亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

如果1609年已經有機器學習技術,開普勒會發現他的定律嗎?還是他會滿足于黑盒回歸模型的準確性,導致牛頓沒有靈感去發現萬有引力定律?在這篇論文中,我將對物理科學領域中機器學習及其用例進行回顧。我將強調科學應用中面臨的一個主要問題:缺乏可解釋性。過度參數化的黑盒模型容易在訓練數據中記住偽相關。這不僅威脅到使用機器學習取得的研究進展,而且剝奪了科學家最強大的工具箱:符號操縱和邏輯推理。考慮到這一點,我將展示一個可解釋機器學習框架,使用物理驅動的歸納偏差和一種名為“符號提煉”的新技術。這些方法的結合使從業者可以將訓練好的神經網絡模型轉換為可解釋的符號表達式。首先,我將討論執行這種提煉的深度學習策略,然后回顧“符號回歸”,這是一種使用進化算法優化符號表達式的算法。尤其是,我將描述我的PySR/SymbolicRegression.jl軟件包,它是一個易于使用的高性能符號回歸包,適用于Python和Julia。與此相關,我將討論一些使這種技術更有效的物理驅動的歸納偏差。在論文的下半部分,我將回顧這種和其他可解釋機器學習技術在天體物理問題上的各種應用。這些包括:宇宙學中的宇宙空洞、計算流體動力學中的子網格尺度建模、最優望遠鏡時間分配、恒星和引力波天文學中人口模型的靈活建模,以及學習有效且概率嚴格的行星不穩定性模型。

付費5元查看完整內容

相關內容

,又譯 普林斯敦大學,常被直接稱為 普林斯頓,是美國一所私立研究型大學,現為八所常青藤學校之一,綽號為老虎。

本文的目的是表明,研究機器學習系統中潛在的組成和函數結構使我們能夠更好地理解它們。本文探索了機器學習許多子領域的范疇理論表述,包括優化、概率、無監督學習和有監督學習。本文首先研究了當用一般的范疇理論結構取代梯度時,各種優化算法的行為。證明了這些算法的關鍵性質在非常寬松的假設下是成立的,并通過數值實驗證明了這一結果。本文還探索了動態系統的范疇論視角,使我們能夠從簡單操作的組成中構建強大的優化器。其次,從范疇理論的角度研究了概率建模與梯度優化之間的關系;本文從這個角度來研究最大似然估計如何在從統計模型到監督學習算法的轉換中保持某些關鍵結構。

//ora.ox.ac.uk/objects/uuid:ec72e338-d95e-4bd6-9412-7ac76b7ddc15

接下來,我們從函數的角度來研究無監督學習。我們基于非監督學習算法的函式表示的范疇論性質,開發了非監督學習算法的分類法,并證明了這些分類法是算法行為的預測。用這個視角推導出了一系列用于聚類和流形學習的新無監督學習算法,并證明了這些新算法在真實世界數據上可以優于常用的替代算法。還用這些工具證明了關于流行的無監督學習算法的行為和局限性的新結果,包括細化界限和在噪聲面前的穩定性。最后,轉向監督學習,并證明數據科學和機器學習中許多最常見的問題都可以表示為Kan擴展。本文用這個角度推導出新的分類和監督聚類算法。同時在真實數據上對這些算法的性能進行了測試。

付費5元查看完整內容

**近年來,具有復雜自主行為的智能體和系統的發展加快。**隨著這些智能體行動的后果開始在社會中顯現,對理解其決策的需求推動了對機制的研究,以獲得與人類推理兼容的解釋。然而,可解釋系統的設計往往沒有考慮解釋可能給機器和人類智能體帶來的影響。本文探討了這一挑戰。

**該方法首先著眼于具有復雜監管的分散環境,在這些環境中,必須交換解釋,以確保智能體之間的有序交互。**為將人類規則集轉換為機器兼容的推理機制,本文提出一種基于辯論的人-智能體架構,將人類規則映射到具有可解釋行為的人工智能體的文化中。在混合的、可解釋的人-智能體設置下的用戶研究表明,系統復雜性是解釋對人類有用的決定因素。對于自主智能體,隱私性和部分可觀察性會在分散系統中引入主觀不公平性的概念。本文表明,這種影響也可以通過使用有效的解釋來緩解。

**以類似的方式,研究了強化學習(RL)智能體,并研究了定向具有可解釋特征的學習機制的可能性。**將此過程稱為解釋感知經驗回放(XAER),并證明了解釋工程可以用來代替具有可解釋特征的環境的獎勵工程。進一步,將這一概念擴展到多智能體強化學習中,并展示了如何在具有部分可觀測性的環境中交換解釋,以獲得更魯棒和有效的集體行為。結論是,可解釋系統的設計不僅要考慮解釋的生成,還要考慮解釋的消耗。解釋可以作為交流精確和精煉信息的工具,人類智能體獲得的見解也可以由機器智能體獲得,特別是在具有分散智能體或部分知識的系統中。

付費5元查看完整內容

**人類通過被動觀察和主動互動來學習世界的心理模型,從而在環境中導航。他們的世界模型允許他們預測接下來可能發生的事情,并根據潛在的目標采取相應的行動。**這樣的世界模型在自動駕駛等復雜環境的規劃方面具有強大的前景。人類司機或自動駕駛系統用眼睛或相機感知周圍環境。他們推斷出世界的一種內部表示應該:(i)具有空間記憶(例如遮擋),(ii)填充部分可觀測或有噪聲的輸入(例如被陽光蒙蔽時),以及(iii)能夠概率地推理不可觀測的事件(例如預測不同的可能的未來)。它們是具身的智能體,可以通過其世界模型在物理世界中預測、計劃和行動。本文提出一個通用框架,從攝像機觀察和專家演示中訓練世界模型和策略,由深度神經網絡參數化。利用幾何、語義和運動等重要的計算機視覺概念,將世界模型擴展到復雜的城市駕駛場景。**在我們的框架中,我們推導了這種主動推理設置的概率模型,其目標是推斷解釋主動代理的觀察和行動的潛在動力學。**我們通過確保模型預測準確的重建以及合理的操作和過渡來優化日志證據的下界。首先,我們提出了一個模型,預測計算機視覺中的重要量:深度、語義分割和光流。然后,我們使用三維幾何作為歸納偏差在鳥瞰空間中操作。我們首次提出了一個模型,可以從360?環繞單目攝像機鳥瞰動態代理的概率未來軌跡。最后,我們展示了在閉環駕駛中學習世界模型的好處。我們的模型可以聯合預測城市駕駛環境中的靜態場景、動態場景和自我行為。我們表明,學習世界模型和駕駛策略可以生成超過1小時的預測(比訓練序列大小長2000倍)。

付費5元查看完整內容

機器學習在過去十年取得了重大進展。其最成功的范式是深度神經網絡,由連續表示層組成,其參數通過梯度下降在大規模數據集上進行優化。

深度神經網絡在許多任務上取得了卓越的性能,如物體識別、語言理解和自動駕駛。然而,他們仍然在推理任務中掙扎,這些任務通常需要操作符號并將多個步驟組合起來,例如,求解數學方程或編寫計算機程序。在這篇論文中,我們的目標是彌合這一差距,并教機器以精確、系統、可解釋和魯棒的方式進行推理,以應對現實環境中的模糊性。**本文采用神經符號方法,結合機器學習和符號推理的互補優勢。符號推理具有精確性和系統性。**但它已被限制在可嚴格形式化的領域。相比之下,主要的機器學習方法很靈活,但眾所周知難以解釋,需要大量數據,并且無法在訓練分布之外進行泛化。集成兩種方法的優勢對于構建具有精確和系統泛化能力的靈活推理機至關重要。具體而言,本文從兩個角度研究了神經符號推理。首先,將機器學習應用于與符號推理相關的任務,如自動定理證明(第2章)。其次,將符號推理啟發的歸納偏差引入機器學習模型,以提高其可解釋性、泛化性和數據效率(第3章和第4章)。結果強調了(1)神經符號模型架構,(2)在適當的抽象水平上進行推理,以及(3)明確的、推理的組合表示,如符號證明。 //dataspace.princeton.edu/handle/88435/dsp015q47rr958

付費5元查看完整內容

深度神經網絡與強化學習(RL)的結合在解決其他棘手的學習任務方面顯示出巨大的前景。**然而,深度強化學習的實際演示仍然很少。將深度強化學習用于給定任務的挑戰可以分為兩類,大致上是“從經驗中學習什么?”和“從什么經驗中學習?”在本文中,我描述了解決第二類問題的工作。**具體來說,采樣包含與學習任務相關信息的動作、狀態和軌跡的問題。我從算法設計和任務復雜性的三個層次來研究這個挑戰,從算法組件到打破常見RL慣例的混合組合算法。在第一章中,我描述了穩定高效的動作采樣工作,以優化連續值動作的Q函數。通過將基于樣本的優化器與神經網絡近似相結合,可以獲得訓練、計算效率和精確推理的穩定性。在第二章中,我描述了在獎勵感知探索方面的工作,即發現常見采樣方法不足的理想行為。教師"探索"智能體發現狀態和軌跡,使學生"利用"智能體從這些經驗中學習到的數量最大化,并能使學生智能體解決其他不可能的困難任務。在第三章中,我描述了將強化學習與啟發式搜索相結合的工作,用于遷移模型已知的任務領域,但狀態空間的組合數學對于傳統搜索來說是難以解決的。通過將深度Q學習與最佳優先樹搜索算法相結合,可以用比普通搜索算法或僅使用強化學習更少的樣本來找到程序合成問題的解決方案。最后,總結了這項工作的主要收獲,并討論了強化學習中高效采樣的擴展和未來方向。

//dataspace.princeton.edu/handle/88435/dsp01x346d733f

付費5元查看完整內容

機器學習的現實應用通常具有復雜的目標和安全關鍵約束。當代的機器學習系統擅長于在具有簡單程序指定目標的任務中實現高平均性能,但它們在許多要求更高的現實世界任務中很困難。本文致力于開發可信的機器學習系統,理解人類的價值觀并可靠地優化它們

機器學習的關鍵觀點是,學習一個算法通常比直接寫下來更容易,然而許多機器學習系統仍然有一個硬編碼的、程序指定的目標。獎勵學習領域將這種見解應用于學習目標本身。由于獎勵函數和目標之間存在多對一的映射,我們首先引入由指定相同目標的獎勵函數組成的等價類的概念。

在論文的第一部分,我們將等價類的概念應用于三種不同的情形。首先,我們研究了獎勵函數的可識別性:哪些獎勵函數集與數據兼容?我們首先對誘導相同數據的獎勵函數的等價類進行分類。通過與上述最優策略等價類進行比較,我們可以確定給定數據源是否提供了足夠的信息來恢復最優策略。

其次,我們解決了兩個獎勵函數等價類是相似還是不同的基本問題。我們在這些等價類上引入了一個距離度量,即等價策略不變比較(EPIC),并表明即使在不同的過渡動態下,低EPIC距離的獎勵也會誘導具有相似回報的策略。最后,我們介紹了獎勵函數等價類的可解釋性方法。該方法從等價類中選擇最容易理解的代表函數,然后將代表函數可視化。

在論文的第二部分,我們研究了模型的對抗魯棒性問題。本文首先介紹了一個物理上現實的威脅模型,包括在多智能體環境中行動的對抗性策略,以創建對防御者具有對抗性的自然觀察。用深度強化學習訓練對手,對抗一個凍結的最先進的防御者,該防御者通過自訓練,以對對手強大。這種攻擊可以可靠地戰勝最先進的模擬機器人RL智能體和超人圍棋程序。

最后,研究了提高智能體魯棒性的方法。對抗性訓練是無效的,而基于群體的訓練作為一種部分防御提供了希望:它不能阻止攻擊,但確實增加了攻擊者的計算負擔。使用顯式規劃也有幫助,因為我們發現具有大量搜索的防御者更難利用。

付費5元查看完整內容

深度學習在多個領域都取得了突破性進展,從圖像、語言和視頻理解等核心機器學習任務,到醫療、自動駕駛和農業等現實行業。它的成功是通過為神經網絡提供人工監督,從大型標記數據集(如ImageNet)自動學習分層數據表示。然而,獲取大規模的標簽數據通常是一個非常耗時和昂貴的過程。為應對這一挑戰,本文挑戰多模態視頻數據的自監督極限。視頻數據通常包含多種形式,如圖像、音頻、轉錄語音和可免費獲得的文本標題。這些模態通常共享冗余語義信息,因此可以作為偽標簽來監督彼此進行表示學習,而不需要使用人工標簽。在不依賴標簽數據的情況下,我們能夠在從互聯網收集的數百萬個視頻剪輯的非常大規模的視頻數據上訓練這些深度表示。通過在各種領域建立新的最先進的性能,展示了多模態自監督的可擴展性好處:視頻動作識別、文本到視頻檢索、文本到圖像檢索和音頻分類。我們還引入了數據轉換、模型架構和損失函數方面的其他技術創新,以使用多模態自監督進一步改進對這些深度視頻表示的學習。本文的第二個貢獻是改進深度表示的可解釋性的新工具,因為要破譯這些深度表示中編碼的關鍵特征是非常困難的。對于圖像,我們展示了如何使用攝動分析來分析網絡的中間表示。對于視頻,我們提出了一種新的聚類方法,使用Sinkhorn-Knopp算法將深度視頻表示映射到人類可解釋的語義偽標簽。本論文的研究成果為進一步提高深度視頻表示學習的可擴展性和可解釋性做出了貢獻。

//ora.ox.ac.uk/objects/uuid:3a0721a0-025e-423c-b441-2d7af5d960da

付費5元查看完整內容

本論文試圖澄清和解決圍繞算法可解釋性的一些基本問題。什么構成了對監督學習模型或預測的滿意解釋?解釋的基本單位是什么?它們在主體和上下文之間是如何變化的?可靠的方法可以被設計成生成模型不可知的算法解釋嗎?我用八章的時間來解決這些問題,研究了可解釋機器學習(iML)的現有工作,開發了一個比較和開發iML解決方案的新理論框架,并最終實現了一些新的算法,這些算法提供了具有統計保證的全局和局部解釋。每次我都強調三個關鍵的要求:算法解釋必須是因果的、實用的,并且經過嚴格檢驗。在第一章中,我通過真實世界的例子來介紹這個主題,生動地展示了更好地理解黑盒模型行為的倫理和認識論必要性。第二章和第三章是文獻綜述,其中我將該項目置于關鍵數據研究、信息哲學和計算統計學的交叉點。在第4章中,我研究了iML的概念挑戰,這些挑戰導致了誤導性的、反直覺的解釋。在第5章中,我為iML提出了一個正式的框架——解釋游戲——在這個框架中,玩家通過迭代改進的漸進過程,合作尋找解釋性問題的最佳解決方案。在第6章中,我介紹了一種新的條件獨立性測試,它可以作為全局變量重要性的靈活度量。在第7章中,我將特征屬性和反事實結合到一個方法中,該方法保留并擴展了Shapley值的公理保證,同時對具有定義良好的偏好和信念的代理的結果進行了合理化。在第8章中,我回顧了我的結果,并討論了它們對數據科學家、政策制定者和最終用戶的意義。

付費5元查看完整內容

半導體制造在很大程度上依賴于其個別工藝的精度和準確性,以滿足器件的要求。如果不加檢查,這些過程的變化會導致最終產品的性能和產量下降。雖然對這些變化的分析和控制已經使用了幾十年,但機器學習最近的發展引入了各種各樣的新方法,這些方法可能被用于更好地建模、監控和控制這些過程。這些方法提供了比傳統過程控制方法更強大、可擴展和準確的可能性。雖然許多機器學習方法很有前途,但半導體制造的獨特方面給許多機器學習方法帶來了挑戰。特別是,半導體制造的高成本往往導致數據有限的場景,因為收集大量數據可能是不可行的昂貴。由于這一局限性,我們研究了在各種半導體制造設置中概率方法的使用。與其他機器學習方法相比,這些方法通常不太容易過擬合,但仍然足夠靈活,可以為復雜系統建模。具體地說,我們在四個不同的案例研究中研究了概率機器學習方法的應用。

//dspace.mit.edu/handle/1721.1/143184

首先,我們研究虛擬計量系統,有兩個目標。我們的第一個目標是定義一個虛擬計量框架,使我們能夠更好地理解這些系統中常見的誤差來源。該框架涉及配方、腔室、傳感器和晶圓片變量,并納入兩種常見的誤差來源:可觀測誤差和概念漂移。我們的第二個目標是使用這個框架來開發我們自己的建模方法,這種方法非常適合于存在這些錯誤的建模系統。我們的解決方案是一個貝葉斯方法,類似于傳統的卡爾曼濾波器;然而,它模擬了兩個變量之間的關系,而不是一個未知的系統狀態。然后,我們研究了優化離子注入系統劑量均勻性的概率方法。改善劑量均勻性的常用方法是通過調整晶圓上的注入時間來補償光束的變化。在這里,我們學習這些變化,然后解出一組補償時間。我們的方法由兩個組件組成,一個建模組件和一個優化組件。該建模組件類似于我們用于建模虛擬計量系統的概率方法,但也結合了針對離子注入設置的先驗信念。然后,優化組件使用我們的正向模型,在給定工具和工藝的物理約束條件下改善劑量均勻性。我們將此方法與之前的現有行業調優方法進行比較,可以看到在調優時間、流程吞吐量和調優成功方面的顯著改進。

接下來,我們研究了概率異常檢測方法,我們使用它來檢測發生的過程故障。這些方法使用過程傳感器信息來確定當前過程是否正常運行。我們采用核密度估計方法估計正常工作條件下傳感器信號的概率分布;然后使用這些分布來確定一個過程在名義上運行的可能性。結果表明,該方法優于許多傳統的過程控制方法,包括統計過程控制、一類支持向量機以及基于變分自動編碼器的異常檢測方法。最后,我們研究了使用貝葉斯優化和高斯過程模型來改善濺射沉積過程的厚度均勻性。本文中,我們使用高斯過程來模擬濺射沉積過程中的厚度均勻性作為腔體配置和配方參數的函數。該模型采用迭代的方式來尋找滿足期望均勻性要求的參數。我們的建模技術優于許多標準回歸方法,包括多項式模型、多元樣條、梯度增強回歸樹和許多不同的深度學習架構。

雖然這四個案例研究都考慮了半導體制造中概率方法的獨特應用,兩個關鍵主題貫穿始終。首先,我們發現,與許多替代方法相比,這些概率方法在數據有限的情況下更不容易過擬合。先驗和觀測噪聲估計所提供的固有正則化是這些方法成功的關鍵。第二,整合過程或領域特定知識對于用有限的數據進行訓練至關重要。理解底層系統,相應地構造方法,并進行小的逼近,將復雜的原始問題簡化為更簡單的形式,從而能夠有效地應用概率機器學習方法。

付費5元查看完整內容

近年來,深度學習已經將自己定位為機器學習最有前途的方向之一。然而,深度神經網絡在不確定性估計、模型選擇、先驗知識的整合等方面存在許多不足。幸運的是,所有這些問題都可以在貝葉斯深度學習框架內克服,使用貝葉斯神經網絡、變分自編碼器或深度神經網絡高斯過程等模型。不幸的是,這需要使用近似推理過程和先驗分布的規范。在這篇論文中,我們展示了這些模型中先驗規范不僅僅是一個麻煩,而是一個寶貴的機會,可以將領域知識和歸納偏見加入到學習算法中,從而提升全新應用的性能。為此,我們對相關文獻進行了全面的回顧,并進一步貢獻了不同的原創研究成果。

具體地說,我們證明了變分自編碼器中的高斯過程先驗可以改進時間序列的表示學習,并允許對缺失數據進行有效的插補,同時還可以提供校準的不確定性估計。我們還表明,通過使用變分高斯-馬爾可夫過程,這是可能的,在沒有顯著的額外計算成本。此外,我們表明,在變分自編碼器中使用自組織映射作為結構歸納偏差,可以提高學習表示的可解釋性,并使有效的潛在聚類。這些聚類表示可以作為潛在時間序列模型的輸入,從而準確地預測未來的狀態。在貝葉斯神經網絡中,我們證明了常用的各向同性高斯先驗不僅會導致次優性能,而且在某些情況下還會產生所謂的冷后驗效應,即經過緩和的后驗比真正的貝葉斯后驗表現更好。相反,我們提出了具有重尾性和空間相關性的備選先驗,可以提高性能,緩解冷后驗效應。最后,當沒有先驗知識可用時,我們表明先驗分布可以在元學習環境中從相關任務中學習。在深度神經網絡高斯過程的情況下,我們表明元學習的均值函數和核函數的先驗改進預測性能和不確定性估計。

我們希望本文將為貝葉斯深度學習框架奠定基礎,在該框架中,先驗分布的選擇將被視為建模任務的關鍵部分,手工設計和元學習的先驗將在任務之間自由共享,以實現貝葉斯深度學習。

//www.research-collection.ethz.ch/handle/20.500.11850/523269

付費5元查看完整內容
北京阿比特科技有限公司