俄羅斯總統弗拉基米爾·普京宣布 2021 年為俄羅斯科技年,11 月被命名為人工智能 (AI) 月,這表明俄羅斯領導層對這一總括性術語的濃厚興趣。俄羅斯國防部門尤其被這些人工智能技術相關機遇所吸引。近年來,人工智能、機器人技術以及將自動化和自主性進一步整合到武器系統和軍事決策中,都被強調為俄羅斯武裝部隊現代化的優先事項。
2017 年,普京有句名言:“人工智能是未來,不僅是俄羅斯,也是全人類……誰成為這一領域的領導者,誰就成為世界的統治者”。引用這句話,分析人士經常將俄羅斯的發展歸因于、測試和使用武器化的 AI 來與當前領先的 AI 開發商:美國和中國在所謂的全球 AI 競賽或全球技術競賽中競爭的必要性。雖然認為競爭和追趕的需求是俄羅斯動機的一部分,但它對軍事人工智能的興趣不應僅僅歸因于對相對實力的追求。要了解俄羅斯圍繞人工智能、自治和自動化的辯論的深度和復雜性,需要審查有關其對俄羅斯軍隊的戰略影響、自治的好處和風險,以及更廣泛地說技術現代化和技術現代化的重要性的討論。俄羅斯在世界上的地位的創新。
本報告旨在概述面向國際受眾的不同概念和動機,這些概念和動機一直并正在指導俄羅斯政治和軍事領導人實現其追求武器化人工智能的雄心。首先,它概述了俄羅斯軍隊追求人工智能、自主和自動化背后的各種外部和內部因素。其次,它介紹了俄羅斯在這一領域的一些計劃、對其能力的了解以及加強這些計劃所面臨的挑戰。第三,它深入探討了俄羅斯關于自主,特別是自主武器系統的辯論,以及關于開發所謂的“殺手機器人”或自主戰斗機器人的倫理討論,這是一個經常使用的術語在俄語文學中。
該分析基于對開源材料的調查,包括媒體報道、新聞稿、官方聲明和演講、同行評議的文章和智囊團報告,以及俄羅斯軍事期刊上的出版物。作者希望將其作為正在進行的博士研究項目的第一步,以及對新興的關于俄羅斯如何看待武器化 AI 的英語文獻做出貢獻。
本報告分析了自主、自動化和人工智能的概念——這三個術語在俄羅斯和國外經常相互混淆。值得從探索這些概念開始。自動化是一種基于特定動作或規則序列將任務委派給機器的方式,從而使流程更具可預測性。自動化系統是“根據預編程腳本執行具有定義的進入/退出條件的任務”。自主性是一個更復雜的過程,廣義上的意思是“對機器進行編程以執行通常由人員執行的某些任務或功能人類”,但沒有詳細的規則,因此更難以預測。人工智能可以定義為“數字計算機或計算機控制的機器人執行通常與智能相關的任務的能力。” 人工智能及其子集,例如機器學習,以及其在計算機視覺、面部和聲音識別等方面的應用,可用于實現武器系統更高水平的自動化和自主性。自主武器系統通常被定義為“一旦啟動,無需人工操作員進一步干預即可選擇和攻擊目標的機器人武器系統。” 聯合國安理會 2021 年 3 月發布的一份報告表明,土耳其制造的 Kargu-2在利比亞內戰期間,游蕩彈藥系統被編程為以自主模式選擇和攻擊目標。這被世界各地的媒體描述為首次使用致命的“殺手機器人”。但是,尚不清楚該系統在攻擊時是否真正自主運行。
【在人工智能進步的幫助下,武器系統可以在自主范圍內進一步發展,承擔更多任務,并最終在戰場上取代人類】
圖1. 武器系統的自主性
同時,這些領域之間的能力并不總是相同的。在俄羅斯的案例中,自動化和無人機器人系統的開發比集成更現代的基于機器學習的系統更先進。俄羅斯軍事文獻中經常提到的“自動化”(автоматизация)過程——其他術語包括“機器人化”(роботизация)、“智能化”(интеллектуализация)或“數字化”(дигитализация)并不是一個新現象。 俄羅斯在自動化和遠程控制武器系統方面的能力相對優于其在人工智能總稱下整合機器學習和廣泛技術的其他子元素的能力。許多軍事決策者和分析人士的立場是,借助人工智能的進步,武器系統可以在自主范圍內進一步發展,承擔更多任務,并最終在戰場上取代人類。
梅森-克拉克(Mason Clark)是美國戰爭研究所的俄羅斯方向負責人和俄羅斯與烏克蘭項目的研究分析師。他的工作重點是俄羅斯在敘利亞的軍事適應和學習。他的工作被《任務與目的》、《防務一號》、《基輔郵報》、《紐約時報》等媒體引用。他曾就俄羅斯的軍事發展和克里姆林宮的全球運動向多位高級軍事和文職決策者作過簡報。梅森在美國大學國際服務學院獲得了國際研究的榮譽學士學位,重點是美國外交政策和俄語。
ISW是一個無黨派、非盈利的公共政策研究組織。它通過可靠的研究、可信賴的分析和創新的教育,促進對軍事事務的知情理解。它致力于提高國家執行軍事行動和應對新興威脅的能力,以實現美國在全球的戰略目標。
俄羅斯軍方將其在敘利亞的部署視為未來戰爭的原型--支持基于聯盟的混合戰爭遠征部署。俄羅斯總參謀部認為,敘利亞問題突出表明,俄羅斯需要發展一種新的軍事能力--部署靈活的遠征軍,在國外開展 "有限行動"。俄羅斯武裝部隊正在運用從敘利亞的經驗中獲得的教訓,將其發展成為一支靈活而有效的遠征軍。
美國必須避免將自己的現代化優先事項或中國等其他競爭對手的優先事項投射到俄羅斯身上。俄羅斯軍方正在做出獨立的選擇,集中精力從敘利亞獲得某些學習機會。這些選擇被優化,以支持俄羅斯的作戰概念,該概念與敘利亞之前俄羅斯的現代化努力和美國自己的現代化努力都不同。
俄羅斯軍方正在利用在敘利亞管理臨時聯盟和代理部隊的經驗教訓,為協調未來戰爭中的正式聯盟做準備。正如俄羅斯總參謀長瓦列里-格拉西莫夫所描述的那樣,克里姆林宮試圖創造條件,確保其基于敘利亞的下一次 "有限行動 "能夠利用非俄羅斯的力量。克里姆林宮在這方面的準備工作包括在演習中練習聯合作戰,擴大俄羅斯的國際軍事聯系--放大克里姆林宮的力量投射能力。
俄羅斯軍隊從敘利亞得到的主要教訓是需要在未來的沖突中獲得 "管理優勢"。俄羅斯人將管理優勢定義為比對手更快地做出更好的決定,并迫使對手在俄羅斯的決策框架內運作。他們斷言,在日益快速和復雜的沖突中,獲得管理優勢將是指揮官的關鍵重點。俄羅斯軍方評估認為,指揮和控制(C2)效率是現代和未來作戰成功的關鍵預測因素。俄羅斯在指揮和控制方面的許多經驗對俄羅斯來說是新的,而不是現代戰爭中的新穎創新,但俄羅斯軍方正在有效地利用從敘利亞學到的東西來縮小與西方軍隊在C2能力方面的差距。
克里姆林宮優化了對敘利亞的部署,以向整個俄羅斯軍隊灌輸戰斗經驗。格拉西莫夫認為敘利亞內戰是俄羅斯軍隊學習未來作戰的主要來源,并優化了俄羅斯的部署,以確保盡可能多的軍官獲得經驗。俄羅斯高級軍官班的大部分人現在擁有必要的經驗。
自2015年以來,俄羅斯的軍事演習將對敘利亞的教訓進行制度化。從2015年到2020年,俄羅斯關于從敘利亞學習的論述發展迅速,本報告中討論的許多適應性措施可能已經被納入理論,包括在俄羅斯機密的2021-2025年國防規劃中。
俄羅斯軍隊仍然需要大量投資和時間來實施從敘利亞學到的經驗教訓。然而,如果美國在未來幾年不采取行動應對這些發展,俄羅斯從敘利亞汲取的新的能力工具包將縮小與美國和北約的一些能力和技術差距。
美國不應低估克里姆林宮以其在敘利亞的干預行動為模式進行遠征部署的意圖。克里姆林宮認為敘利亞是一個非常成功的、可復制的行動,并將遠征部署視為克里姆林宮政策工具箱中的一個新成員。克里姆林宮已經將敘利亞的經驗教訓應用于其在利比亞和納戈爾諾-卡拉巴赫。
美國必須保持一個全球性的、靈活的力量態勢來對抗俄羅斯軍隊。美國不需要在克里姆林宮可能進行遠征行動的地方部署自己的軍隊,但它必須找到并發展盟國和伙伴的軍事力量來對抗俄羅斯的威脅。俄羅斯的軍事威脅并不局限于歐洲,也不能僅靠常規部署來對抗。
在管理優勢方面美國必須優先考慮與俄羅斯進行較量。美國及其盟國不需要復制“管理優勢”這一概念,但必須注重俄羅斯軍官對關鍵作戰任務的理解--提高他們自己的決策速度,減少他們對手的指揮和控制能力。 俄羅斯軍隊新的有戰斗經驗的軍官骨干可能會改變俄羅斯的軍事思維和效力。每個俄羅斯軍區指揮官和幾乎所有團級和旅級以上的軍官現在都擁有來自敘利亞的經驗。俄羅斯軍方將整個俄羅斯參謀部移植到敘利亞的做法確保了俄羅斯部隊在執行咨詢任務時形成單位凝聚力。
克里姆林宮可能會在未來的作戰行動中更有效地利用聯盟伙伴。美國應采取措施加強與北約的合作,并向其他國家推廣,以減輕克里姆林宮發展其軍事關系網絡的能力。美國及其盟友還應該開發出破壞敵方聯盟的方法,雖然這是美國在最近的戰爭中不需要進行的任務。
俄羅斯軍隊正在利用從敘利亞學到的知識來彌補與美國和北約的若干能力差距。美國及其盟國應該為俄羅斯軍隊進一步實現若干能力的現代化做好準備,這些能力雖然對美國和北約來說并不新鮮,但會增強俄羅斯軍隊的能力。
俄羅斯軍隊對網絡化指揮系統的優先考慮,如果實現,將削弱美國和北約的關鍵技術優勢之一。克里姆林宮正在進行的指揮和控制系統現代化努力將是一個昂貴的過程,但俄羅斯軍隊已經在迅速取得進展,在2020年測試的系統在2018年還處于理論階段。
俄羅斯軍方正在用一場徹底改革俄羅斯指揮文化的運動來支持其指揮系統技術現代化。俄羅斯總參謀部正在著手進行一項艱難的代際努力,將主動性和創造性引入俄羅斯軍官隊伍。未來的俄羅斯軍官可能會比他們的前輩表現出更大的創造性和靈活性,美國及其盟國必須避免對根植于蘇聯時代的俄羅斯指揮文化做出越來越過時的評估。
俄羅斯軍隊正在發展支持提高精確打擊能力的理論,但實現這些目標需要進一步的昂貴技術投資。美國及其盟國還應保持制裁壓力,使克里姆林宮失去實施昂貴的收購計劃所需的資源。
俄羅斯軍隊可能正在發展挑戰使用無人駕駛飛行器的能力。美國及其盟國應該準備好在一個越來越危險的空域使用作戰無人機。現代化的努力必須考慮到俄羅斯無人機和反無人機能力的日益復雜化。
美國及其盟國必須準備好面對能力日益增強的俄羅斯軍隊,該軍隊有意進一步發展遠征能力并在聯盟環境中使用這些能力。俄羅斯仍在參與敘利亞的沖突并仍在從沖突中學習。?俄羅斯軍隊從敘利亞學到的東西正在推動俄羅斯的現代化改造;美國必須了解這種學習和改造,以有效對抗克里姆林宮。
盡管受到疫情大流行的影響,但北約科學技術組織 (STO) 憑借其由 5,000 多名科學家、工程師和分析師組成的網絡團隊,持續交付了出色的項目工作 (PoW)。這確保了 STO 始終處于科技前沿,并致力于在競爭激烈的世界中維持北約、盟國和合作伙伴的技術優勢。
2022 年,STO 公開發布了三份報告,突出了其深刻的成就并規劃了前進的道路。
2021 STO HIGHLIGHTS體現了 STO PoW 對聯盟的影響和意義,涵蓋海事研究和實驗中心 (CMRE) PoW 和協作 PoW (CPoW) 。這包括 300 多項技術活動,從主要研究項目到前景展望和系列講座,以及技術合作演示。
該報告旨在概述海事研究和實驗中心與2021 年協作PoW中最近完成的項目和成就概要。它還總結了為北約領導層提供的建議,以協助高層就決策性主題進行決策,例如:武裝部隊中的女性、CBRN 威脅和危害、新興和顛覆性技術 (EDT)、氣候變化和 2020-2040 年科技趨勢。
CMRE 的使命是組織和開展以海洋領域為中心的科學研究和技術開發,提供創新和經過現場測試的科學技術 (S&T) 解決方案,以滿足聯盟的國防和安全需求。
CMRE 2021 年度報告重點介紹了 CMRE 在執行其 2021 年工作計劃方面的活動及其在向客戶提供增值產品和服務方面取得的成就,特別是作為海事科技計劃的一部分的北約盟軍司令部轉型,其重點是:自主水雷對策;反潛戰的自主權;數據環境知識和運營效率;和海上無人系統的推動者。
年度報告說明了 CMRE 的科學家、工程師和技術人員如何以創新的方式利用新興和顛覆性技術,以保持北約的技術優勢。
2022 年協作工作計劃概述了科學技術組織 (STO) 計劃在 2022 年開展的國防和安全相關研究和技術開發項目,以增強國家和北約的作戰軍事能力。2022 CPoW 由 283 個正在進行和計劃中的技術研究活動和 49 個探索團隊組成。
CPoW 是一種旨在滿足國家需求和北約要求的工具。因此,其構建基于國家、專家組/小組在其商務會議期間以及北約更高的集中組織提供戰略方向。最終,通過科學與技術委員會 (STB), 各國仍然是決定 CPoW 如何發展的集體權威。CPoW 研究項目由法國巴黎附近的 STO 合作支持辦公室 (CSO) 管理,將在 CPoW 的所有主題領域進行:應用車輛技術 (AVT);人為因素和醫學(HFM);信息系統技術(IST);系統分析與研究(SAS);系統概念與集成(SCI);傳感器和電子技術(SET);以及建模和仿真 (NMSG)。
2022 年,許多 CPoW 項目繼續關注北約新興和顛覆性技術的應用和影響:人工智能、自主、大數據、生物技術、高超音速、量子科學、空間和新型材料。
人工智能領域的進展繼續擴大這組技術的潛在軍事應用范圍。本文探討了信任在人機聯合作戰中的關鍵作用,以及依靠人工智能來補充人類認知的潛在影響。如果依靠人工智能來準確處理傳感器數據,操作自主系統和平臺,或通過擬議的作戰概念(如以決策為中心的戰爭)提供有利的決策支持,設想機器智能的中央指揮和控制作用,那么信任機器智能將是未來作戰中的一個關鍵組成部分。鑒于這些技術和理論的發展,信任的概念對于機器智能在戰術和作戰層面的軍事行動中的使用變得高度相關,正確校準的信任水平是安全和有效行動的基礎。在簡要回顧了機器智能的最新進展和對信任概念的探索之后,本文概述了人工智能在戰場上的當前和潛在應用,以及由不充分或不合理的高信任度帶來的挑戰。
縱觀歷史,技術已經擴大了武裝沖突的領域,戰術交戰的節奏,戰場的地理范圍,以及指揮官與部隊溝通的手段。技術創新--包括軍事和民用--改變了軍隊的作戰方式以及國家計劃和進行這些沖突的方式。在21世紀,迄今為止,很少有進步能像統稱為人工智能(AI)的一組技術那樣獲得如此多的關注。人工智能正準備迎來一個新的時代,在這個時代,機器智能和自主性正在為軍事行動的規劃和執行產生明顯的新概念。算法戰爭可能會帶來一些獨特的東西:增強甚至取代人類決策過程的系統,其速度可能超過人類規劃者的認知能力。
新興技術的整合提出了任何數量的基本組織和倫理問題,值得關注。本文將采用定性的社會科學方法,重點討論人類-自治團隊(HAT)的一個重要方面:鼓勵對機器智能的適當信任程度。有大量的學術文獻關注自動化或機器人技術中的信任問題,但有關具體軍事應用的工作較少。當人工智能在聯合作戰中被實際部署時,在信任方面有哪些挑戰和機會?在簡要回顧人工智能和概述機器智能在戰場上的可能應用之后,本文在分析鼓勵適當信任水平的陷阱和潛在解決方案之前,探討了信任和信任校準的概念。
幾十年來,人類一直對賦予機器某種形式的人工智能的可能性著迷,Nils Nilsson將其定義為 "致力于使機器智能化的活動,而智能是使一個實體在其環境中適當運作并具有預見性的品質"。在數字時代的早期,出現了兩種廣泛的人工智能方法。自上而下的專家系統方法使用復雜的預編程規則和邏輯推理來分析一個特定的數據集。對于具有可預測規則的明確定義的環境--諸如分析實驗室結果或下棋等應用--專家系統或 "符號 "人工智能(基于符號邏輯)的性能主要取決于處理速度和算法的質量。另一大類使用自下而上的機器學習方法,模擬人類通過檢測數據中的模式進行學習的方式。神經網絡是一種以人腦為模型的機器學習形式,能夠通過使用多個(因此是 "深")人工神經元層來識別復雜的模式,是被稱為 "深度學習 "的技術的基礎。通過其在數據集中尋找關系的能力,這種技術也被稱為 "連接主義"。
自上而下、基于規則的符號系統和自下而上的機器學習連接主義技術之間的差異是很大的,特別是關于它們的潛在應用范圍和靈活性。深度學習方法的顯著特點是能夠將學習與它所訓練的數據集分開,因此可以應用于其他問題。基于規則的算法可以在狹義的任務中表現得非常好,而深度學習方法能夠迅速找到模式,并在 "蠻力 "專家系統計算方法無效的情況下有效地自學應用。最近的一些人工智能進展顯示了模仿創造力的能力,產生了有效的解決問題的方法,這些方法對人類來說可能是反直覺的。
然而,總的來說,人工智能仍然是狹窄的或 "脆弱的",即它們在特定的應用中功能良好,但在用于其他應用時仍然不靈活。與人類的認知相比,鑒于機器的計算速度遠遠超過人腦,機器智能在將邏輯規則應用于數據集時要優越得多,但在嘗試歸納推理時,它必須對數據集或環境進行一般性的觀察,這就顯得不足。大多數機器學習仍然需要大量的訓練數據集,盡管新的方法(包括生成對抗網絡(GAN)和 "小于一次 "或LO-shot學習)正在出現,需要非常小的數據集。圖像識別算法很容易被混淆,不能像人類那樣立即或直觀地理解情景背景。這種脆性也延伸到了其他問題,比如游戲。雖然人工智能在視頻游戲中經常表現出超人的能力,但他們往往不能將這種專業知識轉移到具有類似規則或玩法的新游戲中。
雖然人工智能技術繼續在變得更加適應方面取得重大進展,但任何接近人類的人工通用智能仍然難以實現。評估人工智能的近期前景因該技術的漸進式進展而變得更加復雜。圍繞著人工智能的炒作--在很大程度上被深度學習方法的成功所推動--既導致了對該技術未來的不切實際的期望,也導致了對其非常大的進展的正常化。正如一份報告所指出的,"人工智能將一項新技術帶入普通人的視野,人們對這項技術習以為常,它不再被認為是人工智能,而出現了更新的技術"。盡管象征性的人工智能和各種形式的機器學習構成了該領域最近的大部分進展,也許除了融合這兩種方法的嘗試之外,未來仍然不確定。一些人猜測,機器學習技術帶來的進展可能會趨于平穩,而另一些人則保持樂觀。相關的技術進步,如短期內的計算機芯片設計和長期內的量子計算,可能會影響進一步進展的速度。
在將人工智能 (AI) 和機器學習 (ML) 用于多域作戰 (MDO) 作為聯合全域指揮與控制 (JADC2) 的一部分之前,必須先完成奠定“信息基礎”的繁重工作。奠定基礎——數據被標記、安全存儲和傳輸,并且易于訪問——需要組織和保護軍隊跨域、服務和梯隊的 C2 所需的所有信息的日常工作。相同的信息主體將成為 AI 和 ML 算法的輸入。沒有這樣的信息基礎,進展甚微。
盡管最近 AI/ML 在游戲領域取得的成功令人鼓舞,但鑒于信息不完整、數據質量差和對手行動等現實障礙,對某些 C2 功能采用類似技術仍將具有挑戰性。其他 AI/ML 技術,例如用于預測戰區飛機狀態的技術,將更容易應用。實現 JADC2 目標將取決于確定核心軍事任務集的 C2 需求以及制定可在近期和遠期實現的軟件開發計劃。
本文的其余部分描述了對具有嵌入式 AI/ML 的 JADC2 的需求,就 AI/ML 的誘惑提出了警告,概述了要克服的 AI/ML 障礙,并提出了前進的道路。一般來說,需要對人力和資源進行投資,才能超越當今的人力密集型 C2 范式。通過自動化和一些AI/ML改進當前的規劃流程是一個值得努力的現實目標。
可能看起來很嚴峻。存在許多障礙,迫切需要快速向前發展,現在就需要改變。然而,如果將實現目標的步驟分解為易于處理的問題,并且如果軍方對技術可能性和限制等保持“睜大眼睛”,則可以取得進展。目標不應該是 C2 的完全自動化,而是 C2 的有效人機協作。實現這一目標的步驟應包括,首先,JADC2 作戰概念 (CONOP) 的持續開發和優先排序,其次,確定在使能 C2 流程中增強 AI/ML 的相應需求和機會。
同時,有必要為數據驅動的人工智能生態系統設定條件,這意味著將武器系統和相關數據放入多域數據庫中,供那些應該訪問數據的人使用,同時也應用“zero-trust”和其他安全原則,以確保數據的彈性和安全管理。隨著人工智能軟件應用程序的開發,有必要在操作測試平臺環境中對其進行試驗,將它們與 C2 系統集成,然后將它們部署到操作中心。可能會有能力迭代——首先將有限的能力放入運營中心,然后生成用戶反饋,然后快速更新軟件應用程序。分析師和技術人員將希望探索 CONOP,以促進人機協作,建立人類對 AI 算法的信任,并提高算法的可解釋性。在商業需求較低的領域可能需要有針對性的軍事投資,例如用于學習數據稀缺的人工智能算法或防御針對這些算法的攻擊。
當前的 AI/ML 技術需要數據進行學習。鑒于缺乏真實世界的數據來為這些戰爭技術的改進提供信息,軍方可以利用建模、模擬和演習來為 AI/ML 算法生成訓練數據。然后,此類算法可以幫助開發例如武器-目標配對。監督或強化學習算法可以支持這種 C2 功能,類似于最近應用于商業游戲的學習算法。但軍事算法還必須考慮現實世界中的不確定性——這對人類和算法來說都是一個主要困難。
正如美國空軍參謀長在 2020 年 8 月所說,“加速變革,否則失敗。”及時向 JADC2 推進是美國現代戰爭的當務之急,并且需要“在競爭對手的部署時間表內”(Brown, Jr, 2020)這樣做。需求是真實的,但為 AI/ML 設定切合實際的期望很重要。現有的 C2 流程在自動化方面還有改進的空間,在某些情況下,還有 AL/ML;相比之下,其他 C2 過程對于人類和算法來說仍然很困難。正如美國眾議院軍事委員會主席兼眾議員Adam Smith, D-Wash在 2021 年 9 月談到 JADC2 時所說的那樣,“目標是正確的,但不要低估實現它的難度((Harper, 2021)。”
?美國國防部已經可以開始應用其現有的國際科技協議、全球科學網絡以及在多邊機構中的作用來促進數字國防合作。本報告將這些選項集合構建為軍事人工智能合作工具箱,可為調整政策、推進研究、開發和測試以及連接人員提供了有價值的途徑。
美國將人工智能 (AI) 的領導地位視為提升其在國際體系中的戰略地位和保持其未來軍事優勢的關鍵。美國的盟友和伙伴網絡是服務于這些目標的不對稱資產,正如旨在讓美國為當前戰略競爭時代做好準備的國家安全和國防政策所確認的那樣。
最值得注意的是,美國國防部 (DOD) 人工智能戰略中宣布的關鍵舉措和國家安全委員會關于人工智能的建議表明了國際參與對人工智能安全、安保、互操作性和與民主價值觀保持一致的重要性。
簡而言之,人們一致認為,加強聯盟和伙伴關系很重要,不僅因為美國在聯盟中行動,而且因為俄羅斯等經常單獨行動。由于技術加速如何推動軍事進步、刺激經濟增長和塑造21世紀的治理模式,人工智能和其他新興技術是與這些近乎同等競爭對手競爭的核心。如果不深化與盟友和伙伴的合作,美國既無法應對大國帶來的挑戰,也無法從塑造人工智能的民主軌跡中獲益。
在此背景下,本報告重點關注通過基于可互操作部隊和尖端技術的強大軍事關系,維護美國及其伙伴和盟國網絡相對于潛在對手的優勢的必要性。國防部已經擁有多種工具可用于深化與其盟國和國際安全伙伴的科技(S&T)合作。但為了充分利用它們在人工智能方面的潛力,該部門需要重新設想并更好地整合它們。
為此,此處的分析將現有的國防科技協議、軍事科技交流和多邊機構的要素構建為軍事人工智能合作工具箱。這項工作不僅僅是為人工智能能力開發集中資源,還包括政策調整;測試、評估、確認和驗證 (TEVV) 管道;研發(R&D)、人員交流;數據共享;和標準化。這里的目的不是提出新的協議,而是回答國防部如何利用其現有的科技合作機制來支持數字時代的軍事合作,確保相關資源和框架在尋求人工智能領導力和未來時不會被利用聯軍成功。
雖然應該承認挑戰,包括圍繞數據交換的敏感性和對技術政策的不同政策觀點,但隨著時間的推移,它們也可以成為合作以減輕這些障礙的動力。換言之,現有工具有助于在政治信任、凝聚力和互操作性方面獲得更多支持,從而使合作有助于應對數字威權主義和技術驅動的國際安全環境變化的共同挑戰。 主要發現是:
雖然軍事人工智能合作的某些方面可能需要新的投資、機制和協議,但這不應該排除現有工具可以用于新用途的多種方式。軍事人工智能合作工具箱之所以有吸引力,正是因為它可以在短期內啟動,滿足與盟友和伙伴盡早建立互操作性和推進人工智能的緊迫性。
Drone Wars UK 的最新簡報著眼于人工智能目前在軍事環境中的應用方式,并考慮了所帶來的法律和道德、作戰和戰略風險。
人工智能 (AI)、自動決策和自主技術已經在日常生活中變得普遍,并為顯著改善社會提供了巨大的機會。智能手機、互聯網搜索引擎、人工智能個人助理和自動駕駛汽車是依賴人工智能運行的眾多產品和服務之一。然而,與所有技術一樣,如果人們對人工智能了解甚少、不受監管或以不適當或危險的方式使用它,它也會帶來風險。
在當前的 AI 應用程序中,機器為特定目的執行特定任務。概括性術語“計算方法”可能是描述此類系統的更好方式,這些系統與人類智能相去甚遠,但比傳統軟件具有更廣泛的問題解決能力。假設,人工智能最終可能能夠執行一系列認知功能,響應各種各樣的輸入數據,并理解和解決人腦可以解決的任何問題。盡管這是一些人工智能研究計劃的目標,但它仍然是一個遙遠的前景。
AI 并非孤立運行,而是在更廣泛的系統中充當“骨干”,以幫助系統實現其目的。用戶不會“購買”人工智能本身;他們購買使用人工智能的產品和服務,或使用新的人工智能技術升級舊系統。自主系統是能夠在沒有人工輸入的情況下執行任務的機器,它們依靠人工智能計算系統來解釋來自傳感器的信息,然后向執行器(例如電機、泵或武器)發出信號,從而對機器周圍的環境造成影響.
人工智能被世界軍事大國視為變革戰爭和獲得戰勝敵人的優勢的一種方式。人工智能的軍事應用已經開始進入作戰使用,具有令人擔憂的特性的新系統正在迅速推出。與軍事和公共部門相比,商業和學術界已經引領并繼續引領人工智能的發展,因為它們更適合投資資金和獲取研究所需的資源。因此,未來人工智能的軍事應用很可能是對商業領域開發的技術的改編。目前,人工智能正在以下軍事應用中采用:
人工智能和英國軍事
綜合審查和其他政府聲明毫無疑問地表明,政府非常重視人工智能的軍事應用,并打算繼續推進人工智能的發展。然而,盡管已經發布了概述使用自動化系統的學說的出版物,但迄今為止,英國國防部 (MoD) 仍然對管理其人工智能和自主系統使用的倫理框架保持沉默,盡管已經做出了一些重大決定。軍事人工智能的未來用途。
英國國防部一再承諾發布其國防人工智能戰略,預計該戰略將制定一套高級倫理原則,以控制軍事人工智能系統的整個生命周期。該戰略是在與來自學術界和工業界的選定專家討論后制定的,盡管政府尚未就與人工智能的軍事用途相關的倫理和其他問題進行公開磋商。該戰略的主要目的之一是向行業和公眾保證,國防部是人工智能項目合作的負責任合作伙伴。
與此同時,在沒有任何道德指南的情況下,計劃和政策正在迅速推進,主要問題仍未得到解答。英國軍隊在什么情況下會采用人工智能技術?政府認為何種程度的人為控制是合適的?風險將如何解決?英國將如何向其盟友和對手證明英國打算采取有原則的方法來使用軍事人工智能技術?
軍事人工智能系統帶來的風險 上述人工智能的每一種不同的軍事應用都會帶來不同的風險因素。作為國防部總部后臺操作的一部分,對數據進行排序的算法會引發不同的問題和擔憂,并且需要與自主武器系統不同級別的審查。
盡管如此,目前正在開發的人工智能系統無疑會對生命、人權和福祉構成威脅。軍事人工智能系統帶來的風險可以分為三類:道德和法律、操作和戰略。
道德和法律風險
-問責制:目前尚不清楚如果出現問題,誰來承擔責任:如果計算機運行不可預測并因此犯下戰爭罪行,懲罰它是沒有意義的。
人權和隱私:人工智能系統對人權和個人隱私構成潛在威脅。
不當使用:在戰斗環境中處于壓力之下的部隊可能會試圖修改技術以克服安全功能和控制。
作戰應用風險
偏見的技術來源:人工智能系統的好壞取決于它們的訓練數據,少量損壞的訓練數據會對系統的性能產生很大影響。
偏見的人為來源:當人類濫用系統或誤解其輸出時,可能會導致偏見。當作戰員不信任系統或系統非常復雜以至于其輸出無法解釋時,也會發生這種情況。
惡意操縱:軍用 AI 系統與所有聯網系統一樣,容易受到惡意行為者的攻擊,這些行為者可能試圖干擾、黑客攻擊或欺騙系統。
戰略風險
降低門檻:人工智能系統帶來了政治領導人在沖突中訴諸使用自主軍事系統而不是尋求非軍事選擇的風險。
升級管理:涉及人工智能的軍事行動的執行速度降低了審議和談判的空間,可能導致快速意外升級并造成嚴重后果。
軍備競賽和擴散:對軍事人工智能的追求似乎已經引發了軍備競賽,主要和地區大國競相發展其能力以保持領先于競爭對手。
戰略穩定性:如果先進的人工智能系統發展到能夠預測敵人戰術或部隊部署的程度,這可能會產生高度不穩定的后果。
本簡報列出了為人工智能設想的各種軍事應用,并強調了它們造成傷害的可能性。它認為,減輕軍事人工智能系統帶來的風險的建議必須基于確保人工智能系統始終處于人類監督之下的原則。
迄今為止,公眾對人工智能和機器人技術進步所帶來的社會變化和風險似乎知之甚少。這份簡報的部分目的是為了敲響警鐘。人工智能可以而且應該用于改善工作場所的條件和對公眾的服務,而不是增加戰爭的殺傷力。
美國國防部(DOD)報告稱,人工智能(AI)是一項革命性的技術,有望改變未來的戰場和美國面臨的威脅的速度。人工智能能力將使機器能夠執行通常需要人類智能的任務,如得出結論和做出預測此外,人工智能機器可以以人類操作員無法企及的速度操縱和改變戰術。由于AI具有廣泛用途的潛力,國防部將其指定為頂級現代化領域,并投入大量精力和資金開發和獲取AI工具和能力,以支持作戰人員。在2022財年,國防部為科學和技術項目申請了147億美元,以及8.74億美元用于直接支持其人工智能努力。根據國防部2018年的人工智能戰略,未能將人工智能能力納入武器系統可能會阻礙戰士保護我們的國家抵御近同行對手的能力其他國家正在這一領域進行大量投資,這可能會削弱美國的軍事技術和作戰優勢。
美國國防部(DOD)正在積極追求人工智能(AI)能力。人工智能指的是旨在復制一系列人類功能,并不斷在分配的任務上做得更好的計算機系統。GAO之前確定了三種AI類型,如下圖所示。
國防部認識到開發和使用人工智能不同于傳統軟件。傳統軟件的編程是根據靜態指令執行任務,而人工智能的編程則是學習如何改進給定的任務。這需要大量的數據集、計算能力和持續監控,以確保功能按預期執行。支持國防部作戰任務的大部分人工智能能力仍在開發中。這些能力主要集中在分析情報,增強武器系統平臺,如不需要人工操作的飛機和艦船,并在戰場上提供建議(如將部隊轉移到哪里)。
當獲取依賴于復雜軟件的新能力時,國防部一直面臨著挑戰,例如長時間的獲取過程和熟練工人的短缺。GAO發現,它繼續面臨這些挑戰,同時還面臨人工智能特有的其他挑戰,包括有可用的數據來訓練人工智能。例如,人工智能探測對手的潛艇需要收集各種潛艇的圖像,并標記它們,這樣人工智能就可以學會自己識別。國防部還面臨著將訓練有素的人工智能集成到非為其設計的現有武器系統中的困難,以及在其人員中建立對人工智能的信任。國防部發起了一系列努力,如為人工智能和人工智能特定培訓建立一個跨服務的數字平臺,以應對這些挑戰,并支持其對人工智能的追求,但現在評估有效性還為時過早
「美國人仍未認真思考 AI 革命將對社會、經濟和國家安全產生多大影響」,3 月 1 日,美國國家人工智能安全委員會(the National Security Commission on Artificial Intelligence,NSCAI)發布的一份報告,提出了對于總統拜登、國會及企業和機構的數十項建議。
該組織稱,中國是對于美國技術主導地位的首要挑戰,在第二次世界大戰后第一次有國家對美國的經濟和軍事力量產生了如此程度的威脅。該報告的一個結論是,在未來十年內,美國可能會失去對中國的軍事技術優勢。
這個由 15 名成員組成的委員會主張以 400 億美元的投資擴展和民主化 AI 研究的進程,并為「未來技術突破進行投資」,鼓勵決策者們對創新投資持類似態度。該組織最終希望能推動聯邦政府在未來幾年里對于人工智能投資數千億美元。
近日,美國人工智能國家安全委員會發布最終報告(草案)。本報告共分為兩大部分:第一部分,“在人工智能時代保衛美國”(第1-8章)概述了美國必須做些什么來抵御來自國家和無政府組織的人工智能相關威脅,并建議美國政府如何負責任地使用人工智能技術來保護美國人民和利益。第二部分,“贏得技術競爭”(第9-16章)概述了人工智能在更廣泛的技術競爭中的作用,并建議政府必須采取行動促進人工智能創新,從多個方面提高國家競爭,保護美國的關鍵優勢。
這兩個部分共同代表了白宮領導下的戰略綱要,該戰略旨在調整國家的方向,以應對新興時代的機遇和挑戰。
美國人工智能國家安全委員會于2019年由國會特許成立,旨在探討人工智能對美國國家安全的影響。該報告中包括對白宮、聯邦機構、國會和其他實體的詳盡建議,涉及從勞動力、知識產權到倫理的各個主題,最終報告預計將影響未來幾年拜登政府和國會議員所采取的人工智能政策。
這兩個部分共同代表了白宮領導下的戰略綱要,該戰略旨在調整國家的方向,以應對新興時代的機遇和挑戰。