人類具有從經驗中不斷學習的非凡能力。我們不僅可以把以前學過的知識和技能應用到新的情況中,我們還可以把這些作為以后學習的基礎。人工智能(AI)的宏偉目標之一是構建一種人工的“持續學習”代理,通過對越來越復雜的知識和技能的自主增量開發,從自身經驗構建對世界的復雜理解。然而,盡管有早期的推測和開創性的工作,很少有研究和努力致力于解決這一愿景。當前的人工智能系統在面對新數據或環境下時會受到很大的影響,這些數據或環境甚至與它們所接受的訓練稍有不同。此外,學習過程通常局限于狹窄、孤立的任務中的固定數據集,這很難導致更復雜、更自主的智能行為的出現。從本質上說,持續學習和適應能力,雖然通常被認為是每一個智能主體的基本支柱,但基本上被排除在人工智能的主要研究焦點之外。在這篇論文中,我們根據機器學習研究的最新進展和人工智能的深層架構來研究這些思想的應用。我們提出了一個全面和統一的框架,以持續學習,新的指標,基準和算法,以及提供大量的實驗評估在不同的監督,非監督和強化學習任務。
強化學習定義了僅通過行動和觀察來學習做出好的決策的代理所面臨的問題。為了成為有效的問題解決器,這些代理必須能有效地探索廣闊的世界,從延遲的反饋中分配信用,并歸納出新的經驗,同時要利用有限的數據、計算資源和感知帶寬。抽象對所有這些努力都是必要的。通過抽象,代理可以形成其環境的簡潔模型,以支持一個理性的、自適應的決策者所需要的許多實踐。在這篇論文中,我提出了強化學習中的抽象理論。首先,我提出了執行抽象過程的函數的三個要求:它們應該1)保持近似最優行為的表示,2) 有效地被學習和構造,3) 更低的規劃或學習時間。然后,我提出了一套新的算法和分析,闡明了代理如何根據這些需求學習抽象。總的來說,這些結果提供了一條通向發現和使用抽象的部分路徑,將有效強化學習的復雜性降到最低。
強化學習問題如下。RL代理通過以下兩個離散步驟的無限重復與環境進行交互:
論文余下組織如下: 第1部分。在第2章中,我提供了關于RL(2.1節)以及狀態抽象(2.2節)和動作抽象(2.3節)的必要背景知識。
第2部分。下一部分將專注于狀態抽象。我提出了新的算法和三個緊密相連的分析集,每一個目標是發現滿足引入的需求的狀態抽象。在第3章中,我開發了一個形式化的框架來推理狀態抽象,以保持近似最優的行為。這個框架由定理3.1總結,它強調了值保持狀態抽象的四個充分條件。然后,在第4章中,我將這一分析擴展到終身RL設置,在終身RL設置中,代理必須不斷地與不同的任務交互并解決不同的任務。本章的主要觀點是介紹了用于終身學習設置的PAC狀態抽象,以及澄清如何有效計算它們的結果。定理4.4說明了保證這些抽象保持良好行為的意義,定理4.5說明了有多少以前已解決的任務足以計算PAC狀態抽象。我著重介紹了模擬實驗的結果,這些結果說明了所介紹的狀態抽象類型在加速學習和計劃方面的效用。最后,第五章介紹了信息論工具對狀態抽象的作用。我提出了狀態抽象和率失真理論[283,43]和信息瓶頸方法[318]之間的緊密聯系,并利用這種聯系設計新的算法,以高效地構建狀態抽象,優雅地在壓縮和良好行為表示之間進行權衡。我以各種方式擴展了這個算法框架,說明了它發現狀態抽象的能力,這些狀態抽象提供了良好行為的樣本高效學習。
第3部分。然后我轉向行動抽象。在第6章中,我展示了Jinnai等人的分析[144],研究了尋找盡可能快地做出計劃的抽象動作的問題——主要結果表明,這個問題通常是NP困難的(在適當簡化的假設下),甚至在多項式時間內很難近似。然后,在第7章中,我解決了在規劃中伴隨高層次行為構建預測模型的問題。這樣的模型使代理能夠估計在給定狀態下執行行為的結果。在本章中,我將介紹并分析一個用于這些高級行為的新模型,并證明在溫和的假設下,這個簡單的替代仍然是有用的。我提供的經驗證據表明,新的預測模型可以作為其更復雜的對等物的適當替代者。最后,在第8章中,我探討了抽象行動改善探索過程的潛力。我描述了Jinnai等人開發的一種算法[145],該算法基于構建可以輕松到達環境所有部分的抽象行動的概念,并證明該算法可以加速對基準任務的探索。
第4部分。最后,我轉向狀態動作抽象的聯合過程。在第9章中,我介紹了一個將狀態和動作抽象結合在一起的簡單機制。使用這個方案,然后我證明了哪些狀態和動作抽象的組合可以在任何有限的MDP中保持良好的行為策略的表示,定理9.1總結了這一點。接下來,我將研究這些聯合抽象的反復應用,作為構建分層抽象的機制。在對層次結構和底層狀態動作抽象的溫和假設下,我證明了這些層次結構也可以保持全局近最優行為策略的表示,如定理9.3所述。然后,我將在第十章中總結我的思考和今后的方向。
總的來說,這些結果闡明了強化學習的抽象理論。圖1.4展示了本文的可視化概述。
現代機器學習擅長于從固定的數據集和固定的環境中訓練出強大的模型,常常超過人類的能力。然而,這些模型未能模擬人類的學習過程,而人類的學習過程是有效的、穩健的,并且能夠從非平穩世界的連續經驗中逐步學習。對于這一局限性的見解可以從神經網絡優化的本質中獲得,這意味著持續學習技術可以從根本上提高深度學習,并打開了新的應用領域的大門。持續學習的有前途的方法可以在最細粒度的層次上找到,使用基于梯度的方法,也可以在體系結構層次上找到,使用模塊化和基于內存的方法。我們也認為元學習是一個潛在的重要方向。
人工智能研究在過去的幾個月中取得了巨大的進步,但它主要依賴于固定的數據集和固定的環境。持續學習是一個日益相關的研究領域,它表明人工系統可能像生物系統一樣,從連續不斷的相關數據流中有序地學習。在目前的回顧中,我們將持續學習與神經網絡的學習動力學聯系起來,強調它在穩步提高數據效率方面的潛力。我們進一步考慮了近年來出現的許多受生物學啟發的新方法,重點關注那些利用正規化、模塊化、記憶和元學習的方法,并強調了一些最有前途和最有影響的方向。
世界不是靜止不動的
人工智能成功的一個常見基準是模仿人類學習的能力。我們測量人類識別圖像、玩游戲和駕駛汽車的能力,舉幾個例子,然后開發機器學習模型,如果有足夠的訓練數據,它可以匹配或超過這些能力。這種范式把重點放在最終結果上,而不是學習過程上,并且忽略了人類學習的一個關鍵特征:它對不斷變化的任務和連續的經驗是魯棒的。人類以這種方式學習也許并不奇怪,畢竟,時間是不可逆的,世界是不穩定的(見詞匯表),所以人類的學習已經進化到在動態學習環境中茁壯成長。然而,這種魯棒性與最強大的現代機器學習方法形成了鮮明的對比,后者只有在數據經過仔細的洗牌、平衡和均質后才能表現良好。這些模型不僅表現不佳,而且在某些情況下,它們會完全失敗,或者在早期學習的任務上遭遇快速的性能下降,即所謂的災難性遺忘。
基于生物系統持續學習基礎
對自然世界及其智能物種的研究經常與人工智能研究交叉,包括與持續學習有關的方面[1]。生物學為在復雜環境中成功地持續學習提供了存在證據,也暗示了成功方法的設計原則和權衡。有多種機制使生物系統能夠適應不斷變化的環境,而不固執或遺忘。因此,在本節中,我們將通過類比來介紹四種持續學習模式,并將每種方法的詳細討論留到后面的章節中。此外,可以通過描述它們的規范模型來簡要地描述這些方法,如圖1(關鍵圖)所示。
持續學習的定義
持續學習的問題通常是由順序訓練協議和解決方案所期望的特性來定義的。與靜態數據集或環境的普通機器學習設置相反,持續學習設置明確地關注非平穩或變化的環境,通常被劃分為需要按順序完成的一組任務。這種設置可能在任務轉換(平滑或離散)、任務長度和重復、任務類型(如無監督、監督或強化學習)方面有所不同,或者甚至可能沒有定義明確的任務[9-11]。與課程學習相比[12,13],學習者不能控制任務的順序。
支持現代機器學習的獨立同分布假設
神經網絡大量利用現代技術來并行計算,同時考慮大量數據;事實上,這種易于伸縮的特性使得它們在過去的十年中成為了語音、視覺和語言應用程序的主流方法。 在典型的學習設置中,目標是通過設置網絡的參數來最小化一些損失函數,例如真輸出和預測輸出之間的誤差。基于梯度的學習,最有效的和廣泛使用的范式,是一種迭代算法,在每一次迭代,使一個小變化的參數,以減少損失(更詳細的解釋,見盒2)。這條規則的機制在拔河的動態結果,其中每個數據樣本正試圖拉動每個參數更大或更小。通過平均梯度,我們因此創建了一個拔河游戲,其中應用于每個參數的更新(因為它是正的或負的)揭示了哪個數據樣本贏了或輸了。在許多優化步驟上組合許多拔河式更新,可以進行學習(圖3)。
基于梯度的解決方案
由前面描述的拔河式學習動態驅動,一種有前途的方法是直接調節不同任務的梯度。這不僅是優化問題的核心,而且是由生物大腦[3]中突觸鞏固的研究激發的。一種方法是迫使梯度與之前學習任務的梯度保持一致[19,20],消除潛在干擾。這些方法在其他環境中也有好處,例如,在多任務學習中,它們有可能在目標沖突的情況下提高學習效率[21-23]。
模塊化架構
模塊化的神經網絡結構是一種自然有效的解決持續學習中的干擾和災難性遺忘問題的方法。模塊化提供了一個折衷方案,即使用一個容易遺忘的單一單片網絡,以及為每個任務使用獨立的網絡,這既可以防止災難性遺忘,也可以防止任務之間的轉移(參見圖1C的模塊化架構說明)。模塊化在生物系統中也很明顯,它支持大腦區域的功能專門化。
人工學習系統的記憶
基于梯度和模塊化的方法可能更適合短期的持續學習,而不是長期的記憶。基于梯度的方法不能防止任意長任務序列的遺忘,而模塊化方法可以在長時間尺度上保存知識,它們可能在神經網絡能力方面達到實際的極限。考慮一下這樣一個具有挑戰性的場景:在幾個月的時間里,把食物藏在1000個不同的地方,然后在更多的食物消失后,正確地找到每一個食物。這個特征是每個冬天都會出現的,比如夜鶯、松鴉和鴉類[57]。通過調整一個簡單的神經網絡的參數來保存存儲食物的順序經驗既具有挑戰性又效率低下。一個更可伸縮的策略是使用專用的讀寫內存對空間位置進行編碼。
元學習:發現持續學習的歸納偏差
到目前為止所討論的所有解決方案都規定了用于持續學習的手工設計的機制或架構,歸納偏差。每種歸納偏差都在需求(如良好的知識保留與基于記憶的方法中的正向遷移)之間達成了不同的權衡。值得考慮的是,從數據中學習解決方案,而不是依靠人類的獨創性來設計它,是否能夠實現更好的權衡。歷史上,許多元學習或學習-學習方法已經證明,解決方案可以通過自動學習歸納偏差(如架構、數據和學習參數)來改進,否則需要手工設計(圖1E) 。
結論和未來方向
機器學習研究人員經常指出,人類具有快速學習和概括(例如,從幾個例子中推斷出一個模式)的非凡能力。然而,我們并不經常重新評價人類在一生的教育和經歷中不斷學習的能力,盡管正是這種能力使人類在科學、藝術和工業上取得成就。這篇文章不僅試圖強調持續學習的重要性,而且還暴露了現代神經網絡在這方面的局限性,特別是導致效率低下、基于梯度的拔河的信用分配問題。
通過對這一空間的調查,我們發現了一種學習模式,如果擴展到更有雄心的領域,它就有可能發揮真正的影響力。毫不奇怪,這些范式都有很強的平行神經科學和生物系統。基于梯度的方法直接修改了神經網絡的操作時間,并被證明可以減少災難性遺忘。
模塊化架構為干擾和災難性遺忘提供了實用的解決方案,同時通過技能和知識的層次重組實現面向遷移。端到端記憶模型可以成為長時間學習的可擴展解決方案,元學習方法可以超越手工設計的算法和架構。有了這些潛在的積極影響,也必須認識到部署不斷變化的機器學習模型所涉及的風險,因為任何安全和預期行為的初始評估都不能輕易地永久保證。然而,通過提高學習算法的長期可靠性,以及通過開發確保某些規則或邊界不被違反的架構,持續學習解決方案可以降低這些風險。
數據科學是設計從大量數據中提取知識的算法和管道。時間序列分析是數據科學的一個領域,它感興趣的是分析按時間順序排列的數值序列。時間序列特別有趣,因為它讓我們能夠可視化和理解一個過程在一段時間內的演變。他們的分析可以揭示數據之間的趨勢、關系和相似性。存在大量以時間序列形式包含數據的領域:醫療保健(心電圖、血糖等)、活動識別、遙感、金融(股票市場價格)、工業(傳感器)等。
在數據挖掘中,分類是一項受監督的任務,它涉及從組織到類中的帶標簽的數據中學習模型,以便預測新實例的正確標簽。時間序列分類包括構造用于自動標注時間序列數據的算法。例如,使用健康患者或心臟病患者的一組標記的心電圖,目標是訓練一個模型,能夠預測新的心電圖是否包含病理。時間序列數據的時序方面需要算法的發展,這些算法能夠利用這種時間特性,從而使傳統表格數據現有的現成機器學習模型在解決底層任務時處于次優狀態。
在這種背景下,近年來,深度學習已經成為解決監督分類任務的最有效方法之一,特別是在計算機視覺領域。本論文的主要目的是研究和發展專門為分類時間序列數據而構建的深度神經網絡。因此,我們進行了第一次大規模的實驗研究,這使我們能夠比較現有的深度學習方法,并將它們與其他基于非深度學習的先進方法進行比較。隨后,我們在這一領域做出了大量的貢獻,特別是在遷移學習、數據增強、集成和對抗性攻擊的背景下。最后,我們還提出了一種新的架構,基于著名的Inception 網絡(谷歌),它是目前最有效的架構之一。
我們在包含超過100個數據集的基準測試上進行的實驗使我們能夠驗證我們的貢獻的性能。最后,我們還展示了深度學習方法在外科數據科學領域的相關性,我們提出了一種可解釋的方法,以便從運動學多變量時間序列數據評估外科技能。
深度學習序列分類概述
在過去的二十年中,TSC被認為是數據挖掘中最具挑戰性的問題之一(Yang and Wu, 2006; Esling and Agon, 2012)。隨著時間數據可用性的增加(Silva et al.,2018),自2015年以來已有數百種TSC算法被提出(Bagnall et al.,2017)。由于時間序列數據具有自然的時間順序,幾乎在每一個需要某種人類認知過程的任務中都存在時間序列數據(Langkvist, Karlsson, and Loutfi, 2014)。事實上,任何使用考慮到排序概念的已注冊數據的分類問題都可以被視為TSC問題(Cristian Borges Gamboa, 2017)。時間序列在許多實際應用中都遇到過,包括醫療保健(Gogolou等,2018)和人類活動識別(Wang et al.,2018;到聲學場景分類(Nwe, Dat, and Ma, 2017)和網絡安全(Susto, Cenedese, and Terzi, 2018)。此外,UCR/UEA檔案中數據集類型的多樣性(Dau等,2019;Bagnall et al,2017)(最大的時間序列數據集儲存庫)展示了TSC問題的不同應用。
與經典的監督學習不同,強化學習(RL)從根本上是交互式的: 一個自主的智能體必須學習如何在一個未知的、不確定的、可能是對抗的環境中表現,通過與環境的積極互動來收集有用的反饋,以提高其序列決策能力。RL代理還將干預環境: 代理做出決策,進而影響環境的進一步演化。
由于它的普遍性——大多數機器學習問題可以看作是特殊情況——RL很難。由于沒有直接的監督,RL的一個主要挑戰是如何探索未知的環境并有效地收集有用的反饋。在最近的RL成功案例中(如視頻游戲中的超人表現[Mnih et al., 2015]),我們注意到它們大多依賴于隨機探索策略,如“貪婪”。同樣的,策略梯度法如REINFORCE [Williams, 1992],通過向動作空間注入隨機性進行探索,希望隨機性能導致良好的動作序列,從而獲得高總回報。理論RL文獻已經開發出了更復雜的算法來進行有效的探索(例如,[Azar等人,2017]),然而,這些接近最優算法的樣本復雜度必須根據底層系統的關鍵參數(如狀態和動作空間的維數)呈指數級增長。這種指數依賴性阻礙了這些理論上優雅的RL算法在大規模應用中的直接應用。總之,如果沒有進一步的假設,無論在實踐上還是在理論上,RL都是困難的。
在本文中,我們試圖通過引入額外的假設和信息源來獲得對RL問題的支持。本文的第一個貢獻是通過模仿學習來提高RL樣本的復雜度。通過利用專家的示范,模仿學習極大地簡化了探索的任務。在本論文中,我們考慮了兩種設置:一種是交互式模仿學習設置,即在訓練期間專家可以進行查詢;另一種是僅通過觀察進行模仿學習的設置,在這種設置中,我們只有一組由對專家狀態的觀察組成的演示(沒有記錄專家行為)。我們在理論和實踐中研究如何模仿專家,以減少樣本的復雜性相比,純RL方法。第二個貢獻來自于無模型的強化學習。具體來說,我們通過構建一個從策略評估到無后悔在線學習的總體約簡來研究策略評估,無后悔在線學習是一個活躍的研究領域,具有良好的理論基礎。這樣的約減創造了一個新的算法族,可以在生成過程的非常弱的假設下證明正確的策略評估。在此基礎上,對行動空間和參數空間兩種無模型勘探策略進行了理論和實證研究。這項工作的第三個貢獻來自基于模型的強化學習。我們提供了基于模型的RL方法和一般無模型的RL方法之間的第一個指數樣本復度分離。然后,我們提供了基于PAC模型的RL算法,可以同時實現對許多有趣的MDPs的采樣效率,如表列MDPs、因子MDPs、Lipschitz連續MDPs、低秩MDPs和線性二次控制。通過將最優控制、模型學習和模仿學習結合在一起,我們還提供了一個更實用的基于模型的RL框架,稱為雙重策略迭代(DPI)。此外,我們給出了一個通用的收斂分析,將現有的近似策略迭代理論推廣到DPI。DPI對最近成功的實用RL算法如ExIt和AlphaGo Zero進行了概括和提供了第一個理論基礎[Anthony et al., 2017, Silver et al., 2017],并為統一基于模型的RL方法和無模型的RL方法提供了一種理論健全和實踐高效的方法。
//www.ri.cmu.edu/publications/towards-generalization-and-efficiency-in-reinforcement-learning/
當前的深度學習研究以基準評價為主。如果一種方法在專門的測試集上有良好的經驗表現,那么它就被認為是有利的。這種心態無縫地反映在持續學習的重現領域,在這里研究的是持續到達的基準數據集。核心挑戰是如何保護之前獲得的表示,以免由于迭代參數更新而出現災難性地遺忘的情況。然而,各個方法的比較是與現實應用程序隔離的,通常通過監視累積的測試集性能來判斷。封閉世界的假設仍然占主導地位。假設在部署過程中,一個模型保證會遇到來自與用于訓練的相同分布的數據。這帶來了一個巨大的挑戰,因為眾所周知,神經網絡會對未知的實例提供過于自信的錯誤預測,并在數據損壞的情況下崩潰。在這個工作我們認為值得注意的教訓來自開放數據集識別,識別的統計偏差以外的數據觀測數據集,和相鄰的主動學習領域,數據增量查詢等預期的性能收益最大化,這些常常在深度學習的時代被忽略。基于這些遺忘的教訓,我們提出了一個統一的觀點,以搭建持續學習,主動學習和開放集識別在深度神經網絡的橋梁。我們的結果表明,這不僅有利于每個個體范式,而且突出了在一個共同框架中的自然協同作用。我們從經驗上證明了在減輕災難性遺忘、主動學習中查詢數據、選擇任務順序等方面的改進,同時在以前提出的方法失敗的地方展示了強大的開放世界應用。
//www.zhuanzhi.ai/paper/e5bee7a1e93a93ef97e1c
概述:
隨著實用機器學習系統的不斷成熟,社區發現了對持續學習[1]、[2]的興趣。與廣泛練習的孤立學習不同,在孤立學習中,系統的算法訓練階段被限制在一個基于先前收集的i.i.d數據集的單一階段,持續學習需要利用隨著時間的推移而到來的數據的學習過程。盡管這種范式已經在許多機器學習系統中找到了各種應用,回顧一下最近關于終身機器學習[3]的書,深度學習的出現似乎已經將當前研究的焦點轉向了一種稱為“災難性推理”或“災難性遺忘”的現象[4],[5],正如最近的評論[6],[7],[8],[9]和對深度持續學習[8],[10],[11]的實證調查所表明的那樣。后者是機器學習模型的一個特殊效應,機器學習模型貪婪地根據給定的數據群更新參數,比如神經網絡迭代地更新其權值,使用隨機梯度估計。當包括導致數據分布發生任何變化的不斷到達的數據時,學習到的表示集被單向引導,以接近系統當前公開的數據實例上的任何任務的解決方案。自然的結果是取代以前學到的表征,導致突然忘記以前獲得的信息。
盡管目前的研究主要集中在通過專門機制的設計來緩解持續深度學習中的這種遺忘,但我們認為,一種非常不同形式的災難性遺忘的風險正在增長,即忘記從過去的文獻中吸取教訓的危險。盡管在連續的訓練中保留神經網絡表示的努力值得稱贊,但除了只捕獲災難性遺忘[12]的度量之外,我們還高度關注了實際的需求和權衡,例如包括內存占用、計算成本、數據存儲成本、任務序列長度和訓練迭代次數等。如果在部署[14]、[15]、[16]期間遇到看不見的未知數據或小故障,那么大多數當前系統會立即崩潰,這幾乎可以被視為誤導。封閉世界的假設似乎無所不在,即認為模型始終只會遇到與訓練過程中遇到的數據分布相同的數據,這在真實的開放世界中是非常不現實的,因為在開放世界中,數據可以根據不同的程度變化,而這些變化是不現實的,無法捕獲到訓練集中,或者用戶能夠幾乎任意地向系統輸入預測信息。盡管當神經網絡遇到不可見的、未知的數據實例時,不可避免地會產生完全沒有意義的預測,這是眾所周知的事實,已經被暴露了幾十年了,但是當前的努力是為了通過不斷學習來規避這一挑戰。選擇例外嘗試解決識別不可見的和未知的示例、拒絕荒謬的預測或將它們放在一邊供以后使用的任務,通常總結在開放集識別的傘下。然而,大多數現有的深度連續學習系統仍然是黑盒,不幸的是,對于未知數據的錯誤預測、數據集的異常值或常見的圖像損壞[16],這些系統并沒有表現出理想的魯棒性。
除了目前的基準測試實踐仍然局限于封閉的世界之外,另一個不幸的趨勢是對創建的持續學習數據集的本質缺乏理解。持續生成模型(如[17]的作者的工作,[18],[19],[20],[21],[22]),以及類增量持續學習的大部分工作(如[12]中給出的工作,[23],[24],[25],[26],[27],[28])一般調查sequentialized版本的經過時間考驗的視覺分類基準如MNIST [29], CIFAR[30]或ImageNet[31],單獨的類只是分成分離集和序列所示。為了在基準中保持可比性,關于任務排序的影響或任務之間重疊的影響的問題通常會被忽略。值得注意的是,從鄰近領域的主動機器學習(半監督學習的一種特殊形式)中吸取的經驗教訓,似乎并沒有整合到現代的連續學習實踐中。在主動學習中,目標是學會在讓系統自己查詢接下來要包含哪些數據的挑戰下,逐步地找到與任務解決方案最接近的方法。因此,它可以被視為緩解災難性遺忘的對抗劑。當前的持續學習忙于維護在每個步驟中獲得的信息,而不是無休止地積累所有的數據,而主動學習則關注于識別合適的數據以納入增量訓練系統的補充問題。盡管在主動學習方面的早期開創性工作已經迅速識別出了通過使用啟發式[32]、[33]、[34]所面臨的強大應用的挑戰和陷阱,但后者在深度學習[35]、[36]、[37]、[38]的時代再次占據主導地位,這些挑戰將再次面臨。
在這項工作中,我們第一次努力建立一個原則性和鞏固的深度持續學習、主動學習和在開放的世界中學習的觀點。我們首先單獨回顧每一個主題,然后繼續找出在現代深度學習中似乎較少受到關注的以前學到的教訓。我們將繼續爭論,這些看似獨立的主題不僅從另一個角度受益,而且應該結合起來看待。在這個意義上,我們建議將當前的持續學習實踐擴展到一個更廣泛的視角,將持續學習作為一個總括性術語,自然地包含并建立在先前的主動學習和開放集識別工作之上。本文的主要目的并不是引入新的技術或提倡一種特定的方法作為通用的解決方案,而是對最近提出的神經網絡[39]和[40]中基于變分貝葉斯推理的方法進行了改進和擴展,以說明一種走向全面框架的可能選擇。重要的是,它作為論證的基礎,努力闡明生成建模作為深度學習系統關鍵組成部分的必要性。我們強調了在這篇論文中發展的觀點的重要性,通過實證證明,概述了未來研究的含義和有前景的方向。
強化一詞來源于實驗心理學中對動物學習的研究,它指的是某一事件的發生,與某一反應之間有恰當的關系,而這一事件往往會增加該反應在相同情況下再次發生的可能性。雖然心理學家沒有使用“強化學習”這個術語,但它已經被人工智能和工程領域的理論家廣泛采用,用來指代基于這一強化原理的學習任務和算法。最簡單的強化學習方法使用的是一個常識,即如果一個行為之后出現了一個令人滿意的狀態,或者一個狀態的改善,那么產生該行為的傾向就會得到加強。強化學習的概念在工程領域已經存在了幾十年(如Mendel和McClaren 1970),在人工智能領域也已經存在了幾十年(Minsky 1954, 1961;撒母耳1959;圖靈1950)。然而,直到最近,強化學習方法的發展和應用才在這些領域占據了大量的研究人員。激發這種興趣的是兩個基本的挑戰:1) 設計能夠在復雜動態環境中在不確定性下運行的自主機器人代理,2) 為非常大規模的動態決策問題找到有用的近似解。
當對一系列學習問題進行優化時,卷積神經網絡會經歷災難性的遺忘:當滿足當前訓練示例的目標時,它們在以前任務中的性能會急劇下降。在這項工作中,我們介紹了一個基于條件計算的新的框架來解決這個問題。
【簡介】隨著深度表示學習的發展,強化學習(RL)已經成為了一個強大的學習框架,其可以在高維度空間中學習復雜的規則。這篇綜述總結了深度強化學習(DRL)算法,提供了采用強化學習的自動駕駛任務的分類方法,重點介紹了算法上的關鍵挑戰和在現實世界中將強化學習部署在自動駕駛方面的作用,以及最終評估,測試和加強強化學習和模仿學習健壯性的現有解決方案。
論文鏈接: //arxiv.org/abs/2002.00444
介紹:
自動駕駛(AD)系統由多個感知級任務組成,由于采用了深度學習架構,這些任務現在已經達到了很高的精度。除了感知任務之外,自主駕駛系統還包含多個其他任務,傳統的監督學習方法已經不再適用。首先,當對agent行為的預測發生變化時,從自動駕駛agent所處的環境中接收到的未來傳感器觀察到的結果,例如獲取市區最佳駕駛速度的任務。其次,監督信號(如碰撞時間(TTC),相對于agent最佳軌跡的側向誤差)表示agent的動態變化以及環境中的不確定性。這些問題都需要定義隨機損失函數來使其最大化。最后,agent需要學習當前環境新的配置參數,預測其所處的環境中每一時刻的最優決策。這表明在觀察agent和其所處環境的情況下,一個高維度的空間能夠給出大量唯一的配置參數。在這些場景中,我們的目標是解決一個連續決策的問題。在這篇綜述中,我們將介紹強化學習的概念,強化學習是一種很有前景的解決方案和任務分類方法,特別是在驅動策略、預測感知、路徑規劃以及低層控制器設計等領域。我們還重點回顧了強化學習在自動駕駛領域當中各種現實的應用。最后,我們通過闡述應用當前諸如模仿學習和Q學習等強化學習算法時所面臨的算力挑戰和風險來激勵使用者對強化學習作出改進。
章節目錄:
section2: 介紹一個典型的自動駕駛系統及其各個組件。
section3: 對深度強化學習進行介紹,并簡要討論關鍵概念。
section4: 探討在強化學習基本框架上對其進行更深層次,更加復雜的擴展。
section5: 對強化學習用于自動駕駛領域的所面臨的問題提供一個概述。
section6: 介紹將強化學習部署到真實世界自動駕駛系統中所面臨的挑戰。
section7: 總結
作者Jacob Andreas是自然語言處理的研究者,研究興趣為用語言作為更有效學習的支架和理解模型行為的探針,以及結合深度表示和離散組合性優點的結構化神經方法。近期公開發布了他的博士論文。
博士論文介紹:
本文探討了語言結構在結構和參數化中用于語言處理和其他應用的機器學習模型的方法。作者將該模型應用于問答系統,指令跟蹤,圖像分類等多種任務。
作者首先介紹一類稱為神經模塊網絡(NMN)的模型,并介紹它們在自然語言問答中的應用。NMN旨在實現同時利用深層網絡的表征能力和構成問題的語言結構。我們的方法將問題分解為語言子結構,并使用這些子結構動態地從可重復使用的模塊庫構建網絡。由此產生的復合網絡是共同訓練的。作者并在含有圖像和結構化知識庫的問答數據集上的方法評估模型。隨后,作者將這種思想轉移到策略學習中,研究在面對不同但相似的問題時,怎么組合策略。