亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

"可預測性 "和 "可理解性 "被廣泛認為是人工智能系統的重要品質。簡單地說:這種系統應該做他們被期望做的事情,而且他們必須以可理解的理由這樣做。這一觀點代表了關于致命性自主武器系統(LAWS)和其他形式軍事人工智能領域新興技術辯論的許多不同方面的一個重要共同點。正如不受限制地使用一個完全不可預測的致命性自主武器系統,其行為方式完全無法理解,可能會被普遍認為是不謹慎的和非法的,而使用一個完全可預測和可理解的自主武器系統--如果存在這樣的系統--可能不會引起許多核心的監管問題,這些問題是目前辯論的基礎。

這表明,最終為解決致命性自主武器系統和其他形式的人工智能在軍事應用中的使用而采取的任何途徑,都必須考慮到有時被稱為人工智能的 "黑盒困境"。事實上,遵守現有的國際人道主義法(IHL),更不用說假設的新法律,甚至可能取決于具體的措施,以確保致命性自主武器系統和其他軍事人工智能系統做他們期望做的事情,并以可理解的理由這樣做。然而,在關于致命性自主武器系統和軍事人工智能的討論中,可預測性和可理解性尚未得到與如此重要和復雜的問題相稱的那種詳細介紹。這導致了對人工智能可預測性和可理解性的技術基礎的混淆,它們如何以及為什么重要,以及可能解決黑匣子困境的潛在途徑。

本報告試圖通過提供有關這一主題的共同知識基線來解決這些模糊不清的問題。第1節和第2節解釋了說一個智能系統是 "可預測的 "和 "可理解的"(或者相反,是 "不可預測的 "和 "不可理解的")的確切含義,并說明有各種類型的可理解性和可預測性,它們在重要方面有所不同。第3節描述了可預測性和可理解性將成為致命性自主武器系統和其他軍事人工智能在其開發、部署和使用后評估的每個階段的必要特征的具體實際原因。第4節列出了決定每個階段所需的適當水平和類型的可預測性和可理解性的因素。第5節討論了為實現和保證這些水平的可預測性和可理解性可能需要的措施--包括培訓、測試、標準和可解釋人工智能(XAI)技術。結論是為政策利益相關者、軍隊和技術界提出了進一步調查和行動的五個途徑。

本報告的主要要點

  • 人工智能的不可預測性有三種不同的意義:一個系統的技術性能與過去的性能一致或不一致的程度,任何人工智能或自主系統3的具體行動可以(和不能)被預期的程度,以及采用人工智能系統的效果可以被預期的程度。

  • 可預測性是一個系統的技術特征、系統所處的環境和對手的類型以及用戶對它的理解程度的函數。

  • 可理解性是基于一個系統內在的可解釋性以及人類主體的理解能力。一個智能系統可以通過多種方式被 "理解",并不是所有的方式都建立在系統的技術方面或人類的技術素養之上。

  • 可預測性不是可理解性的絕對替代品,反之亦然。高可預測性和高可理解性的結合,可能是安全、謹慎和合規使用復雜的智能或自主軍事系統的唯一最佳條件。

  • 可預測性和可理解性是自主武器和其他形式的軍事人工智能的必要品質,這在其整個開發、使用和評估過程中有著廣泛的原因。

  • 這些系統中可預測性和可理解性的適當水平和類型將因一系列因素而大不相同,包括任務的類型和關鍵性、環境或輸入數據的種類,以及評估或操作系統的利益相關者的類型。

  • 在軍事人工智能系統中實現并確保適當的可預測性和可理解性的潛在方法可能會涉及與培訓、測試和標準有關的工作。建立XAI的技術研究工作也提供了一些希望,但這仍然是一個新的領域。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

本報告重點討論與人工智能系統可能缺乏可預測性而導致的有關風險--被稱為可預測性問題--及其對國家安全領域人工智能系統治理的影響。人工智能系統的可預測性表明人們可以在多大程度上回答這個問題:人工智能系統會做什么?可預測性問題既可以指人工智能系統的正確結果,也可以指不正確的結果,因為問題不在于這些結果是否符合系統工作的邏輯,而是在部署時是否有可能預見到這些結果。

人們越來越擔心,使用不可預測的人工智能系統為高風險決策提供信息可能會導致災難性的后果,這將破壞公眾對部署這些系統的組織的信任,并可能侵蝕政府的聲譽。在國家安全領域,人工智能的使用引入了一個新的不確定性來源,可能會阻礙風險管理程序,并可能使責任鏈變得混亂。在這個領域,可預測性問題的影響可能導致關鍵基礎設施的安全風險、個人權利和福祉的風險、沖突升級或外交影響。

在本報告中,我們首先從技術和社會技術的角度分析了可預測性問題,然后集中討論了英國、歐盟和美國的相關政策,考慮它們是否以及如何解決這個問題。從技術角度來看,我們認為,鑒于人工智能系統的設計、開發和部署的多層面過程,不可能考慮到所有的錯誤來源或可能產生的新行為。此外,即使在理想的情況下,在設計或開發階段沒有錯誤可以假設或檢測,一旦部署了人工智能系統,仍然可能發展出形式上正確的(但不想要的)結果,這在部署時是無法預見的。

我們通過關注人機編隊(HMT-AI)來分析可預測性問題的社會技術影響。人機編隊代表了一種越來越普遍的人工智能系統部署模式。在HMT-AI中,人類咨詢、協調、依賴、發展并與人工智能代理交換任務。由于HMT-AI結合了人類和人工的自主性,它們通過增加人工和人類代理及其環境之間的互動的數量和類型而加劇了可預測性問題。在這種情況下,我們發現可預測性問題的三個主要來源:人機交互、人員培訓和(過度)信任。人機交互可能會助長不可預測的結果,因為它們可以掩蓋、扭曲或過分詳細地描述人工智能系統的工作原理,而培訓計劃可能沒有考慮到人工智能技術的學習能力和HMT-AI的長期慣例建設。同樣,在HMTAI中,人類代理人不加批判地接受AI系統的結果,這種過度信任的動態也可能導致無法預測的結果。

在確定了可預測性問題的一些根本原因之后,我們分析了英國、歐盟和美國的政策,以評估這些原因是否在相關的政策文件中被涵蓋,如果是的話,如何以及在何種程度上被涵蓋。我們確定了四個主要主題和一個缺口。它們是:控制、監督和價值調整;資源提升的方法;可信賴人工智能的發展;以及缺乏對風險管理措施的關注,以遏制可預測性問題的影響。

我們的政策分析包括八個建議,以減輕與可預測性問題有關的風險。關鍵的建議是將治理方法集中在HMTAI上,而不僅僅是AI系統,并將可預測性問題概念化為多維度的,解決方案集中在HMT-AI組成的共同標準和準則上。在這些標準和準則中,可信人工智能的要求是特別相關的,應該與評估人工智能系統的可預測性的標準和認證計劃以及審計HMT-AI的程序結合起來。支持在國家安全中使用HMT-AI的決定的成本效益分析和影響評估應該考慮到可預測性問題及其對人權、民主價值的潛在影響,以及意外后果的風險。為了確保在部署潛在的不可預測的人工智能系統時進行充分的風險管理,我們建議調整ALARP原則--在合理可行的情況下盡量降低--作為制定HMT-AI中可預測性問題的人工智能特定風險評估框架的基礎。

擬議的基于ALARP的框架將提供有用的實際指導,但僅僅是這樣還不足以識別和減輕可預測性問題所帶來的風險。需要額外的政策、指導和培訓來充分考慮人工智能可預測性問題帶來的風險。人工智能系統支持的決策的影響越大,設計、開發和使用該系統的人的謹慎責任就越大,可接受的風險門檻也越低。這些分析和建議應該被理解為可操作的見解和實用的建議,以支持相關的利益相關者在國家安全背景下促進社會可接受的和道德上合理的人工智能的使用。

建議

建議1. 政府應撥出研究經費,發展公私合作,對HMT-AI進行縱向研究。這項研究應側重于HMT-AI中的新舊決策模式,以評估編隊協議建設和培訓對績效和控制措施的影響。重點應放在為HMT-AI的具體動態定義新的培訓協議,以及加快風險管理標準和HMT-AI績效評估的發展。

建議2. 應該建立一個專門的HMT-AI認證計劃,以促進行業對為HMT-AI設計的AI系統的設計要求和評估的共識。任務之間的通用性、有效的溝通、性能的一致性以及對新隊友的適應性都應該包括在這樣一個認證計劃中。在開發不足的ISO標準的基礎上,這個認證計劃還應該擴展到過程的可追溯性和決策的問責制,以及評估HMT-AI信任程度的審計機制。這對于抑制HMT-AI中的過度信任和自滿態度是必要的,這種態度維持或擴大了可預測性問題。

建議3. 對國家安全領域的可預測性問題的政策反應應該側重于管理HMT-AI團隊,而不是單獨的AI系統。

建議4. 國家安全領域的HMT-AI的成本效益分析(CBA)應該包括對AI系統的可預測性以及技術和操作層面的相關道德風險的評估。為了促進各安全機構之間的一致評估,應該定義一個評估人工智能系統可預測性的標準量表,在這個量表上,使用(或不使用)人工智能的選擇應該根據上下文的CBA以及考慮公眾對風險和相關利益的態度來證明。這個尺度的定義應屬于獨立的第三方行為者的職權范圍,即與部署HMT-AI的公共機構不同。

建議5. 與其說是 "更多 "或 "更少 "的可預測性,政策建議應側重于可預測性的權衡,明確具體建議旨在解決可預測性問題的哪個方面,以何種方式解決,以及它們有可能加劇哪些方面,哪些緩解措施將被落實到位。政策應該認識到,可預測性是一個多維度的概念,在一個層面上可預測性的收益可能會以另一個層面的損失為代價。

建議6. 關于國家安全中人工智能可預測性問題的政策應該在正式和操作層面上解決可信度和不可預測性之間的聯系。例如,應該給人工智能系統一個可修正的可預測性分數,這應該包括在對系統的可信任度的評估中。人工智能系統的可信賴性應包括成本效益分析,以評估不想要的行為在不同部署背景下可能帶來的風險。

建議7. 應該為不可預測的人工智能建立風險閾值,這些閾值將圍繞不可預測行為的風險嚴重程度映射到其自身的可預測程度(例如,劃分為已知的已知因素、已知的未知因素等)。這些閾值反過來將為風險管理過程的發展提供信息,允許根據風險的可預測性及其影響對其進行優先排序。

建議8. 應該制定一個基于ALARP的框架,以評估不可預測的人工智能和HMT-AI的風險,并為任何給定的環境確定可接受的最大程度的不可預測性。這個框架應該包括:

  • 對特定人工智能系統和HMT-AI的可預測程度的定量評估;
  • 對導致部署人工智能系統的設計、開發和/或采購步驟的可追溯性的評估;
  • 對部署條件的評估,例如,HMT-AI、操作員(或HMT-AI成員)的培訓水平、交互的透明程度、人類對AI系統的控制水平;
  • 對部署該系統的潛在風險和預期收益進行成本效益分析(根據建議4);
  • 對假設情況的分析,以考慮風險暴露或緩解措施的有效性如何隨部署情況而變化;
  • 人為推翻系統的協議和補救機制。

付費5元查看完整內容

在過去的幾年里,人工智能(AI)系統的能力急劇增加,同時帶來了新的風險和潛在利益。在軍事方面,這些被討論為新一代 "自主"武器系統的助推器以及未來 "超戰爭 "的相關概念。特別是在德國,這些想法在社會和政治中面臨著有爭議的討論。由于人工智能在世界范圍內越來越多地應用于一些敏感領域,如國防領域,因此在這個問題上的國際禁令或具有法律約束力的文書是不現實的。

在決定具體政策之前,必須對這項技術的風險和好處有一個共同的理解,包括重申基本的道德和原則。致命力量的應用必須由人指揮和控制,因為只有人可以負責任。德國聯邦國防軍意識到需要應對這些發展,以便能夠履行其憲法規定的使命,即在未來的所有情況下保衛國家,并對抗采用這種系統的對手,按照其發展計劃行事。因此,迫切需要制定概念和具有法律約束力的法規,以便在獲得利益的同時控制風險。

本立場文件解釋了弗勞恩霍夫VVS對當前技術狀況的看法,探討了利益和風險,并提出了一個可解釋和可控制的人工智能的框架概念。確定并討論了實施所提出的概念所需的部分研究課題,概述了通往可信賴的人工智能和未來負責任地使用這些系統的途徑。遵循參考架構的概念和規定的實施是基于人工智能的武器系統可接受性的關鍵推動因素,是接受的前提條件。

付費5元查看完整內容

人工智能(AI)有可能影響所有領域和大規模的軍事行動。本章探討了人工智能系統如何影響準備和開展軍事行動的主要工具,以及如何受其影響。本章分析和討論了人工智能在戰略、條令、規劃、交戰規則和命令方面的多層次影響。采取了一個廣泛的分析角度,能夠根據新的政策和技術發展,以及對政治、軍事、法律和道德觀點的考慮,對這個問題進行總體審查。因此,本章確定了機遇、挑戰和開放性問題,并提出了總體性的意見。提供了洞察力和途徑,以推進對人工智能在軍事行動中的適當整合、管理和使用的進一步思考、研究和決策。

引言

人工智能(AI)的軍事應用有可能影響所有領域和大規模的軍事行動的準備和進行。人工智能系統可以越來越多地支持和取代人類完成軍事任務,因為它們變得更快、更準確,并能夠處理更多的信息和更高的復雜程度。這可能促進軍事行動速度的提高和更好的軍事決策,最終為擁有高性能人工智能的武裝部隊提供顯著優勢。人工智能的軍事用途甚至可能導致軍事事務的另一場革命,盡管這種發展將取決于其他因素而不僅僅是技術。

人工智能可以被用于各種軍事目的。在多維戰場上,人工智能技術可以被用作傳感器、規劃者和戰斗機,或兩者的結合。更具體地說,人工智能的軍事應用可以從支持情報、監視和偵察(ISR)的系統到自主導航和目標識別系統。這可能導致軍事人員和人工智能系統之間不同形式的互動,以及將軍事任務委托給人工智能系統的不同層次。例如,人工智能系統可以在決策過程中協助指揮官和士兵,無人駕駛的人工智能系統可以與有人駕駛的系統一起協作,人工智能系統可以在最少的人類監督下自主運行。 雖然目前只存在狹義和特定任務的人工智能,但正在大力發展人工通用智能(AGI)--具有類似于人類思維的廣泛領域推理能力的系統。 這與人工智能系統的自主性不斷增強的趨勢是一致的。

鑒于人工智能的特殊性和未來的應用,出現了一個問題,即人工智能的引入將如何影響軍事行動。本章通過評估人工智能如何影響準備和進行軍事行動的主要工具并受其影響來探討這一問題。具體而言,本章分析和討論了人工智能在戰略(第1分章)、條令(第2分章)、規劃(第3分章)、交戰規則(第4分章)和命令(第5分章)方面的多層次影響。以下各章將對每個工具進行一般性解釋,然后討論這些工具與人工智能的具體相互關系。

本章采取了一個廣泛的分析角度,包括了部隊整合和指揮與控制(C2)等軍事概念的各個方面,但并不限于此。 這使得在新政策和技術發展的基礎上,以及在考慮政治、軍事、法律和倫理角度的情況下,能夠對這個問題進行更全面的審查。因此,本章確定了機遇、挑戰和開放性問題,并提出了總體性的意見。本章最后發現了人工智能與準備和進行軍事行動的主要工具之間的動態相互關系,并將人類操作員和人工智能之間的互動定位為核心基本問題。

由于軍事人工智能是最近才出現的,因此對納入人工智能的未來軍事行動的任何分析只能是暫時性的,并基于這樣一個前提,即目前對具有高度自主性的人工智能,進行操作化的挑戰將被克服。然而,鑒于技術的快速發展,本章為推動進一步的思考、研究和政策制定提供了見解和途徑,以便在軍事行動中適當整合、管理和使用AI。

1. 戰略與人工智能

軍事行動為國家的政治和戰略目標服務。在戰爭的三個層面(戰略、戰役和戰術)中,軍事戰略是最高的。它可以被描述為 "戰爭的安排 "或 "戰爭的方向"。它為軍事行動提供依據,處于政治和軍事領域的交界處。 從本質上講,軍事戰略是一項計劃,它將最終目標與實現這一目標的手段聯系起來。更具體地說,軍事戰略可以被定義為 "使用武裝力量來實現軍事目標,進而實現戰爭的政治目的 "或 "在戰爭中達到預期結果的概念和實際考慮的表現,涉及對特定敵人的組織、運動和戰術、戰役和戰略使用或承諾的力量。國家安全和國防戰略可以為軍事戰略建立總體框架,而且經常可以在白皮書中找到。

各國還沒有公開通報他們如何使用或打算使用人工智能來制定軍事戰略。因此,在現階段,分析人工智能對軍事戰略的影響以及反之亦然,必須依靠國防白皮書和各國的人工智能戰略。一般來說,雖然在過去幾年中,大約有50個國家發布了關于人工智能在多個部門(特別是民用和工業部門)的使用、發展和融資的官方人工智能戰略,但這些文件一般不關注或幾乎不提及國防應用。然而,主要軍事強國最近通過了與軍事人工智能有關的國家戰略或類似文件,表明各國已經意識到軍事人工智能的戰略重要性,并指導他們努力開發、采購和將人工智能系統納入其武裝部隊。

美國國防部(DOD)在2018年發布了一項人工智能戰略,該戰略強調了優先發展的領域,確定了應如何與民間社會組織建立發展伙伴關系,并制定了一項關于人工智能機器倫理的政策生成計劃。美國人工智能國家安全委員會在2021年發布了一份報告,提出了與人工智能有關的國家防御戰略。 目標是到2025年達到人工智能準備,這意味著 "組織改革,設計創新的作戰概念,建立人工智能和數字準備的性能目標,并定義一個聯合作戰網絡架構",以及贏得"技術競爭"。

俄羅斯到目前為止還沒有公布關于軍事人工智能的政策,但正在積極資助私營和公共部門的研究。2018年,俄羅斯舉行了一次會議,提出了十項政策建議(AI: Problems and Solutions 2018),這些建議構成了其人工智能戰略的非官方基礎。

歐洲國家在人工智能戰略方面處于類似的階段。在英國2021年國防白皮書通過后,英國國防部(MOD)在2022年通過了《國防人工智能戰略》。 該戰略規定了國防部采用和利用人工智能的速度和規模,與工業界建立更強大的伙伴關系,并開展國際合作,以塑造全球人工智能的發展。 法國沒有采取這樣的戰略,但其《國防人工智能報告》強調了將人工智能納入其武裝部隊的戰略優勢,如分析和決策的速度,優化作戰流程和后勤,以及加強對士兵的保護,并將機器學習歸類為研究和開發(R&D)的主要領域。

雖然更多的國家發表了關于人工智能的分析和政策,但卻沒有對未來的軍事戰略提出見解,北約在2021年通過了其人工智能戰略。該戰略是整個聯盟的人工智能準備和運作的基礎,隨后是北約的自主實施計劃,包括在2022年創建數據和人工智能審查委員會。 歐盟至今沒有采取類似的戰略,只限于在2020年的《人工智能、機器人和相關技術的倫理問題框架》中鼓勵與軍事有關的人工智能領域的研究。

由于各國關于人工智能或與人工智能相關的國防戰略并沒有明確說明人工智能將如何影響軍事戰略,因此可以根據未來可能使用人工智能進行戰略決策的跡象來確定各自的期望。人工智能在戰爭戰略層面的應用實例是對核指揮、控制、通信和情報(C3I)架構的貢獻;導彈和防空系統的目標獲取、跟蹤、制導系統和識別;網絡能力;以及核和非核導彈運載系統。

對于軍事戰略來說,最重要的是,人工智能的應用可以幫助決策者監測戰場并制定方案。事實上,可以開發人工智能來預測其他國家的行為和反應,或生成正在進行的沖突的進展模擬,包括兵棋推演模型。人工智能還可以用來評估威脅,提供風險分析,并提出行動方案,最終指導決策者采取最佳對策。 此外,人工智能可以支持武裝部隊的方式和手段與既定的政治和戰略目標相一致,這是軍事戰略的一個主要功能。這種發展的一個后果是軍事進程的速度和質量都會提高。雖然這將為那些擁有高性能人工智能的國家提供巨大的優勢,但這也可能迫使武裝部隊越來越多地將軍事行動的協調工作交給人工智能系統。

將人工智能用于軍事戰略也可能導致挑戰,包括預測性人工智能需要無偏見和大量的數據。可靠的人工智能系統將需要用龐大的數據集進行訓練。 此外,專家們警告說,人工智能可能會加劇威脅,改變其性質和特點,并引入新的安全威脅。 一項關于將人工智能納入核C2系統的桌面演習表明,這種系統 "容易受到惡意操縱,從而嚴重降低戰略穩定性"。這種脆弱性主要來自于第三方使用技術欺騙、破壞或損害C2系統所帶來的風險,這表明系統安全對AI用于軍事戰略的重要性。

另一個重要的挑戰是,人工智能可能會加快戰爭的速度,以至于人類將不再能夠跟隨上述速度的發展,最終導致人類失去控制。 這種現象被稱為 "戰場奇點 "或 "超戰爭",可能導致戰略錯誤和事故,包括非自愿的沖突升級。即使這種風險能夠得到緩解,對人工智能的更多依賴也會減少軍事戰略中人的因素,特別是心理學和人的判斷。觀察家們認為,這可能會導致 "人工智能如何解決人類提出的問題,以及人類如果擁有人工智能的速度、精度和腦力會如何解決這個問題 "之間的差距。 然而,專家們也提出,戰略的制定需要對價值的理解,成本的平衡,以及對戰爭所處的復雜社會系統的理解,從而大大限制了人工智能在軍事戰略上的應用。還有一種可能是,當敵人擁有人工智能系統提供的高水平的理性預測能力時,決定性的因素將不是人工智能系統的能力,而是人類的判斷,特別是關于關鍵和困難的選擇。然而,這假定了某種程度的有意義的人類參與。

總之,主要的軍事大國正在投資開發、獲取和操作其武裝部隊的人工智能,因為人工智能有可預見的戰略優勢。然而,各國的戰略并沒有表明人工智能將如何被用于軍事戰略。然而,根據目前的技術發展,可以預計,人工智能將加強軍事戰略的制定和戰略決策,特別是人工智能能夠處理更多的數據,并以比人類和簡單計算更高的精度和速度來理解復雜性。一個可能的結果是軍事行動的加速,這可能會增加武裝部隊整合人工智能的壓力,使人類的判斷力邊緣化。因此,擁有和使用人工智能本身就成為一種戰略資產和目標。同時,國家對軍事人工智能的投資可能成為一種戰略責任,因為它可能增加破壞穩定的軍備競賽、誤解和誤判的風險。未來的軍事戰略需要考慮到這種風險。

總之,主要的軍事大國正在投資開發、獲取和使用人工智能,因為人工智能有可預見的戰略優勢。然而,各國的戰略并沒有表明人工智能將如何被用于軍事戰略。然而,根據目前的技術發展,可以預計,人工智能將加強軍事戰略的制定和戰略決策,特別是人工智能能夠處理更多的數據,并以比人類和簡單計算更高的精度和速度來理解復雜性。一個可能的結果是軍事行動的加速,這可能會增加武裝部隊整合人工智能的壓力,使人類的判斷力邊緣化。因此,擁有和使用人工智能本身就成為一種戰略資產和目標。同時,國家對軍事人工智能的投資可能成為一種戰略責任,因為它可能增加破壞穩定的軍備競賽、誤解和誤判的風險。未來的軍事戰略需要考慮到這種風險。

2. 條令與人工智能

軍事條令進一步指導軍事行動的準備和執行。軍事條令可以被定義為 "從制度化的角度來看,執行軍事任務和職能普遍接受的方法"。因此,它代表了'在戰爭和軍事行動中什么是有效的制度化信念'。條令一般包含三個關鍵要素,即理論(什么是有效的,什么會導致勝利)、權威(條令必須被認真對待)和文化(組織及其成員是誰)。 因此,條令回答了 "軍隊認為自己是什么('我們是誰'),它的任務是什么('我們做什么'),如何執行任務('我們怎么做'),以及歷史上如何執行任務('我們過去怎么做')"等問題。 《美國陸軍條令入門》將條令描述為由基本原則、戰術、技術、程序以及術語和符號組成。

鑒于條令的目的和功能,人工智能在發展軍事條令方面的作用可能有限。它可能會繼續由人類創建和修訂。人工智能的具體作用可能僅限于監測武裝部隊的進程與他們的條令是否一致,以確定過去的工作,并支持對條令的質量和影響進行評估。為了有效地告知負責定義條令的軍事人員,這可能需要透明和可解釋的人工智能方法,否則軍事人員將無法理解并做出適當的決定。

然而,條令在設定人工智能的使用和人類互動的基本原則、價值和參數方面具有重要作用。值得注意的是,軍事條令是界定武裝部隊如何感知、理解和重視人工智能的適當手段。由于人工智能的高度自主性,武裝部隊可能需要明確人工智能是否被視為一種技術工具,或者說是一種代理手段。在這個意義上,條令可以定義武裝部隊是否將人工智能視為簡單的數學、技術系統,或者說是具有認知能力的工具。條令可以定義人類在組織中的價值、地位和作用,以及使用人工智能的過程。由于軍事行動和戰爭是人類為達到目而發起的行動,條令可以明確這意味著什么。在這種情況下,條令也可以定義人類與人工智能系統互動的價值和原則,包括人工智能需要為人類服務而不是相反。

同樣,條令也是定義人工智能系統的開發、獲取和使用的道德標準工具。由于軍事條令是根據國際法起草的,并且通常呼吁武裝部隊成員尊重國際法,因此條令也可以定義人工智能系統和運營商遵守國際法的方式。條令是對人工智能和人機協作施加限制的重要工具,適用于各軍種和武裝部隊的所有成員。這可能意味著對人工智能系統進行有意義的人類控制的一般要求,或禁止將某些功能授權給人工智能系統。

更具體地說,條令可以為人工智能融入組織流程設定原則和參數。例如,從事數據整合、優先排序的人工智能系統可能需要修訂軍事條令和武裝部隊使用和收集信息的準則。雖然僅限于觀測的任務系統需要有限的條令調整,但有更多 "積極 "任務的系統可能需要更具體的指導方針,如保障措施、自主程度、與操作者的溝通以及與人類部隊的互動。此外,有人認為,戰術應用主要是基于規則的決策,而戰役和戰略決策往往是基于價值的。每個級別的首選決策過程類型以及這種過程是否應該標準化,可以在條令層面上確定。

迄今為止,各國還沒有公布專門針對人工智能系統的軍事條令。英國國防部關于無人駕駛飛機系統的聯合條令是目前唯一公開的涉及軍事系統自主性的軍事條令。 然而,未來關于人工智能或與人工智能相關的軍事條令可能會根據人工智能的道德使用政策來制定。 事實上,這種政策定義了相關的價值觀、原則和使用軍事人工智能的形式,并為其提供指導,其目的與軍事條令類似。一些國家和組織最近通過了這種關于軍事人工智能道德使用的政策,包括北約。

美國國防部為人工智能的發展和使用采用了五項道德原則。系統需要負責任、公平、可追蹤、可靠和可治理。這些原則規定,美國防部人員負責人工智能系統的 "開發、部署和使用",因此必須表現出良好的(人類)判斷能力。此外,美國防部明確確定,必須努力將人工智能運作的數據偏見降到最低。 此外,美國國防部2012年3000.09指令確定了美國對致命性自主武器系統(LAWS)的立場。它定義了致命性自主武器系統,確定了三類智能武器系統(自主、半自主和人類監督的自主系統),并為其行動設定了一般界限,以及有關人類操作員的作用和法律審查的標準。

同樣,歐盟議會也通過了一份題為《人工智能:國際法的解釋和應用問題》(人工智能的民事和軍事使用準則),其中特別討論了人工智能的軍事應用。 該報告包含了關于歐盟成員國開發和使用軍事人工智能應用的強制性準則以及一般性結論。首先,報告解釋說,人工智能不能取代人類決策或人類責任。 第二,為了合法,致命性自主武器系統必須受到有意義的人類控制,要求人類必須能夠干預或阻止所有人工智能系統的行動,以遵守國際人道主義法(IHL)。第三,人工智能技術及其使用必須始終遵守國際人道主義法、國際刑事法院羅馬規約、歐盟條約、歐盟委員會關于人工智能的白皮書,以及包括透明度、預防、區分、非歧視、問責制和可預測性等原則。

2021年4月,法國道德委員會公布了一份關于將致命性自主武器和半自動武器納入武裝部隊的意見。盡管其內容尚未得到國防部長的批準,但它代表了未來潛在的軍事條令。該文件重申了人類對自主武器的致命行動保持一定程度控制的重要性,并聲稱法國不會開發也不會使用完全自主的武器。同樣,澳大利亞發表了一份題為《國防中的道德人工智能方法》的報告,其中討論了與軍事人工智能應用有關的道德和法律考慮,但并不代表官方立場。

總之,除了評估和修訂之外,人工智能不太可能對創建軍事條令有實質性的作用,因為條令的作用是定義和規范軍事組織問題以及與信仰、價值觀和身份密切相關軍事行動的各個方面。然而,正是由于這種功能,條令在確定武裝部隊與人工智能的基本關系方面具有重要作用。特別是,條令適合于籠統地規定人工智能將(不)用于哪些任務,人工智能將(不)如何使用,以及組織及其成員如何看待和重視人工智能。最重要的是,鑒于人工智能的特點,條令可以確定人類如何并應該與人工智能互動,以及何種組織文化應該指導這種關系。因此,條令可以為進一步的軍事指令和程序設定規范性框架。各國的道德準則可以作為軍事條令的基礎并被納入其中。

3.規劃和人工智能

根據各自的軍事條令制定的作戰和行動計劃,是根據現有手段實現軍事目標的概念和指示。規劃反映了指揮官的意圖,通常包括不同的行動方案(COA)。存在各種軍事計劃和決策模式,但北約的綜合作戰計劃指令(COPD)對西方各種模式進行了很好的概述和綜合。 例如,加拿大武裝部隊遵循六個步驟,即啟動、定位、概念開發、決策計劃制定和計劃審查。一般來說,規劃包括 "規劃和安排完成特定COA所需的詳細任務;將任務分配給不同的部隊;分配合適的地點和路線;刺激友軍和敵軍的戰斗損失(減員);以及重新預測敵方的行動或反應。

雖然規劃需要考慮到人工智能系統在軍事行動中的使用,但人工智能最有可能被用于規劃本身。用于軍事規劃或與之相關的人工智能應用是ISR系統、規劃工具、地圖生成機器人,以及威脅評估和威脅預測工具。 與規劃有關的進一步人工智能應用可能包括大數據驅動的建模和兵棋推演。例如,美國陸軍為其軍事決策過程(MDMP)開發了一個程序,該程序采用 "高層次的COA"(即目標、行動和順序的草案),并根據這個總體草案構建一個詳細的COA,然后測試其可行性。這表明,人工智能可以發揮各種功能,從COA提議到解構和測試。

人工智能應用可能會對計劃產生強烈影響。規劃軍事行動是一個緩慢而繁重的過程,它依賴于對 "結果、損耗、物資消耗和敵人反應 "的估計。它涉及到對特定情況的理解、時空分析和后勤問題。然而,有限時間和勞動力限制了可以探索的選項數量。此外,預測可以說是"作戰指揮官最棘手的任務之一"。只要能提供足夠數量和質量的數據,人工智能在預測的質量和速度上都可能會有出色的表現。數據分析能夠進一步處理比人類計算更多的信息,最終減少"戰爭迷霧"。由于人工智能程序可以將行動分解為具體的任務,然后相應地分配資源,預測敵人的行動,并估計風險,因此人工智能的使用將提高決策的總體速度和準確性。增加可考慮的COA數量將進一步使規劃過程得到質量上的改善。

然而,使用人工智能進行規劃也有潛在的弊端。由人工智能驅動的更快規劃所帶來的戰爭速度提高,可以說會減少決策者的(再)行動時間,這可能會損害決策的質量。還有人質疑,人工智能驅動的規劃是否會"導致過度關注指揮分析方面,通過書本和數字削弱了軍事指揮決策的直覺、適應性和藝術性"。指揮官和其他軍事人員也可能變得過渡依賴技術,使他們變得脆弱。剩下的一個挑戰是產生足夠的相關數據,讓人工智能規劃系統正常工作并產生有意義的結果。

人工智能系統將執行規劃任務以及協助軍事人員,但它們可能不會根據這些計劃做出適當決策。事實上,有人認為,人工智能系統難以完成與指揮有關的任務,如設定目標、優先事項、規則和約束。因此,人類的判斷對于這些任務仍然是必要的。人工智能寧愿執行控制任務,并最終彌補軍事人員的認知偏差。然而,隨著新版本的C2(部分)納入人工智能,觀察家們質疑是否清楚誰將擁有跨領域的決策權,人類在這種架構中會和應該發揮什么作用,以及技術是否準備好進行大規模開發。

當強大的人工智能系統被用于軍事規劃時,規劃和決策之間的區別可能會變得模糊不清。與人類因軍事行動的高速發展而無法正確跟蹤事件進程的風險類似,將規劃任務更多地委托給人工智能可能意味著指揮官和規劃者不再能夠理解或追溯系統如何得出結論。同樣,指揮官可能會因審查眾多擬議計劃或COA的任務而被壓垮。人工智能生成的方案也可能意味著更高的復雜程度。因此,人工智能可以被用來消化信息,只向指揮官提供最相關的內容。然而,這可能會導致對人工智能的進一步過度依賴。因此,強大的人工智能系統,或系統簇(SOS),將需要一定程度的可預測性和透明度。

總之,與人工智能的其他軍事應用相比,至少在中短期內,人工智能可能會對規劃產生最重大的影響。由于規劃是極度時間和資源密集型的,人工智能系統可以導致速度、精度和質量的提高。這可能會對軍事行動和戰爭產生重大影響,因為有人認為,軍事競賽的贏家是那些在觀察、定位、決策和行動(OODA環)中工作最快的人。一個進一步的影響是,規劃的自動化導致了軍事決策的(進一步)合理化,包括人員傷亡的合理化。另一個后果是對人力的需求減少。然而,規劃方面的人力需求減少并不意味著基于軍事規劃決策的人力判斷需求減少,特別是在價值觀和直覺仍然是規劃的核心內容情況下。

4. 交戰規則與人工智能

交戰規則(ROE)用于描述軍事力量部署的情況和限制。交戰規則可采取多種形式,包括執行命令、部署命令、作戰計劃和長期指令。無論其形式如何,它們都對 "使用武力、部隊的位置和態勢以及使用某些特定能力 "等進行授權或限制。交戰規則有共同的要素,如其功能和在作戰計劃中的地位,以及其他基本組成部分。交戰規則通常是 "軍事和政治政策要求的組合,必須受到現有的國際和國內法律參數約束"。因此,其要素和組成部分反映了軍事行動、法律和政治要素。通用的交戰規則和模板文件,如北約的MC362/1和Sanremo交戰規則手冊,可以作為交戰規則起草者的基礎或靈感,而這些起草者通常是軍事法律顧問。雖然交戰規則一般不會分發給所有低級軍官,但士兵們經常會收到含有簡化的、基本版本的交戰規則記憶卡。

交戰規則是與軍事力量部署和武力使用有關的更大監管框架的一部分。因此,它們與其他類型的軍事指令相互作用,特別是目標選擇和戰術指令。目標定位指令提供了關于目標定位的具體指示,包括對目標的限制和盡量減少附帶損害。戰術指令是 "針對整個部隊或特定類型的單位或武器系統的命令,規定在整個行動中執行特定類型的任務或在行動中限制使用特定的武器系統。雖然交戰規則不是必不可少的,但它們可以為部隊及其成員提供更具體和細微的指示。

交戰規則是確定如何使用人工智能以及在哪些條件下可以在特定情況下應用的適當工具。交戰規則——或相關的行為規則——可以為人工智能的各種軍事應用設定參數,從而將特定的政治、軍事、法律和道德考慮以及來自更高組織或規范梯隊的限制,如條令或國際法律義務,轉化為具體指令。因此,ROE可以代表一個行動框架,被編入AI系統。例如,ROE可以確定一個地理區域或某個潛在任務的清單,系統被授權采取行動。在這些限制之外,他們將不會對處理過的信息采取行動。時間或其他限制,如預先設定的允許(不)與特定目標交戰,也可以由ROE定義。同樣,ROE可以預見一個系統需要標記的意外事件或問題。在這種情況下,有些人提出,人工智能可能會根據環境或其編程的任務來選擇應用哪種ROE。

ROE也可以定義人類和人工智能系統在特定任務中的互動。特別是,ROE可以確定指揮官或操作員在部署期間需要如何監測和控制該系統。由于對人類控制的需求可能會根據歸屬于人工智能系統的具體任務以及各自的背景和行動而有所不同,人工智能的ROE可以定義某些類型的行動或階段的自主性水平。ROE可以進一步處理或參考其他來源,如手冊和指令,關于如何實施各種形式的人類控制,如直接、共享或監督控制。重要的是,ROE可以限制指揮官或操作人員的權力,這可能迫使他們在指揮系統中參考上級。這可能是軍事行動中關于人機協作的ROE的一個重要作用,特別是在面對未曾預料到的情況或問題時,系統或其使用沒有事先得到授權。

當人工智能被用于傷害人和物或與之有關時,如在定位目標的情況下,ROE尤其相關。特別是當考慮到人工智能不能將道德或背景評估納入其決策過程時,在做出使用致命武力的決策時,人類的控制和判斷應該是有意義的。如上所述,大多數公開的政策在原則上確立了這種監督,但很少明確其確切含義。交戰規則和指令可以填補這一空白。為此,可以為人工智能系統的操作者制定與目標定位有關的行為準則,或為此類系統制定ROE模式。

事實上,雖然到今天為止還沒有能夠在沒有人類授權的情況下攻擊人類目標的自主武器,但在目標定位方面,更加自主的系統將是一個大的趨勢。與目標定位有關的現有軍事應用是目標識別軟件,如可以檢測衣服下爆炸物的Super aEgis II,以及用于目標交戰的系統。美國人工智能制導的遠程反艦導彈(LRASM)被宣傳為能夠自主地選擇和攻擊目標,甚至在GPS和通信受阻的環境中,如深水和潛在的外太空。另一個值得注意的事態發展是,據報道,2020年3月在利比亞部署了一架土耳其Kargu-2無人機,據稱該無人機在沒有人類操作員授權的情況下跟蹤和攻擊人類目標。它的使用可能代表了一個重要的先例,即在人類控制非常有限的情況下使用人工智能系統進行目標定位。

由于需要對ROE進行管理,人工智能可以協助主管當局協調、實施并最終確定ROE。軍事、政治、法律和道德目標和參數需要由軍事人員提供--至少在初始階段。正如北約的MC362/1號文件和《圣雷莫ROE手冊》所說明的那樣,ROE的后續管理是一個系統的、反復的過程,包括將具體的權力賦予不同級別的指揮部,以及監測ROE的實施和遵守情況。隨著時間的推移,人工智能系統可能會學會緩解ROE內部和之間的摩擦,以及為其適應性提升效率。例如,盡管國際法的實質內容可能本質上需要基于價值的判斷,而這種判斷不應委托給人工智能系統,但界定哪些規則需要在哪些情況下適用并不是一個過于復雜的理性過程。為了避免改變現有法律框架的實質內容,這種功能要求任何用于管理ROE的AI應用不能侵犯歸屬的權力。

總之,ROE可以成為一個有用的工具,以具體和實用的方式指導軍事AI的使用。因此,它可以補充和執行上級的政策、法規和準則,從而使軍事、政治、法律和道德目標和原則轉化為具體行動。ROE的指導對于人機協作,以及定義和具體化與人工智能系統有關的人類控制和判斷,在目標定位方面尤其重要。人工智能的應用可以進一步提高ROE管理的質量和效率。雖然這可能有助于協助軍事人員,類似于人工智能應用于軍事規劃,但軍事人員需要對ROE的實質進行有效監督,即誰或什么系統在什么情況下可以使用武力。然而,如果人工智能能夠實現更廣泛的、更細微的、更快速的交替性ROE,確保這種監督可能會變得具有挑戰性。

5. 作戰命令與人工智能

規劃和實施軍事行動的最具體的工具是命令。例如,北約和美國陸軍將命令定義為 "以書面、口頭或信號的方式傳達上級對下級的指示"。雖然有不同類型的命令,但它們一般都很簡短和具體。命令可以是口頭的,也可以是圖形的,還可以是疊加的。它們必須遵守法律以及上級的軍事文件和文書。另一個經常使用的術語是指令,它被定義為 "指揮官下達的命令,即指揮官為實現某一特定行動而表達的意愿。

從軍事參謀人員到人工智能系統的指令將采取系統初始開發的形式,有關任務目標和限制的參數編程,以及操作人員在操作期間的輸入。人類和人工智能系統之間的這些互動形式可能會履行傳統上歸屬于命令的功能。雖然人工智能系統的開發和操作,特別是機器學習,有其特殊的挑戰,但測試表明,機器并不存在不服從命令的內在風險。由于在操作過程中人的輸入等于人對系統的控制,如果一個系統能夠根據適當的學習自主地調整其行為,這一點就特別重要,現在正在開發防止系統在沒有人類輸入下采取行動的保障措施。例如,美國國防部3000.09指令規定,致命性武器系統的編程方式必須防止其在未經人類事先批準的情況下選擇和攻擊目標,特別是在失去通信的情況下。

人工智能和操作人員之間具體的互動形式仍在繼續開發。美國陸軍實驗室設計了一種軟件,使機器人能夠理解口頭指示,執行任務,并進行匯報。會說話的人工智能現在也被開發出來,以實現操作員和系統之間的口頭對話。這種互動使系統能夠要求其操作者進行澄清,并在任務完成后提供更新,以便士兵在工作中獲得最新的信息。諸如此類的應用可能使軍事人員更容易與人工智能合作,并減少操作員對人工智能控制的學習曲線。然而,人工智能應用也可以支持指揮官下達命令和指令的任務。人工智能尤其可以用來提高通信系統的穩健性和容錯性,這顯然可以使命令的傳輸更加安全。

雖然人工智能系統可能不會被委托正式發布命令,但是類似的動態可能會出現。對于人工智能系統之間的互動,命令是沒有必要的,因為系統只是作為數字應用網絡的一部分交換信息。關于對軍事人員的命令,武裝部隊似乎不可能接受人工智能系統向其成員發出指令。然而,由于人工智能系統可能會以越來越高的速度和復雜性提出行動建議,作為人類決策的輸入,軍事人員可能不會質疑這些建議,沒有時間批判性地評估它們,或者根本無法理解系統如何得出結論。如果他們還是以這些建議為基礎采取行動,這種對系統輸入的過度依賴可能意味著系統事實上向人類發布命令。還有可能的是,通過信息技術接收指令的較低層次的操作員和士兵可能無法知道某個命令是由人類還是人工智能系統創造的。為了排除這種結果,軍事條令和指令需要建立與命令有關程序的透明度。

總之,在軍事行動中,正式的命令很可能與控制人工智能無關。然而,命令和指令的傳統概念可以幫助分析、分類和發展人工智能系統和人類操作員之間的未來互動。在這種情況下,卡爾-馮-克勞塞維茨提出的管理方法和任務型戰術(Auftragstaktik)之間的傳統區別表明,人類對人工智能系統的投入,即人工智能系統的開發、編程和操作控制,可以根據對執行任務細節的程度來進行分類。鑒于人工智能的特質,我們有理由認為,當人工智能系統被賦予高水平的自主權,類似于任務型戰術時,將對武裝部隊最有價值。同時,人類在行動中的投入將是非常精確的,起到管理作用。然而,最重要的是,這又回到了上文討論的可以授予 AI 系統多少自主權的根本問題。

結論

人工智能有可能影響所有領域和大規模的軍事行動。轉變的程度主要取決于未來的技術發展。然而,這也取決于武裝部隊將賦予人工智能的作用和功能。從這兩個因素中可以看出,人工智能與準備和開展軍事行動的主要工具之間存在著動態的相互關系。一方面,人工智能的引入將影響到這些工具以及軍事行動的準備和實施。另一方面,這些工具在監管和使用人工智能方面發揮著重要作用。這種相互關系是動態的,因為它很可能隨著技術的發展、部隊對人工智能系統的經驗、組織文化和社會價值觀的變化而變化。

上述內容討論了人工智能與準備和執行軍事行動的主要工具之間的相互關系,而其中核心潛在的問題是人類操作員與人工智能系統之間的相互作用。在戰略方面,國家的官方文件證明,獲得和運用人工智能具有戰略意義。人工智能將可能支持軍事戰略,特別是預測和規劃。戰略中的人為因素可能仍然至關重要,因為戰略依賴于本能和價值觀,但軍事人員有可能過度依賴人工智能。對于軍事條令,人工智能的作用可能僅限于評估和協助修訂條令。條令在決定武裝部隊的目的、價值觀和組織文化方面的功能表明,它將在確定武裝部隊如何看待人工智能系統并與之互動方面發揮重要作用。

人工智能將極大地幫助軍事規劃,特別是基于人工智能高速和精確地處理復雜和大量數據的能力。因此,即使人工智能系統不會被委托做出決策,軍事規劃人員和指揮官也有可能過度依賴他們的分析和建議,尤其是在時間壓力下。因此,人工智能支持決策和人工智能作出適當決策之間的界限可能會變得模糊不清。關于ROE,盡管人工智能可以支持ROE的管理,但后者主要是一個適當的工具,以具體的方式為具體的任務劃定人工智能的使用。這尤其適用于人機合作和人對人工智能應用的控制。在軍事命令方面,人工智能系統可能會大大協助指揮和控制,但不會被委托發布命令。然而,在實踐中,可能很難區分由算法發布的命令和由指揮官發布的命令。這可能會導致人工智能支持和人工智能決策之間的混淆,類似于規劃的情況。

因此,如果人類操作員和人工智能系統之間的交互,是人工智能與準備和執行軍事行動的主要工具之間動態相互關系的核心潛在問題,那么無論是技術發展還是工具適應性都需要特別注意適當的人類與人工智能的交互。可以預計,技術進步將主要塑造未來的人機協作模式。軍隊結構、標準和流程可能會跟隨技術發展而相應調整。然而,關鍵是要積極主動地界定基本原則、價值觀和標準,而不是簡單地適應技術發展,成為路徑依賴或面臨意想不到后果。

畢竟,關注適當的人與人工智能互動不僅是道德和法律的必要條件,也是通過引入人工智能有效提高軍事行動的必要條件。因此,對人工智能和軍事行動的進一步思考和研究,以及對人工智能和戰略、條令、規劃、ROE和命令的進一步思考和研究,應該側重于人機互動,因為這仍然是人工智能戰爭最緊迫的挑戰。這可能有助于在人工智能影響工具和這些工具管理軍事人工智能之間找到并確定一個適當的平衡。

付費5元查看完整內容

人工智能(AI)系統很可能會改變軍事行動。本文探討了人工智能系統如何影響準備和進行軍事行動的主要工具,并受其影響。因此,本文在戰略、理論、計劃、交戰規則和命令的背景下分析和討論了人工智能,以確定機會、挑戰和開放性問題的位置,并提出總體意見。本文采取了一個廣泛的分析角度,能夠根據新的政策和技術發展以及對政治、軍事、法律和道德觀點的考慮,對這一問題進行總體審查。因此,本文提供了一些見解和途徑,以推動對人工智能在軍事行動中的適當整合、管理和使用的進一步思考、研究和決策。

付費5元查看完整內容

這篇短文分析了英國在最近兩份政策文件中提出的將人工智能(AI)用于軍事目的的方法。第一部分回顧并批評了英國防部于2022年6月發布的《國防人工智能戰略》,而第二部分則考慮了英國對 "負責任的"軍事人工智能能力的承諾,該承諾在與戰略文件同時發布的《雄心勃勃、安全、負責任》文件中提出。

建立自主武器系統所需的技術曾經是科幻小說的范疇,目前包括英國在內的許多國家都在開發。由于無人駕駛飛機技術的最新進展,第一批自主武器很可能是基于無人機的系統。

英國無人機戰爭組織認為,開發和部署具有人工智能功能的自主武器將產生一些嚴重的風險,主要是在戰場上喪失人的價值。賦予機器奪取生命的能力跨越了一個關鍵的道德和法律障礙。致命的自主無人機根本缺乏人類的判斷力和其他素質,而這些素質是在動態戰場上做出復雜的道德選擇、充分區分士兵和平民以及評估攻擊的相稱性所必需的。

在短期內,自主技術的軍事應用可能是在低風險領域,如物流和供應鏈,支持者認為這些領域有成本優勢,對戰斗情況的影響最小。這些系統可能會受到人類操作員的密切監督。從長遠來看,隨著技術的進步和人工智能變得更加復雜,自主技術越來越有可能成為武器,人類監督的程度可望下降。

真正的問題也許不是自主權的發展本身,而是人類控制和使用這一技術發展的里程碑的方式。自主性提出了與人類判斷、意圖和責任有關的廣泛的倫理、法律、道德和政治問題。這些問題在很大程度上仍未得到解決,因此,對于快速推進發展自主武器系統,人們應該深感不安。

盡管自主武器系統似乎不可避免,但有一系列的措施可以用來防止其發展,如建立國際條約和規范,制定建立信任措施,引入國際法律文書,以及采取單邊控制措施。英國無人機戰爭組織認為,英國應充分參與在國際舞臺上制定這些措施。

然而,在這個時候,政府似乎希望保持其選擇的開放性,經常爭辯說,它不希望創造可能阻礙人工智能和機器人技術的基本研究的障礙。盡管如此,大量受控技術,如加密,或在核、生物和化學科學領域,可用于民事或軍事目的,而且受控時不會扼殺基礎研究。

付費5元查看完整內容

核心見解

  • 未來的作戰概念應以有關未來戰場、對手和對手的主要武器和其他作戰系統的實際情報為基礎。

  • 多域作戰(MDO)可以用類似于聯合武器理論和戰爭的術語來思考。

  • 多域作戰并不是后冷戰時代或近期美國軍事經驗所特有的。

  • 面對大國對手的未來戰場需要更多的生存指揮、控制、通信、計算機、情報、監視和偵察能力(C4ISR);強大的后勤保障;以及更多的綜合部隊。

  • 迫切需要陸軍和聯合概念的開發者以盡可能簡單和清晰的術語提出MDO,因為美國聯合部隊在未來的作戰行動中面臨著近似于同行或同行的對手。

引言

在過去的幾年里,新的軍種和聯合作戰概念層出不窮;它們都試圖找到一個能對抗大國的軍事作戰概念。美陸軍在作戰概念戰中的參與項目是多域作戰(MDO)。了解MDO現在特別重要,因為陸軍正在把概念(它想如何作戰)變成理論條令(它將如何作戰)。

為什么這很重要?很簡單,美陸軍是其的主要軍種,其 "組織、訓練和裝備主要是為了在陸上行動中進行迅速和持續的戰斗"。 在其最基本的層面上,MDO將為陸軍如何重建自己以應對未來在陸地、空中、海上、太空和網絡空間領域的挑戰提供架構計劃。 事實上,陸軍甚至已經建立了30多年來第一個新的四星級總部--陸軍未來司令部,作為其架構師。

對于什么是MDO并沒有廣泛的共識。2019年北約的一份文件呼吁明確定義,以 "消除反對者",他們 "對MDO持悲觀和不屑的看法......認為它只是一個流行語,與聯合行動同義"。 這種不明確導致了這樣的說法,即為了執行MDO,陸軍將需要從組織到權力再到海外態勢的重大甚至是根本性的改變。 從本質上講,實現MDO需要的不僅僅是軍隊的翻新;它需要拆毀和重建。一個更悲觀的指控是,美國軍隊,更不用說陸軍,實際上沒有足夠的流程或技術能力來有效整合所有作戰領域的效果。

在下文中的目標是解釋陸軍MDO的起源和廣泛的細節,以作為未來關于其影響和相關性的知情討論的基礎

為什么美陸軍要進行多域作戰?

2018年出版的《2028年多域作戰中的美國陸軍》將之前所說的多域作戰擴展為一個包括競爭在內的更廣泛的概念。這一概念描述了陸軍如何在競爭中為威懾對手和在沖突中擊敗敵人做出貢獻。 當然,這并不是MDO的實際運作方式。公平地說,2018年陸軍MDO概念確實在一定程度上解釋了陸軍編隊如何執行這些行動,例如,滲透敵人的對峙能力和瓦解敵人的反介入區域拒絕系統。然而,盡管2018年的概念文件包括一個整頁的 "邏輯圖",但支撐MDO的邏輯從未得到明確解釋。在退休的陸軍準將Huba Wass de Czege看來,這是概念中的一個關鍵缺陷,他是陸軍1980年代空地戰概念的主要撰寫人之一。Wass de Czege寫道,要做到可信,"MDO必須清楚地定義軍事問題,并闡明一個盟國和對手都能理解并符合邏輯的勝利理論"。

未來集成作戰

聯合領域戰爭的理論是基于聯合武器、擴大的戰斗空間和優勢地位的思想。在聯合武器的思想中,有互補性的理論。在擴大的戰斗空間中,是可擴展性的理論(或者說,效果可以延伸到物理或非物理的距離)。在優勢地位中,提出了相對軍事價值的理論(機動戰的基礎理論是,對手將越來越多地被迫采取違背其意愿的行動,基于對其位置相對于敵人的價值的看法)。通過探索MDO的基礎理論,軍事工作者可以更好地解釋它是如何運作的。

基于互補性和領域相互聯系的理論,MDO通過創造相互作用的效果組合--物理的、非物理的、精神的和道德的,來削弱和瓦解敵人的抵抗意志。這些效果是通過在多個作戰領域內并通過這些領域的行動完成的。因此,MDO通過整合不同領域(物理和非物理領域)的交戰和戰斗中的效果而發揮作用。這些效果要求在非常不同的范圍和時間點上進行整合集成,以考慮到行動速度和位置及處置的變化。其目的是:實現傳統的錯位、破壞和失敗的效果。

由于MDO本質上是集成綜合行動--即不同行動類型的綜合體或分組,以復雜的方式廣泛聯系,因此它們很適合于大規模作戰行動。未來的大規模作戰行動可以被分解為主要的作戰任務,然后指向作戰類型。基于已經完成的MDO工作,這意味著實現信息和決策優勢的附屬概念;精確和大規模的打擊;部署和維持軍事力量以達到最佳節奏;在陸地、海洋、空中、網絡空間和太空戰斗中獲得優勢;以及鞏固成果。這就導致了部隊設計的要求:比敵人更有生存能力的指揮、控制、通信、計算機、情報、監視和偵察能力(C4ISR);強大的后勤系統;以及更加一體化和互操作的聯合部隊。

結論:未來戰爭和聯合作戰

基于實驗來分析和評估未來的MDO是否能發揮作用是至關重要的。這些工作應該從預測未來聯合部隊一套合理的所需能力開始。鑒于美國的地緣戰略現實、可能的未來國家安全戰略和潛在對手構成的威脅,這支未來的聯合部隊將必須是一支全球一體化的 "反應"部隊。所需的未來聯合部隊能力可以從對未來聯合反應行動需求的分析中得出,考慮到大規模的威脅、敵對的環境(進入)和強制進入的要求。利用過去的聯合部隊能力研究,模板化的能力應該包括。C4ISR和導彈防御;導致戰區精確和大面積攻擊的遠程精確打擊;從前沿部署到早期進入部隊的建設;從直接攻擊/插入到全方位部隊的建設;以及戰區支持。從這些未來所需的能力中,可以確定描述這些能力如何有助于勝利理論的廣泛行動,例如,通過有效的C4ISR(防止突襲)和導彈防御來保護和維持部隊;在距離上進行壓制和破壞;以最大化突襲的方式進行機動;集中效果;以及大規模戰斗。

明確地說,MDO尚未在大國戰爭中廣泛使用,盡管它的早期化身曾在第二次世界大戰的一些后期階段使用。我們不可能肯定地說MDO在大國戰爭中會如何發展。然而,有一個基本的理論--上文提到的聯合領域戰爭一詞--可以用于訓練、教育和部隊設計的目的。這一思路的基礎是,MDO將被證明是 "足夠正確的",這與邁克爾-霍華德關于軍事創新和變革的著名言論相呼應。

應該指出的是,2018年陸軍MDO概念打破了重要的新知識領域;這一收獲需要通過更多的分析來加以利用。該概念通過將競爭和沖突聯系起來,在先進的未來作戰理論方面取得了重要的前進步伐。該概念還納入了全球一體化行動等重要概念,并試圖將跨領域的協同和超配與融合的理念聯系起來。盡管如此,要回答關于MDO如何工作的問題仍有更多工作要做;答案將包含陸軍和聯合部隊在未來如何作戰的理論種子。這是將概念轉化為理論、將理論轉化為實踐所需的關鍵工作。

因此,美軍當務之急是陸軍和聯合部隊的概念開發者要明確闡述MDO如何有效地運作以支持國家安全目標--它是如何將對抗現實世界的敵人、作戰和戰術方式以及作戰能力聯系起來的。

付費5元查看完整內容

所謂的殺手機器人已經到來,由人工智能支持的自主武器將成為未來戰爭的一個突出特征。在國際競爭者開發這些系統的背景下,在國際和多國公司的關注下,國家安全委員會關于人工智能的最后報告判斷,這些類型的無人駕駛武器可以而且應該以符合國際人道主義法律的方式使用,適用人類授權的使用條件和適當的設計和測試。人工智能支持的自主性及其軍事應用帶來了這些技術的基本風險,它們在無人武器中的使用進一步挑戰了軍隊在國際人道主義法和正義戰爭理論框架內尋求合法使用。因此,倫理學提供了優越的概念載體,以任命和授權人類授權者和使用者,并從質量上確定什么是 "適當的 "設計和測試。國防部的 "人工智能準備部隊運動 "所確立的七個人工智能工作者原型中的每一個都應該應用與角色相關的、與人工智能有關的道德規范,以充分實現《最后報告》中所確立的條件,并保留和支持控制暴力壟斷所必需的人性。對道德教育的需求單獨和集體地滲透到每個原型中,美國防部必須認識到公共/私人伙伴關系的價值,以充分考慮這些條件。

付費5元查看完整內容

人工智能(AI)的進步為世界各地的軍隊帶來了巨大的機遇。隨著人工智能軍事系統日益增長的潛力,一些活動人士敲響了警鐘,呼吁限制或完全禁止一些人工智能武器系統相反,對人工智能武器控制持懷疑態度的人認為,人工智能作為一種在民用背景下開發的通用技術,將異常難以控制人工智能是一項具有無數非軍事應用的賦能技術;這一因素使它有別于其他許多軍事技術,如地雷或導彈由于人工智能的廣泛應用,絕對禁止人工智能的所有軍事應用可能是不可行的。然而,有可能禁止或規范特定的用例。國際社會有時在禁止或管制武器方面取得了不同程度的成功。在某些情況下,例如禁止永久致盲激光,武器控制迄今為止效果顯著。然而,在其他情況下,例如試圖限制無限制的潛艇戰或對城市的空中轟炸,國家未能在戰爭中實現持久的克制。各國控制或管制武器的動機各不相同。對于特別破壞政治或社會穩定、造成過多平民傷亡或對戰斗人員造成不人道傷害的武器,各國可設法限制其擴散。本文通過探索歷史上試圖進行軍備控制的案例,分析成功和失敗,研究了軍備控制在人工智能軍事應用中的潛力。論文的第一部分探討了現有的有關為什么一些軍備控制措施成功而另一些失敗的學術文獻。然后,本文提出了影響軍備控制成功的幾個標準最后,分析了人工智能武器控制的潛力,并為政策制定者提出了下一步措施。歷史上試圖進行軍備控制的詳細案例——從古代的禁令到現代的協議——可以在附錄a中找到。歷史告訴我們,政策制定者、學者和民間社會成員今天可以采取具體步驟,提高未來人工智能軍備控制成功的機會。這包括采取政策行動,塑造技術發展的方式,并在所有層面加強對話,以更好地理解人工智能應用可能如何在戰爭中使用。任何人工智能武器控制都將具有挑戰性。然而,在某些情況下,軍備控制在適當的條件下是可能實現的,今天的一些小步驟可以幫助為未來的成功奠定基礎。

付費5元查看完整內容

摘要

本文是挪威國防大學學院更廣泛的研究和開發項目的一部分,該項目旨在探索各種兵棋推演和軍事演習的效用和潛力。這篇文章旨在激發對兵棋的使用和問題進行討論,并激發產生新的和更好的建議。因此,本文包含意見和學術思考。本文討論了兵棋推演、其多種不同類型、它們的實際用途,以及在使用兵棋以產生有用結果時出現的一些危險或陷阱。本文的目的是促進辯論,而不是給出任何明確的結論。

簡介

"兵棋推演"這個詞對不同的人意味著許多不同的含義。在某些情況下,存在著截然不同的解釋,從與軍事決策過程(MDMP;見CALL,2015)中的特定階段有關的極其狹窄的定義,到記者和大部分公眾傾向于將戰爭之外的所有軍事努力,包括現場訓練和計算機模擬,視為兵棋推演。這個詞有許多不同的使用方式,并帶有許多情感成見,這取決于相關人員的經歷。問題的一部分在于"'兵棋推演'沒有單一的、普遍接受的定義"(英國國防部,2020)。

即使是那些在專業基礎上參與兵棋推演的人,也很難接受現有的眾多定義,這些定義在定性技術和對更多分析性產出的定量要求之間可能有所不同。對于是否應該包括計算機模擬,或者 "兵棋推演"是否僅指人工技術,也存在分歧。有些人甚至不認可寫成 "war gaming"或"wargaming"。

與許多軍官一樣,我不關心學術定義的細枝末節,而更關心與我所承擔的任務有關的特定技術的有效性。我認為,任何 "兵棋推演"的定義都只能與兵棋推演所支持的具體任務和目的相關,而不是任何全面的概括。我還認為,試圖給"兵棋推演"下一個萬能的定義,不僅是徒勞的,而且實際上對更廣泛地采用這種技術來解決國防需求是有害的。因此,針對本文目的,我將以最廣泛的定義來使用 "兵棋推演",包括所有涉及人類決策者的教育、培訓和分析目的,但不包括實際戰斗。

兵棋推演

兵棋推演是一種決策技術,它提供了結構化的、但在智力上是自由的、可以避免失敗的環境,以幫助探索什么是有效的(勝利/成功),什么是無效的(損失/失敗),通常成本比較低。兵棋推演是一個對抗性挑戰和創造性的過程,以結構化的形式提供,通常有裁判或裁決。兵棋推演是由玩家決策驅動的動態事件。除了敵對的行動者,它們還應該包括所有抵制計劃的 "反對 "因素。兵棋推演的核心是:

  • 玩家。

  • 他們做出的決策。

  • 他們創造的敘事。

  • 他們的共同經歷;以及

  • 他們所獲得的教訓"。(英國國防部, 2020)

兵棋推演涵蓋了廣泛的方法和技術,旨在優化其與目標相關的產出,從那些旨在利用想象力、創造力和原創思維的方法和技術,到那些旨在支持軍事決策過程的方法和技術,以及那些旨在產生定量數據以支持采購和部隊開發的方法和技術。

作者的經驗

由于這是一篇以實踐為導向的文章,關注的是兵棋推演在現實生活中的實際應用,以支持特定的任務和目的,因此也許值得花一些時間來闡述我自己作為一個兵棋玩家的實踐以及我過去在軍隊中舉辦訓練活動的經驗。我是1979年在桑德赫斯特皇家軍事學院開始接觸兵棋推演的,當時是在帕迪-格里菲斯(已故)的指導下,他是一位軍事歷史學家、兵棋家和多產的軍事歷史和戰術作者。在接下來的幾年里,我參與并幫助組織了許多大規模的兵棋推演活動,這些活動都是利用桑赫斯特的設施,由帕迪-格里菲斯和其他人負責。

兵棋推演的目的

有幾個不同的,往往是重疊的,你可能希望進行兵棋推演的原因。根據30年的經驗,我提供了一個主要原因的簡短清單,如下:

  • 了解系統能力。

  • 有效地了解態勢。

  • 教育。

  • 訓練。

  • 當前部隊戰略或戰術。

  • 未來部隊發展(包括作為采購過程的一部分)。

  • 軍事決策過程的一部分。

  • 了解團隊。

  • 預測可能的未來。

  • 了解系統能力。

2015年,我應邀在中國長沙的國防科技大學講授仿真和建模。作為一系列講座的一部分,我被邀請向軍校學生演示一個簡單的 "自由兵棋(free-kriegsspiel)"(一種很少或沒有書面規則的兵棋,裁決是基于一個高級裁判的經驗,而不是復雜的規則和程序)。這是在大學體育館進行的,由模擬學生充當裁判員(之前接受過技術培訓),同時進行25場10人的同一游戲。

我觀察到,中國學生傾向于尋找 "答案",而不是探索學習或自己思考,所以當一個學生質疑為什么有人會進行兵棋推演時,我選擇指導他們玩游戲,然后告訴我他們認為游戲的目的是什么。

在比賽中,關于戰術的討論非常少(以至于一個玩家在得知有炮火支援時,建議連續轟炸敵人的陣地,直到敵人死亡)。大部分的問題和討論都與武器的能力和效果有關。有人向我提問,如 "某個武器系統的有效射程是多少?",我回答說,作為解放軍的軍官,他們應該知道這些信息。這導致了許多討論、信息共享和對軍事手冊的研究。會議結束時,學生們一致認為,與死記硬背相比,這是一種非常高效和有效的信息教學方式。大多數人還同意,這顯然是進行這樣一個兵棋推演的主要原因。我并不反對。

高效的態勢理解

與上述見解相聯系的是,約翰-康普頓博士3在2018年的 "連接美國 "專業兵棋推演會議上討論說,兵棋推演是向參與者介紹軍事態勢的一種極其高效和有效的方式。這是因為信息的呈現方式與它所處的環境直接相關,而且,由于它通常是通過發現學習的過程獲得的,所以它往往更容易在解決問題時發揮作用(Alfieri等人,2011)。這與我在英國常設聯合部隊總部工作時,在俄羅斯吞并克里米亞后,就波羅的海局勢進行的兵棋推演的經驗相吻合。

最終,我為總部的辦公人員就波羅的海局勢進行了四小時的矩陣游戲。游戲結束后,大家一致認為,游戲使參與者迅速掌握了不同的要素和關于當前局勢的重要背景。一位玩家說:"我現在知道了我所知道的,并理解了我不知道的,以及我需要研究的東西。一位J2的工作人員對此提出質疑,他指出這些信息已經以電子郵件簡報的形式提供,并指著一疊至少300毫米高的紙質打印件。大多數工作人員的回答是 "太長了--沒看"。

教育

兵棋推演在教育中特別有效,正如上面提到的發現學習的背景。"我聽了就忘,我看了就記,我做了就懂"(Seok,2011)。然而,與所有基于游戲的學習一樣,也有一些注意事項,那就是需要仔細管理,所選擇的游戲類型應該是有重點的,并且與預期的學習結果相關(以及在現有的時間內可以實現)。也有很好的證據表明,試圖讓不熟悉或不習慣這種方法的教師強制使用基于游戲的學習,可能弊大于利(Whitney等人,2014)。

將游戲用于教育目的需要考慮的其他因素是,游戲不一定要玩到最后(避免得出 "我輸了,所以游戲不好 "或 "我贏了,所以游戲好 "的結論--這兩種結論對教育理解都是有害的),以及游戲不一定要完美地表現現實--游戲的簡易性和學生的參與性更為重要。事實上,如果游戲是不完美的,教員邀請學生就如何改進游戲提出建議,可以產生比游戲本身更多的洞察力和智能對話。因此,在一節基于游戲的學習之后,進行適當的匯報是非常重要的,以確保游戲與要達到的學習結果相聯系。

培訓

兵棋推演可以在培訓中發揮作用,因為兵棋推演往往比其他培訓方法更容易獲得,更容易接觸,而且成本更低(允許有更多的機會進行練習--刻意練習比天賦更重要;見Ericsson等人,1993)。就像上面的評論一樣,游戲是在一個特定的環境中進行的,這有助于信息的保留,并有助于理解游戲中描述的情況。

然而,與教育游戲不同的是,特別重要的是,游戲機制和裁決要根據對現實世界表現的期望進行驗證,以防止對游戲的價值失去信心或從體驗游戲中獲得錯誤的教訓。

當前部隊戰略或戰術

2019年,駐扎在蘇格蘭愛丁堡的3號步兵營(一個輕型步兵營)的指揮官要求我協助開展一些戰斗小組級別的兵棋推演。該部隊將從輕步兵重新定位,成為一個機械化營,配備輕型裝甲的偵察車、支援車和運兵車。其目的是為了獲得一些洞察力和理解,以適應裝備這些車輛所需的戰術和程序的變化。

很快就可以看出,作為在阿富汗使用的 "緊急行動需求 "而購買的車輛,完全不適合機械化營所期望的更廣泛的作用。當把它放在一個特定的兵棋推演場景中,試圖在不同的地形中使用不同的車輛,并對付另一種更常規的敵軍時,很明顯,如果按照最初的設想使用這些車輛,會有很大的缺點。用于偵察的車輛雖然裝甲較輕,但缺乏對乘員的保護,特別容易受到炮彈碎片和敵人裝備的大炮的偵察。運兵車雖然在阿富汗的地形上對簡易爆炸裝置有很好的防護作用,但完全不適合在另一種地形上越野行駛。

事實上,所有這些因素都被暴露出來,在場景的操作背景下,在所有相關的利益相關者在場的情況下一起工作,這使得什么可能有效,什么不可能有效變得很明顯。這導致了對如何改變戰術以減少這些風險,或對部隊可以承擔的任務和角色進行限制的清晰理解。

未來部隊的發展

當考慮將未來部隊的發展作為兵棋推演的目的之一時,這分為兩個主要領域:兵棋推演作為分析過程的一部分,以確定未來采購的數量和性能;以及兵棋推演,以確定這些新能力在特定場景下的最佳應用。前者最有可能由研究機構進行,后者則由軍事單位和編隊進行。

應該注意的是,在用于分析目的的兵棋推演中,游戲規則、數據和程序必須盡可能準確,以確保游戲產生的數據同樣準確;游戲的簡易性和玩家的參與是次要的(與教育戰爭游戲相反)。

軍事決策過程的一部分

可以說,兵棋推演是軍事決策過程中最關鍵的部分之一,因為它將指揮官的計劃從概念變成了細節,并使部隊的戰斗力同步于行動。這通常是軍事人員最熟悉的戰爭演習類型,也是由于對如何正確執行戰爭演習的誤解,以及缺乏分配給這一職能的時間和專業知識而通常做得不好的類型(CALL, 2020)。

戰術演練應該被用來評估作戰方案(COA)完成任務的潛力,以應對不同對手COA的預見性反擊,以及識別和糾正不足之處。然而,真正的價值在于它能夠允許指揮官和參謀部將行動的開展可視化,并深入了解對手的能力和行動,以及作戰環境的狀況(AJP-5,2019)。

基本要素是在作戰的背景下了解計劃,以及敵人可能采取的作戰方針。

了解團隊

托馬斯-謝林是美國經濟學家,馬里蘭大學學院公園公共政策學院的外交政策、國家安全、核戰略和軍備控制教授。他因 "通過博弈論分析提高了我們對沖突和合作的理解 "而被授予2005年諾貝爾經濟科學紀念獎。他還根據自己在戰略層面上的博弈經驗,在美國和俄羅斯之間建立了核熱線(Miller, 2021, pp.176-191)。

在蘭德公司的論文《27年后的危機兵棋推演》(Levine et al., 1991)中,Schelling寫道:"最大的好處是他們(參與者)與一些他們將來可能有機會合作或依賴的人變得親密無間,或者至少是隨意地熟悉起來。" 這被明確為兵棋推演的一個重要副產品,以及我所說的場景理解和系統能力。

預測可能的未來

"兵棋推演不是預測性的。兵棋推演說明了可能的結果,所以有可能從兵棋推演的一次運行中發現錯誤的教訓。兵棋推演可以說明某些事情是合理的,但不能明確地預測它是可能的。(英國國防部, 2020) "

許多作者,包括支持使用兵棋推演的作者和批評兵棋推演方法的作者,都對兵棋推演的預測能力提出了可怕的警告。人們總是對兵棋推演的失敗提出批評,從未能預測1899-1902年布爾戰爭的心理或經濟方面的決定性因素(Caffrey,2019),到商業兵棋推演 "遙遠的平原"(關于阿富汗戰爭)的設計者無法預測2021年8月阿富汗軍隊出現災難性崩潰的可能性(BGG,2021)。

如果兵棋推演在過去的122年里都不能預測未來,盡管有些作者聲稱它們可以(Dupuy, 1985),那么它們在這個領域有什么用處呢?

答案在于它們能夠在關鍵的利益相關者在場的情況下,暴露出一個計劃的多面性,同時面對克勞塞維茨式的摩擦(Watts,2004)和敵人行動所能帶來的所有對抗性因素。這種方法,如果執行得當,有一種獨特的能力,可以暴露任何未來計劃的弱點,排除那些根本行不通的行動和意圖,并完善可能結果的未來錐(Voros, 2017),突出預測的、合理的和可能的未來,并允許更好地理解與之相關的風險。

兵棋推演可能無法預測實際的未來,但它們善于排除那些根本行不通的未來計劃,并允許更好地理解在執行一項行動時可能發生的一系列結果。

兵棋推演的誤用

在簡要討論了你可能希望進行兵棋推演的一些原因之后,重要的是要介紹一下為專業目的進行兵棋推演所涉及的陷阱和危險。

然而,在開始之前,有必要參考一下關于這個特定主題的開創性工作:"兵棋推演的病癥"(Weuve, et al, 2004)一文。我所做的任何評論只是反映了對我所進行的兵棋推演影響最大的問題,由于我在職業生涯的后半段是一名 "教育者",這影響了我的思維,也意味著在兵棋推演的某些領域(訓練和分析),我的經驗比較有限。

幻想游戲

以色列軍方堅定地認為,任何具有虛構背景的訓練活動,包含專門為該活動創建的數據,不僅是一種浪費,而且浪費了對真實世界的理解和洞察的機會 - 他們是絕對正確的。你永遠不應該使用假的場景。

除非你必須這樣做。

在某些情況下,對運行有關真實潛在敵人的游戲存在政治敏感性。大多數情況下,這些都是誤導,實際上對活動的價值有害。在真實的潛在情況下進行游戲的行為不僅本身非常有價值,而且如果消息傳到反對派那里,那就更好了,因為這將產生威懾作用。更不用說,如果一般公眾認為我們是在 "瞎編",他們會認為我們不認真對待這種情況,是瘋了。畢竟,20世紀20年代的 "紅色戰爭計劃 "是美國針對英國和加拿大的一套真實的計劃方案,是由一個剛剛在歐洲作為英國的盟友之一打了一場大仗的國家設計的(Major, 1998, pp.12-15)。

如果你被迫擁有一個虛構的場景,基本上有三種選擇:從頭開始生成場景,增加一個額外的國家,以及改變名稱。

從頭開始構建場景是最糟糕的選擇。所需的工作是巨大的,根據游戲的層級,你可能需要創建整個大陸、國家和其他社會政治集團。你可能需要繪制地圖,以及關于友軍和敵軍作戰命令的深層背景數據,這可能是非常耗時的。

添加一個額外的國家是一個稍好的選擇,因為地緣政治環境是真實的世界,但在危機地區插入了一兩個虛構的國家。這減少了準備工作的負擔,通常允許使用真實的地形(重新劃定一些邊界),并有一個可否認的外衣。

改變名稱是最好的選擇。它允許所有相關人員使用現實世界的情況,并將變化降到最低,而我們決定費盡心思改變名稱的事實表明,我們不希望冒犯他人,同時顯然允許在真實的地緣政治情況下進行訓練。然而,不要搞錯了--"僅僅改變名稱 "本身就可能是一項巨大的努力。我曾參與過一次軍團級的演習,我們要使用西德的地理環境,我們只是把它重新命名為 "紅土"。準備工作已經到了高級階段,當參加演習的德國師級人員震驚地發現,只有國名改變了,但城鎮、地區或河流的名稱都沒有改變。例如,將下薩克森州作為 "敵人的領土",這在政治上被認為是不可接受的,而且,由于計算機模擬無法在現有的時間內進行修改,因此不得不完全重寫設定,使用英國的地理環境,因為這是當時唯一存在的替代模擬地形。

人們經常表示擔心,如果使用真實世界的數據,場景將不得不成為機密;增加的費用和努力是一個數量級的。有幾件事情需要考慮:

  • 用真實的數據進行訓練是更好、更現實的。它將吸引在現實生活中處理情況的個人更高水平的參與,并提供一個機會在事件中檢查數據的有效性和背后的假設。在大多數情況下,在高分類的情況下,實際需要的數據非常少,但額外的成本可能非常高。

  • 根本不需要使用分類數據。完全可以使用通常用于 "訓練 "或公共領域的數據,以較低的分類來設計事件,將其設置在現實世界中。與從完全 "編造 "的數據中得出的那種教訓相比,認為這可能會產生 "錯誤的教訓 "的論點顯然是可笑的。

在過去,這不是一個問題,因為人們普遍認為戰爭與和平之間有一條分界線。這意味著,與手頭的軍事任務相比,對地緣政治局勢、當地政治或宗教的詳細了解被置于次要地位。然而,在當前的不對稱威脅環境中,這種復雜性變得極為重要,因此,為了解決這個問題,場景模擬變得越來越復雜了。

問了錯誤的問題

當一位高級軍官說他希望通過一個特定的兵棋推演來 "證明我們需要更多的[某種]導彈 "時,我實際上也在場。他沒有按照兵棋推演的原意使用兵棋,而是為了研究一個問題,以收集有助于為辯論提供信息的見解,他已經決定了答案,只是想通過兵棋推演來證實他的偏見。

這種行為比你想象的要多,不一定像上面的例子那樣明目張膽地發生,但在減少兵棋推演的范圍時,表面上是出于預算或編程的原因,所以被審查的場景被迫處理如此少的替代方案,結果是預先注定的。

英國皇家海軍進行了一次兵棋推演,研究格陵蘭島、冰島和英國之間的差距,這是大西洋北部的一個區域,在這三個陸地之間形成了一個海軍扼制點。其目的是確定是否可以有效地發現俄羅斯北方艦隊的潛艇運動進入北大西洋。一些憤世嫉俗的分析家認為,這場戰爭的目的是為了 "證明 "皇家海軍沒有足夠的潛艇來發揮效力。他們感到驚訝的是,這個假設在游戲開始時就被假定了,而實際的問題是調查如果這種情況被證明是真的,最具有成本效益的替代方案。

最后,顯然需要更多的潛艇才能有效地對付更現代化的俄羅斯潛艇,但除了試圖采購更昂貴的潛艇外,還有一些具有成本效益的替代方案:衛星監視、與盟國加強合作以及海上空中巡邏。當然,海軍兵棋準備建議為皇家空軍海上航空隊提供額外的資金,這一事實在分析上,特別是在政治上都是令人信服的,并且保證了結果被廣泛分享和采取行動。一個提出正確問題的例子。

重要的不是兵棋推演確定了某一系統或戰略存在嚴重的不足,而是玩家做了什么來克服這一不足,以及這是否能夠成功。

太大的問題

兵棋推演,至少以我在英國的經驗來看,一般是例外,而不是常態。因此,當安排了適當數量的高級領導人參加的兵棋推演時,它們往往會受到 "膨脹 "的影響,目的和目標變得越來越雄心勃勃,以證明有這么多的高級決策者參加。在這種情況下,活動中不可避免地增加了其他內容,在活動中插入了審查其他場景和問題的機會,以充分利用參與的人才。

這必然會扭曲活動,將重點從最初的問題上移開,并有可能稀釋結論,從而使它們在更廣泛的戰后報告中丟失,這些報告中充滿了對大多數人來說不感興趣或不相關的信息。

額外的元素也將有助于固定活動方案,分散對原意的注意力,減少那些高級人員花時間 "深入研究 "的靈活性,以進一步研究與他們的同行產生的任何特殊見解。相反,他們往往被從一個點引導到另一個點,缺乏參與或時間來產生有用的投入。

當一場兵棋推演成為 "大事件",有許多高級決策者參加時,它也可能吸引媒體的注意,因此游戲的結果將受到明顯的關注。這意味著要避免被認為是失敗或缺點的尷尬,而且游戲不可避免地被傾斜,以產生一個 "成功的結果"(就外部第三方而言),而不考慮最初的目的。

在這種情況下,游戲不再是一個兵棋,而是通過計劃獲得成功的行動,只有微不足道的 "學習 "才能證明事后的活動。

更多的計算機和更多的數據

如果我們考慮在最廣泛的意義上使用兵棋推演,我們需要理解許多人為了產生一個 "更準確 "的結果而希望涉及計算機模擬,也許還有人工智能(AI)。這是錯誤地認為 "更多的數據 "和 "更多的計算能力 "可以在某種程度上,本身就可以提高準確性。

使用模擬和人工智能協助軍事指揮官決策的機會是令人興奮的:使用計算機模擬未來的沖突局勢,然后 "通過人工智能運行它們",以制定最佳行動方案、部隊組合和實現成功的時間。請注意,在這種情況下,人工智能的軍事概念包括在一個基于云的分布式架構中查看多個同時進行的行動方案,以并行地完成許多這些過程(庫克,2020年)。它可能不是嚴格意義上的人工智能,但任何先進的技術計算架構都傾向于被概括為這個標題--軍事指揮官實際上只對產出的實際效用感興趣,而不是對術語的學術定義。

然而,這種方法有一些問題,主要是在兩個方面:基礎模型的準確性;以及優化的危險,導致可預測性和脆弱性。

人工智能系統采用規則來優化其行為,以尋求優勢。這種方法的優勢在于它的有效性。這種方法的缺點也是它有效。我們必須非常小心,確保我們為人工智能定義參數,以產生我們想要的行為(例如,最佳攻擊路線可能在國家邊界之外,所以我們需要確保我們在執行計劃時不會入侵鄰國)。人工智能可以產生不同的行動方案,只要他們的規則適合任務,在封閉的模擬環境中。這必須由人類嚴格控制,以確保不僅規則適合情況,而且人工智能不會通過利用系統中的錯誤來作弊(Benson,2020)。

雖然許多這些系統或多或少都是聚集在一起的,所以必須對性能進行近似,但它們是用來訓練的,這意味著它們足夠準確,有軍事用途;對于Box(1979)來說,"所有的模型都是錯的,有些是有用的"。

危險的是,如果我們可以做這種分析,我們的敵人也可以,讓他們預測我們的行動方案。在尋求具有決定性優勢的武器系統時,這樣的系統變得昂貴,減少了用于替代方案的資源,并且需要很長時間才能投入使用。敵人在得知這樣一個系統后,可以花時間來打敗這個系統。而當他們這樣做的時候,就沒有什么可以反對他們了。韋恩-休斯教授警告說:"海上戰爭中的殺戮往往是用海軍的第二好的武器完成的。如果在未來的某個沖突中,雙方都反擊了對方的首要武器,那么海軍將不得不問:我們的下一個最佳武器是什么?" (Rielage, 2017)。如果人工智能生成的可預測性已經導致了一個單一的武器系統或最佳方法,而它被打敗了,可能就沒有什么替代品了。

優化的系統也是脆弱的,特別是在面對突發事件時。這一點在COVID-19大流行病早期的衛生紙交付的供應鏈失敗中得到了明確的證明(Wieczner, 2020)。特別是軍事行動,需要對突發事件有強大的抵抗力。

然而,許多這樣的實驗未能解決的是關于情報和局勢數據準確性的一些隱性和顯性假設。正如在科索沃的空襲行動中所證明的那樣,塞族人能夠用相對粗糙的技術騙過美國的情報分析員(施密特,1999年),而且在堅實的地面、泥濘的斜坡和耕地上的相對 "前進"(即前進速度)很少被量化,所以假設是危險的。

然而,所有的軍事規劃都是在不完善的信息基礎上進行的。假設人類對人工智能的建議有所節制,那么當人類和人工智能合作以利于決策時,有可能導致更好的結果(an den Bosch & Bronkhorst, 2018),或至少排除更愚蠢的選擇。

因此,人工智能,在一些注意事項和人類的支持下,可以使其發揮作用 - 但代價是什么?人工智能的歷史是一個炒作和預期失敗的故事,被Floridi(2020)稱為 "人工智能的冬天"。其他技術(現有的統計方法、人工兵棋推演、競爭性假設的分析)已被證明是同樣有效的,而成本和精力卻只有一小部分(Makridakis等人,2018),而且不容易出現人工智能衍生結果有時會產生的嚴重錯誤(Yampolskiy,2016;Osoba和Welser,2017)。

英國防部傾向于希望在最昂貴和效率最低的領域使用人工智能--而不是后勤支持和光學識別這些低垂的果實(國防采購機構認為在正常競爭下會自動交付)。相反,他們追求的是最昂貴和最令人興奮的獎品:常規部隊的行動過程評估(Kerbusch等人,2018)。

兵棋推演應該是小型的定期活動,其范圍靈活,產出集中,能夠從最廣泛的角度考慮問題。只有從這樣的活動中才能產生洞察力。

正如偉大的F.W.蘭徹斯特所說。"提供有用見解的簡單模型比那些與現實世界如此接近的模型更受歡迎,因為他們想要解開的謎團在模型中重復出現,而且仍然是謎團"(Fletcher, 1995)。

對兵棋推演缺乏了解

然而,到目前為止,對兵棋推演最大的誤用僅僅是因為許多人(包括許多高級決策者)根本不了解兵棋推演這一技術,或者認為他們自己對兵棋推演的狹義解釋是正確的,而所有其他的解釋都或多或少地存在缺陷。

這并不局限于國防領域的普通民眾。職業兵棋手們自己也對兵棋的定義爭論不休,在那些認為分析性兵棋的定量科學是唯一有效的方法的人和那些喜歡 "更廣泛的兵棋"的定性藝術而不是 "狹隘的"(和 "狹隘的")替代品的人之間存在著明確的分裂。

造成這種情況的原因是,幾乎在所有情況下,兵棋推演都是由自學成才的少數人進行的,由他們個人的職業發展提供信息,缺乏正規專業教育所能提供的更廣闊的視野。這并不是說兵棋推演課程不存在,但總的來說,這些課程是其環境的產物,因此其產出偏向于其贊助商的要求。舉個例子,MORS7兵棋證書(正如你所期望的那樣)在很大程度上偏向于分析的一端。

為了有效,兵棋推演需要來自指揮系統的正式支持。它需要一個冠軍(一個高級領導人,承擔起確保每個參與者都致力于該技術的最終成功的重任),需要有人負責確保兵棋推演在每個級別都得到理解并定期進行,從計劃分區攻擊的初級士兵到軍隊的最高級別,如英國國務卿的網絡評估和挑戰辦公室(SONAC;見Elefteriu,2020)。

需要在軍事學校和學院開設正式的教育課程,教授全方位的兵棋推演,而且兵棋推演應該被強制規定為任何課程或單位和編隊的年度培訓周期的一部分。只有這樣,才能培養出新一代有適當資格和經驗的人,以取代 "有天賦的業余愛好者",他們在大多數軍隊中構成了大部分的兵棋推演專家。

不過,無論怎樣強調都不為過的是,不能把應該進行兵棋推演的授權與應該玩某種游戲或游戲類型的授權混為一談。

正如弗朗茨-哈爾德將軍(Generaloberst Franz Halder)在談到20世紀30年代和40年代的德國軍隊兵棋推演時所說:

"軍事文獻包括關于兵棋推演的非官方手冊。為了避免哪怕是最輕微的軍團化跡象,并在戰爭游戲的應用和發展中保持充分的自由,官方沒有發布任何形式的正式指令。(霍夫曼, 1952)"

結語

在這篇文章中,我試圖確定兵棋推演的多種多樣的用途,強調游戲類型之間的差異,所有這些游戲都是為了一個特定的目的。沒有哪種游戲適合所有人--用于教育、培訓和分析的游戲之間的差異是非常重要的,而且經常被忽略。

我還從我的經驗出發,介紹了一些在運行兵棋推演時可能出現的錯誤和危險(并指出了關于這個問題的開創性工作)。為了避免其中最重要的危險,并確保它作為一種使軍隊更加有效的技術而獲得成功和發展,兵棋推演需要得到指揮系統的支持,并且必須成為軍事學校和學院課程的一個重要組成部分。

付費5元查看完整內容

引言

俄羅斯總統弗拉基米爾·普京宣布 2021 年為俄羅斯科技年,11 月被命名為人工智能 (AI) 月,這表明俄羅斯領導層對這一總括性術語的濃厚興趣。俄羅斯國防部門尤其被這些人工智能技術相關機遇所吸引。近年來,人工智能、機器人技術以及將自動化和自主性進一步整合到武器系統和軍事決策中,都被強調為俄羅斯武裝部隊現代化的優先事項。

2017 年,普京有句名言:“人工智能是未來,不僅是俄羅斯,也是全人類……誰成為這一領域的領導者,誰就成為世界的統治者”。引用這句話,分析人士經常將俄羅斯的發展歸因于、測試和使用武器化的 AI 來與當前領先的 AI 開發商:美國和中國在所謂的全球 AI 競賽或全球技術競賽中競爭的必要性。雖然認為競爭和追趕的需求是俄羅斯動機的一部分,但它對軍事人工智能的興趣不應僅僅歸因于對相對實力的追求。要了解俄羅斯圍繞人工智能、自治和自動化的辯論的深度和復雜性,需要審查有關其對俄羅斯軍隊的戰略影響、自治的好處和風險,以及更廣泛地說技術現代化和技術現代化的重要性的討論。俄羅斯在世界上的地位的創新。

本報告旨在概述面向國際受眾的不同概念和動機,這些概念和動機一直并正在指導俄羅斯政治和軍事領導人實現其追求武器化人工智能的雄心。首先,它概述了俄羅斯軍隊追求人工智能、自主和自動化背后的各種外部和內部因素。其次,它介紹了俄羅斯在這一領域的一些計劃、對其能力的了解以及加強這些計劃所面臨的挑戰。第三,它深入探討了俄羅斯關于自主,特別是自主武器系統的辯論,以及關于開發所謂的“殺手機器人”或自主戰斗機器人的倫理討論,這是一個經常使用的術語在俄語文學中。

該分析基于對開源材料的調查,包括媒體報道、新聞稿、官方聲明和演講、同行評議的文章和智囊團報告,以及俄羅斯軍事期刊上的出版物。作者希望將其作為正在進行的博士研究項目的第一步,以及對新興的關于俄羅斯如何看待武器化 AI 的英語文獻做出貢獻。

概念注釋

本報告分析了自主、自動化和人工智能的概念——這三個術語在俄羅斯和國外經常相互混淆。值得從探索這些概念開始。自動化是一種基于特定動作或規則序列將任務委派給機器的方式,從而使流程更具可預測性。自動化系統是“根據預編程腳本執行具有定義的進入/退出條件的任務”。自主性是一個更復雜的過程,廣義上的意思是“對機器進行編程以執行通常由人員執行的某些任務或功能人類”,但沒有詳細的規則,因此更難以預測。人工智能可以定義為“數字計算機或計算機控制的機器人執行通常與智能相關的任務的能力。” 人工智能及其子集,例如機器學習,以及其在計算機視覺、面部和聲音識別等方面的應用,可用于實現武器系統更高水平的自動化和自主性。自主武器系統通常被定義為“一旦啟動,無需人工操作員進一步干預即可選擇和攻擊目標的機器人武器系統。” 聯合國安理會 2021 年 3 月發布的一份報告表明,土耳其制造的 Kargu-2在利比亞內戰期間,游蕩彈藥系統被編程為以自主模式選擇和攻擊目標。這被世界各地的媒體描述為首次使用致命的“殺手機器人”。但是,尚不清楚該系統在攻擊時是否真正自主運行。

【在人工智能進步的幫助下,武器系統可以在自主范圍內進一步發展,承擔更多任務,并最終在戰場上取代人類】

圖1. 武器系統的自主性

同時,這些領域之間的能力并不總是相同的。在俄羅斯的案例中,自動化和無人機器人系統的開發比集成更現代的基于機器學習的系統更先進。俄羅斯軍事文獻中經常提到的“自動化”(автоматизация)過程——其他術語包括“機器人化”(роботизация)、“智能化”(интеллектуализация)或“數字化”(дигитализация)并不是一個新現象。 俄羅斯在自動化和遠程控制武器系統方面的能力相對優于其在人工智能總稱下整合機器學習和廣泛技術的其他子元素的能力。許多軍事決策者和分析人士的立場是,借助人工智能的進步,武器系統可以在自主范圍內進一步發展,承擔更多任務,并最終在戰場上取代人類。

付費5元查看完整內容
北京阿比特科技有限公司