相關性帶來的負面影響。IGV通過定位問題關鍵的(因果)場景,發現因果推理模式。具體而言,IGV利用了因果場景與答案之間的關系在環境變化時仍保持不變這一事實,并且去除因果場景應導致問題回答失敗。通過定位這些關鍵場景,IGV使VideoQA模型能夠專注于準確推理所需的視覺內容,同時避免環境負面的影響,從而顯著提升了模型的推理能力。
  • 我們提出了視頻問答中的等變性定位方法EIGV,進一步增強了魯棒性和視覺可解釋性。基于IGV,EIGV還引入了等變性,促使回答過程對因果場景和問題中的語義變化更為敏感。相較之下,不變性定位要求回答過程對環境場景的變化不敏感。這兩種正則化機制協同工作,區分因果場景與環境場景,并通過呈現視覺-語言對齊提供更多的透明性。通過結合不變性和等變性定位的優勢,EIGV創建了一個更加魯棒且可解釋的VideoQA框架。
  • 我們發現了視頻問答中的時空推理,解決了長視頻和多對象樣本(即復雜視頻問答)上的低準確性問題。現有的VideoQA實踐(包括預訓練模型如SeVila [162])大多是在短視頻片段(約15秒)和少數實體(約2個)上進行訓練的,因此在復雜視頻(超過80秒且包含5個以上對象)上表現較差。原因在于長視頻不可避免地引入大量冗余和偽相關性,因為許多與問題無關的環境對象存在。為應對這一挑戰,我們首先強調建模問題關鍵的時間片段和空間對象的重要性,接著提出了時空推理(Spatio-Temporal Rationalization, STR)方法,通過可微選擇模塊自適應地收集問題關鍵的時間片段和對象,并通過跨模態交互進行推理。結合更合理的候選答案解碼策略,STR有效識別出與問題無關的幀和對象作為因果模式,尤其在復雜場景下顯著改善了預測性能。

本文的一個局限性在于對所識別因果場景的評估。在整個研究過程中,我們依賴于問題回答(QA)總體性能作為所發現因果場景質量的間接指標,基于這樣一個推理:更準確地定位因果場景可能會提供更豐富的問題-關系視覺線索,從而提升QA性能。然而,值得注意的是,基于因果場景的直接量化指標將提供更具說服力的見解。遺憾的是,由于缺乏人類級別的定位標注,當前工作中未能實現這種度量。因此,未來的研究將著力建立一個專門針對因果場景的評估基準,涉及對回答過程所依賴的視覺元素進行人類標注。這一舉措將有助于更全面和嚴格地評估因果場景的發現。

總之,本文的貢獻拓展了因果建模在視頻語義理解中的前沿應用,賦能AI系統掌握因果模式,并在應對視頻理解挑戰任務中提升性能。

付費5元查看完整內容

近年來,深度學習的進展在很大程度上得益于數據和計算資源的增加。盡管數據的豐富性使模型在某些領域表現良好,但在實際應用中(例如醫學領域),數據往往稀缺或難以收集。此外,也存在將大型數據集視為許多相關的小數據集的情境,其中一個小數據集相關任務的數據可能不充足。同時,人類智能通常只需少量樣本即可在新任務上表現出色,這強調了設計數據高效AI系統的重要性。本論文探討了應對這一挑戰的兩種策略:元學習和對稱性。

元學習將數據豐富的環境視為許多小型、獨立數據集的集合。每個小數據集代表一個不同的任務,但它們之間存在潛在的共享知識。利用這種共享知識可以設計出在相似領域中高效解決新任務的學習算法。相比之下,對稱性是一種直接的先驗知識。通過確保模型的預測在輸入發生任何變換后仍保持一致,這些模型可以提高樣本效率和泛化能力。

在后續章節中,我們提出了一些旨在提高深度學習系統數據效率的新技術和模型。首先,我們展示了基于條件神經過程(CNPs)的編碼器-解碼器風格的元學習方法的成功應用。其次,我們引入了一類新型的表達力強的元學習隨機過程模型,這些模型通過在函數空間中堆疊神經參數化的馬爾可夫轉移算子序列構建而成。最后,我們提出了群等變子采樣/上采樣層,以解決傳統子采樣/上采樣層中等變性的喪失問題。利用這些層可以構建端到端的等變模型,從而提升數據效率。

//ora.ox.ac.uk/objects/uuid:98de960f-f7eb-4437-8c37-174b82374b21

付費5元查看完整內容

大型基礎模型在實現人工智能領域的最新突破中發揮了核心作用。通過同時將數據集和模型規模擴展到前所未有的水平,這些基礎模型在蛋白質結構預測、圖像/視頻生成、代碼生成、聊天機器人等許多領域表現出色。然而,它們的計算和內存成本也急劇增長,使得這些基礎模型在實際應用中的部署變得困難,尤其是在資源受限的邊緣設備上。此外,巨大的訓練成本也顯著阻礙了新基礎模型的發展,并引發了對巨大能源消耗和二氧化碳排放的擔憂。為了解決這些問題,構建有效的模型加速技術對于縮小計算供需之間的差距至關重要。 本論文將涵蓋模型加速的三個重要方面。首先,我們將討論高效表示學習,包括用于高分辨率視覺的EfficientViT(一種新的視覺Transformer架構)和用于條件圖像生成的條件感知神經網絡(一個新的控制模塊)。其次,我們將介紹硬件感知的加速技術,以創建針對不同硬件平臺和效率限制的專用神經網絡。第三,我們將介紹TinyTL,這是一種內存高效的遷移學習技術,用于實現設備上的模型定制。通過我們的設計,我們可以顯著提高深度神經網絡在硬件上的效率,而不損失準確性,使它們更易于訪問并降低其服務成本。例如,我們的模型在A100 GPU上實現了48.9倍的吞吐量提升,同時在零樣本實例分割性能上略微優于最新的模型。在條件圖像生成方面,我們的方法實現了52倍的計算成本降低,而性能沒有下降。

大型基礎模型在許多人工智能領域(包括自然語言處理[1], [2]、計算機視覺[3]–[5]、科學領域的AI應用[6]等)引發了革命性的變化。通過擴大模型規模并在網絡規模的數據集上訓練,這些基礎模型展示了驚人的少樣本/零樣本學習能力,能夠解決復雜的任務。這些卓越的表現引發了在實際應用中使用這些基礎模型的熱潮,將人工智能引入了我們的工作和日常生活。 然而,由于模型規模和計算成本的增加,這些基礎模型的訓練和推理成本非常高昂。例如,GPT-3[7]模型擁有1750億個參數,僅存儲它就已經超出了目前最強大的GPU(如NVIDIA H100 GPU)的容量。這對在云平臺上提供這些模型服務或在邊緣設備上部署它們提出了巨大挑戰。此外,高昂的訓練成本還導致了巨大的能源消耗和二氧化碳排放,引發了對這些AI基礎模型的可持續性問題的擔憂。 在本論文中,我們旨在研究模型加速技術,以提高深度神經網絡的效率,從而應對這一挑戰。我們的方法從三個方面加速深度神經網絡。首先,我們將討論高效的表示學習,旨在構建高效的構建模塊/神經網絡架構,從原始數據中提取有用信息。其次,我們將討論硬件感知的加速方法,旨在為不同的硬件平臺和效率約束定制專用的神經網絡,以獲得精度和硬件效率之間的最佳平衡。第三,我們將討論高效的模型定制,允許內存高效的設備端學習,以提供定制化的AI服務而不犧牲隱私。我們總結了本論文的主要內容如下:

**1.1 論文大綱

  • 第2章 描述了高效表示學習的技術。內容基于[8]和[9]。首先,Transformer架構是當前大型基礎模型的核心組件。然而,Transformer架構在處理長序列時表現不佳,因為其計算成本隨著輸入序列長度的增加而呈二次增長。我們提出了EfficientViT,這是一種用于高分辨率視覺的新型視覺Transformer架構。它通過僅使用硬件高效的操作,達到了全局感受野和強大的容量。EfficientViT在不同的硬件平臺上提供了顯著的性能提升。其次,添加控制是將圖像/視頻生成模型轉化為人類生產工具的關鍵步驟。我們提出了條件感知神經網絡(CAN),這是一種為圖像生成模型添加控制的新方法。與以往的條件控制方法并行,CAN通過動態操控神經網絡的權重來控制圖像生成過程。CAN在擴散Transformer模型中持續帶來顯著改進。

  • 第3章 介紹了硬件感知的AutoML技術,以有效地為不同的硬件平臺和效率約束定制專用的深度神經網絡。內容基于[10]和[11]。不同的硬件平臺具有不同的屬性(例如并行度、緩存大小、帶寬等)。針對不同的目標硬件平臺和不同的效率約束,我們需要定制化的神經網絡以實現性能與效率之間的最佳平衡。然而,手動為每個案例定制神經網絡是不可擴展的。因此,我們提出了硬件感知的AutoML技術來應對這一挑戰。我們的方法在不同的硬件平臺上提供了顯著的加速,包括手機、CPU、GPU、FPGA等。此外,我們的方法在多個低功耗計算機視覺挑戰賽中獲得了第一名。

  • 第4章 介紹了TinyTL[12],一種用于內存高效的設備端學習技術。TinyTL凍結了權重,只學習內存高效的偏置模塊,因此不需要存儲中間激活。為了保持適應能力,我們引入了一種新的內存高效偏置模塊,即輕量殘差模塊,通過學習小的殘差特征圖來優化特征提取器,僅增加了3.8%的內存開銷。廣泛的實驗表明,TinyTL在與微調整個網絡相比僅有微小的準確性損失的情況下,顯著節省了內存。

付費5元查看完整內容

優化算法是機器學習和統計推斷的基石。隨著大規模數據集的出現,計算挑戰日益增加,迫使人們追求更高效的算法。現代優化技術通常針對特定的機器學習問題進行定制,這些方法利用問題的獨特結構特征,使其比當前應用于這些問題的方法效率更高。另一個關鍵方面是理解所得到估計量的估計精度。在某些情況下,盡管在訓練集上實現精確優化可能不切實際,但某些簡單而有效的啟發式方法在適當的統計框架內可以表現出令人贊嘆的估計精度。 在本文中,我們從優化和統計的角度研究了幾種大規模算法。第2章和第3章研究了兩種針對結構約束的連續優化算法。第2章集中討論了具有圓柱形約束的無界約束的一種廣義Frank-Wolfe方法。第3章則研究了具有少量極點的多面體約束的類似坐標下降(CD)方法。這兩種方法由于對問題結構的敏感性而表現出最先進的性能。 第4章研究了一種帶有解釋器-響應對之間可能存在不匹配的線性回歸變體。我們研究了一種簡單且高效的啟發式方法,并在統計環境中對其估計誤差進行了嚴格分析。 第5章和第6章研究了兩種決策樹算法。第5章研究了最優決策樹的計算,并引入了一種新的分支定界方法,用于具有一般連續特征的最優決策樹。第6章則轉向在足夠雜質減少條件下對CART算法的分析。我們為滿足該條件的信號函數證明了嚴格的誤差界,并討論了一些滿足該條件的函數類。 第7章研究了一種具有形狀約束的密度估計問題。我們提出了一種立方-牛頓法框架用于計算,并研究了有限混合的逼近性質。

付費5元查看完整內容

利用深度神經網絡進行機器學習的最新進展,在從大型數據集學習方面取得了重大成功。然而,這些成功主要集中在計算機視覺和自然語言處理方面,而在序列決策問題方面的進展仍然有限。強化學習(RL)方法就是為了解決這些問題而設計的,但相比之下,它們很難擴展到許多現實世界的應用中,因為它們依賴于成本高昂且可能不安全的在線試錯,而且需要從頭開始逐個學習每個技能的低效過程。本文將介紹設計RL智能體的工作,這些智能體直接從離線數據中訓練,能夠掌握多種技能,以解決上述挑戰。

在本文的第一部分中,我們首先介紹了一種算法,從離線數據集中學習高性能策略,并通過使用學習到的動力學模型生成的推出來擴展離線數據,提高離線強化學習智能體的泛化能力。然后,我們將該方法擴展到高維觀測空間,如圖像,并表明該方法使現實世界的機器人系統能夠執行操作任務。在論文的第二部分,為了避免在之前的強化學習工作中從頭開始學習每個任務的問題,同時保持離線學習的好處,討論了如何使強化學習智能體通過跨任務共享數據從不同的離線數據中學習各種任務。此外,我們表明,共享數據需要標記來自其他任務的數據的獎勵,這依賴于繁重的獎勵工程,也是勞動密集型的。為了解決這些問題,我們描述了如何有效地利用離線RL中的各種未標記數據,繞過獎勵標記的挑戰。最后,我們列出了未來的研究方向,如利用異構無標簽離線數據集的有效預訓練方案、離線預訓練后的在線微調以及離線RL的離線超參數選擇。

付費5元查看完整內容

深度神經網絡(DNNs)使計算機能夠在許多不同的應用中脫穎而出,如圖像分類、語音識別和機器人控制。為了加快DNN的訓練和服務,并行計算被廣泛采用。向外擴展時,系統效率是一個大問題。在分布式機器學習中,高通信開銷和有限的設備上內存是導致系統效率低下的兩個主要原因。

//www2.eecs.berkeley.edu/Pubs/TechRpts/2022/EECS-2022-83.html

本文研究了在分布式機器學習工作負載下,在數據和模型并行性方面減輕通信瓶頸并實現更好的設備上內存利用的可能方法。

在通信方面,我們的Blink項目緩解了數據并行訓練中的通信瓶頸。通過打包生成樹而不是形成環,Blink可以在任意網絡環境中實現更高的靈活性,并提供近乎最佳的網絡吞吐量。為了消除模型并行訓練和推理過程中的通信問題,我們從系統層上升到應用層。我們的sensAI項目將多任務模型解耦到斷開的子網中,其中每個子網負責單個任務或原始任務集的子集的決策制定。

為了更好地利用設備上的內存,我們的小波項目有意增加任務啟動延遲,在加速器上的不同訓練任務波之間交錯使用內存峰值。通過將多個訓練波集中在同一個加速器上,它提高了計算和設備上的內存利用率。

付費5元查看完整內容

決策算法在許多不同的應用中被使用。傳統的設計決策算法的方法采用原則和簡化的建模,在此基礎上,人們可以通過易于處理的優化來確定決策。最近,深度學習方法正在變得越來越流行,這種方法使用從數據調整的高度參數架構,而不依賴于數學模型。基于模型的優化和以數據為中心的深度學習通常被認為是不同的學科。在這里,我們將它們描述為一個在特異性和參數化方面不斷變化的連續光譜的邊緣,并為位于這個光譜中間的方法提供一個教程式的展示,稱為基于模型的深度學習。在我們的演示中,我們還附帶了超分辨率和隨機控制方面的運行示例,并展示了如何使用所提供的特性和每種詳細方法來表示它們。將基于模型的優化和深度學習結合在一起,在生物醫學成像和數字通信等各種應用中使用實驗結果,證明了這種結合的好處。

付費5元查看完整內容

機器學習是一種變革性的計算工具,它正在革新許多技術和科學應用。然而,最近在人工智能和機器學習方面的成功,以及隨之而來的模型的廣泛部署,已經改變了經典的機器學習管道。首先,可用數據的絕對規模——在數量和維度上——已經爆炸。此外,現代機器學習架構具有指數級的設計選擇和超參數,但它們都是使用通用的隨機梯度方法進行優化的。這突出了自適應梯度方法的需要,該方法在沒有事先知道實例的情況下充分執行。接著并期望它們即使在不分布的輸入中也能提供良好的預測——這強調了對可靠模型的需要。最后,隨著我們收集越來越多的用戶數據,我們希望在向公眾發布這些模型時,基于這些數據訓練的模型不會損害訓練集中存在的個人的隱私。在這篇論文中,我們證明了解決這些新出現的問題需要優化方面的基本進步。更具體地說,我們首先提出了理解自適應梯度算法的最優性的新的理論結果,并展示了在基于梯度的采樣器的背景下自適應方法的實際用例。然后,我們提出了可擴展的最小最大優化方法,以有效地解決魯棒目標。最后,我們開發了私有優化方法,在更嚴格的隱私要求下最優地學習,以及自適應方法,在簡單的實例上增加“適當數量的噪聲”并顯著降低隱私的代價。

//searchworks.stanford.edu/view/14053711

付費5元查看完整內容
北京阿比特科技有限公司