本文概述了北約應用車輛技術小組下的AVT-331技術小組的工作,該小組正在研究通過應用于車輛設計的多重保真方法。該小組的目標是了解多重保真方法在車輛設計中的潛在好處,并使用該小組開發的通用基準套件記錄不同的多重保真方法的相對優勢和劣勢。該基準套件有多個層次的復雜性,從具有公認屬性的分析函數開始,最后是具有代表性的空中和海上車輛基準。該套件還包括與空中、海上和空間飛行器相關的中等復雜度的基準。基準的特點在這里被編入目錄,包括對基準目標的描述和再現車輛級結果所需的啟用軟件,以及分析基準的實驗設置。總結了整個團隊所使用的主要多德爾方法,并對AVT-331所發表的大量論文進行了列表。該表格記錄了所采用的方法和所研究的問題之間的映射關系。最后,描述了在8個評估類別中評估不同的多重保真方法的相對優勢和劣勢的過程。本文不包括多重保真方法的結果,但在四份研討會文件中單獨詳細說明。
在未來的空戰中,無人協同系統的整合將是一個潛在的巨大力量倍增器。其成功的關鍵因素將是編隊情報、協調任務規劃和跨平臺任務管理。因此,構思下一代機載武器系統的任務需要一個整體的系統方法,考慮不同的航空飛行器、其航空電子任務系統和針對未來威脅的整體作戰概念。為了盡早驗證可能的解決方案概念并評估其作戰性能,在過去幾年中,在空中客車防務與航天公司未來項目中開發了一個動態多智能體戰斗仿真。除了比實時更快的工程功能外,該仿真還可以進行實時人機對話實驗,以促進工程師、操作員和客戶之間的合作。本文介紹了動態任務仿真方法,以及在未來戰斗航空系統(FCAS)研究中應用此工具所得到的啟示,在此期間,我們清楚地認識到什么是未來應用的一個關鍵挑戰。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。
每一代新的戰斗機都可以通過一個或多個技術飛躍來定義,這些技術飛躍使其與上一代的設計有很大區別。毫無疑問,自從大約15年前第一架第五代戰斗機投入使用以來,幾乎所有的設計學科都有了顯著的進步。不同的飛機制造商,包括空客,已經宣布他們目前正在構思或研究第六代戰斗機[1] [3]。與目前最先進的飛機相比,這些項目很可能在各個領域都有改進,如飛行性能、全方面和全模式隱身、低概率攔截雷達和通信或武器裝備。但問題仍然存在:什么將是這一代的決定性因素,一個真正改變未來戰斗空間的因素?
一個常見的假設是,未來的戰斗空間將是 "高度網絡化 "的,即所有參與的實體都可以交換他們的態勢視圖,并以近乎實時的方式創建一個共享的戰術畫面。一方面,這使得多個平臺在空間和時間上可靠同步達到了以前不可能達到的程度。許多算法,特別是發射器定位或目標測距的算法,如果能從多個位置產生測量結果,會產生明顯更好的效果。另一方面,高質量數據的可靠交換通過分配以前由單一平臺執行的任務,使戰術更加靈活。對作戰飛機的主要應用可能是所謂的合作交戰概念(CEC),這已經是美國海軍針對反介入/區域拒止(A2/AD)環境的海軍綜合火控-反空(NIFC-CA)理論的一部分[4],但其他應用也是可能的,例如合作電子攻擊。所提到的概念主要適用于任務期間單一情況的短期范圍,例如偵察或攻擊薩母基地、空對空(A2A)作戰等。然而,就整個任務而言,還有一個方面需要提及。鑒于所有參與實體之間的可靠通信,規劃算法可以交換任務計劃變更的建議,并根據其目標和當前的戰術情況自動接受或拒絕。這在一個或多個不可預見的事件使原來的任務計劃無效的情況下特別有用,盡管所有預先計算的余量。與其估計一個替代計劃是否可行,并通過語音通信與所有其他實體保持一致(考慮到船員在某些任務階段的高工作負荷和參與實體的數量,這是一項具有挑戰性和耗時的任務),一個跨平臺的任務管理系統可以快速計算出當前任務計劃的替代方案,并評估是否仍然可以滿足諸如開放走廊等時間限制。然后,一組替代方案被提交給機組人員,以支持他們決定是否以及如何繼續執行任務。
將上述想法與現在可用的機載計算能力結合起來,由于最近在硬件和軟件方面的進步,可以得出結論,未來一代戰斗機將很有可能在強大的航空電子系統和快速可靠數據交換的基礎上,采用卓越的戰術概念進行作戰。然而,這還不是我們正在尋找的明確游戲改變者--甚至現有的第五代戰斗機已經應用了一些提到的概念,例如,在NIFC-CA背景下的F-35[4]。因此,下一步不僅要改進飛機的航電系統,而且要在完全網絡化環境的前提下連貫地優化航電、戰術和平臺設計。這種方法允許思考這樣的概念:如果得到網絡內互補實體的支持,并非每個平臺都需要擁有完整的傳感器套件和完整的決策能力。因此,不同的平臺可以針對其特殊任務進行高度優化,從而與 "單一平臺做所有事情 "的方法相比,減少了設計過程中需要的權衡數量。很明顯,一個專門的傳感器平臺不需要或只需要非常有限的武器裝備,因此現在可用的空間可以用來建造更好的傳感器或更大的燃料箱。這已經可以使該平臺專門從事的任務性能得到顯著提高,但有一樣東西可以去掉,它的影響最大:飛行員。在這一點上,必須明確指出,目前沒有任何算法或人工智能能夠接近受過訓練的機組人員態勢感知和決策能力。這就是為什么在不久的將來,人類飛行員在執行戰斗任務時將始終是必要的。然而,如果飛行員(或更準確地說,決策者)被提供了指揮無人駕駛同伴的所有必要信息,那么就不需要在同一個平臺上了。因此,我們提出了一個概念,即一個或多個載人平臺由多個無人駕駛和專門的戰斗飛行器(UAV)支持。在下文中,我們將把至少一個載人平臺和一個或多個由載人平臺指揮的專用無人機組成的小組稱為包。我們聲稱,由于以下原因,無人平臺將作為有人平臺的力量倍增器發揮作用:
無人機是可擴展的,而空勤人員是不可擴展的。因此,無人機可以執行高風險的任務,并允許采用只用載人平臺無法接受的戰術。
無人機更便宜(即使不考慮機組人員的價值),因為它們可以在性能相同的情況下比載人平臺建造得更小。這意味著,在相同的成本下,更多的平臺可以執行任務,更多的平臺會導致更高的任務成功率。首先,因為有更多的冗余,其次,如果有更多的資產參與其中,一些任務可以更好地完成,例如發射器的定位。
不同的無人機和載人平臺可以任意組合。在任務開始前,可以根據需要組成包。在任務期間,在某些限制條件下,也可以重新組合軟件包,例如,如果交戰規則禁止不受控制的飛行,則指揮平臺之間的最大距離。這使得任務規劃和執行有了更大的靈活性,預計也能保持較低的運行成本和材料損耗("只使用你需要的東西")。
像往常一樣,沒有免費的午餐這回事。在我們的案例中,所有上述優勢對飛機設計師來說都是有代價的。不是按照一組技術要求優化單一設計的性能,而是必須設計多個平臺及其子系統,使其在各種任務和組合配置中最大限度地提高整個系統的性能。在本文的其余部分,我們將介紹FCAS原型實驗室(FPL),這是一個在FCAS背景下開發的模擬環境,用于解決這一高度復雜的問題。在第2章中概述了它在概念設計和跨學科技術原型開發中的作用后,我們將在第3章中介紹底層動態多智能體任務仿真的概念和架構。在第4章中,我們將介紹選定項目的結果,以概述該工具的多功能性。本文最后將介紹可能是未來最大的挑戰之一,不僅對模擬,而且對一般的無人系統的引進。實施一個強大的高層規劃算法,為復雜的空中行動生成臨時任務計劃,同時考慮反應性的低層智能體行為、人類操作員和在線用戶輸入。
FPL的核心是一個動態多智能體任務仿真,可以在一臺計算機上運行,也可以分布在多臺機器上,并使用不同的附加硬件組件。為了方便兵棋推演的進行,對人機界面技術進行原型測試,或用于一般的演示目的,模擬中的所有載人機載資產都可以選擇由硬件駕駛艙控制。如果沒有人類操作員參與,模擬必須能夠比實時運行更快。這對于在可能需要數小時的大規模任務中進行有效的開發和權衡分析尤為必要。為了以客觀和公正的方式評估概念和技術,每個模擬任務的過程都是由預先定義的系統屬性、物理效應的模擬和可配置的智能體行為和合作演變而來。不存在任何腳本事件,每一次新的模擬運行的結果都是完全開放的。藍軍和紅軍是在相同的假設下,以可比的抽象水平進行模擬。以下各章概述了如何在FPL中動態地模擬當前和未來機載系統的任務。介紹了我們的仿真結構,在對這類系統進行建模時最重要的設計權衡,以及行為建模的高層次規劃/低層次控制方法。
FPL的仿真架構由三個邏輯部分組成:應用、仿真控制和通信中間件。該架構的一個核心特征是,模擬被分割成幾個應用程序。每個應用程序運行不同的模型,例如,有一個應用程序用于模擬自己的(藍色)航空器、敵方(紅色)航空器、綜合防空系統(IADS)以及更多的模型,如下所示。所有的應用程序共享相同的標準化接口,并且可以任意組合。這種模塊化允許只運行某個任務或項目所需的部分模型。所有的應用程序都是獨立的可執行文件,可以在同一臺計算機上以并行進程運行,也可以分布在幾臺機器上。通過交換編譯后的二進制文件,來自不同公司的模型的整合是可能的,而不會暴露詳細的基本功能。一般來說,不同公司之間的快速和容易的合作是FPL架構的一個主要驅動力。為此,提供了一個基礎應用類,它提供了所有與仿真有關的功能,如仿真控制狀態機、通信中間件接口和通用庫,例如用于不同坐標系的地理空間計算。通過簡單地實現一個新的基礎應用實例,新的模型可以被添加到仿真框架中。所有應用程序的執行都由一個中央仿真控制實例控制。它提供了一個圖形化的用戶界面,可以根據需要啟動、停止和加速模擬。在執行過程中,所有應用程序的運行時間被監控,仿真時間被動態地調整到最慢的模型。這使得分布式的比實時更快的模擬具有自適應的模擬時間加速。應用程序之間的通信是通過數據分配服務(DDS)標準[2]實現的。它使用發布-訂閱模式在網絡中實現了可靠和可擴展的數據交換。兩個不同的分區用于廣播仿真數據(如實體狀態、仿真控制命令等)和多播命令和控制數據(如通過BUS系統或數據鏈路實際發送的數據)。DDS標準的開放源碼實施被用來進一步方便與外部伙伴的合作。
圖1提供了我們的模擬架構的概況,包括大多數任務所需的應用程序。如前所述,這個架構并不固定,幾乎任何應用都可以根據需要刪除或交換。如黑色虛線箭頭所示,通過DDS中間件在仿真控制處注冊一個基本的應用實現,可以集成新的模型。藍色/紅色背景的方框描述了己方/敵方系統,混合顏色的方框可供雙方使用。仿真基礎設施組件的顏色為灰色,用戶界面的顏色為橙色。黑色箭頭表示模擬過程中的通信,灰色箭頭代表模擬運行前后的數據交換。
對于兵棋推演環節,不同的應用程序分布在FPL的多個房間內運行,以模仿真實的空中作業程序。在設置好一個場景后,藍方和紅方的操作人員使用任務配置工具,在不同的房間里計劃他們的任務。空中行動指揮官留在這些房間里,而飛行員則分成兩個房間,每個房間有兩個駕駛艙來執行任務。藍方和紅方空軍應用的任何飛機都可以從駕駛艙中控制,因此飛行員可以接管不同的角色,并相互對抗或作為一個團隊對抗計算機控制的部隊。所有房間都配備了語音通信模擬。任務結束后,各小組在簡報室一起評估任務,可以從記錄的模擬數據中回放。一個額外的房間配備了多個連接到模擬網絡的PC,可以選擇用于特定項目的任務,例如硬件在環實驗。
為FPL選擇正確的建模范式事實上并不簡單,因為它涵蓋了操作分析工具(通常是隨機的)以及工程模擬(通常是確定性的或混合的)的各個方面。這個決定的影響可以用一個例子來說明,即如何確定一架飛機是否被導彈擊中。在隨機模型中,這個決定是基于可配置的概率,例如,被擊中的概率(導彈)和回避動作成功的概率(飛機)以及一個隨機數。為了使最終的任務結果對單一的隨機數不那么敏感,在實踐中經常用不同的隨機種子進行多次模擬運行。按照確定性的方法,導彈的飛出是根據導彈的發射方向、制導規律和固定的性能參數如推力、最大加速度等來模擬的。飛機在規避機動過程中的軌跡也是基于其初始狀態、空氣動力學、反應時間等。例如,當彈頭引爆時,如果導彈和飛機之間的距離低于某個閾值,那么飛機就會被認為被殺死。在一個確定性的模型中,在導彈發射時已經知道飛機是否會被擊中。確定性模型中必要的簡化通常是通過引入固定參數來完成的,比如導彈例子中的距離閾值。混合模型允許使用隨機數進行這種簡化,例如,作為失誤距離的函數的殺傷概率。
為了有效地測試和分析大規模的空中作業,在單臺機器上有幾十種藍色和紅色資產運行的情況下,模擬運行的速度至少要比實時快10倍(平均)。這對所用算法的時間離散性和運行時的復雜性提出了重大限制。為了保持快速原型設計能力,為新項目設置仿真或開發/集成新組件所需的時間應保持在較低水平。太過復雜的模型會帶來更多的限制,而不是顯著提高結果的質量。在這些方面,(更多的)隨機模型在運行時間和開發時間上都有優勢,更快。然而,在我們的案例中,有兩個主要因素限制了隨機模型的使用,使之達到最低限度。首先,模擬只有在給出他們的戰術和演習成功與否的確切原因時才會被操作者接受。此外,隨機模型是由數據驅動的,但對于未來自己和/或敵人的系統來說,所需的數據往往無法獲得。對于已經服役多年并在測試或實際作戰中多次射中的導彈,有可能估計其殺傷概率。然而,僅僅為未來的導彈增加這一概率是非常危險的,特別是因為隨機模型對這些參數非常敏感。從我們的觀點來看,通過將所有系統建模為基于技術系統參數的通用物理模型,可以實現對未來系統更健全的推斷。第一步,通過模擬已知技術和性能參數的現有系統,對模型本身進行驗證。對于未來的系統,技術參數會根據預期的技術進步、領域專家知識和他們的工具進行推斷。堅持最初的例子,未來戰斗機的回避機動性能的推斷,例如,基于從CAD和流體動力學模型計算出的更高的升力系數,或基于更高的導彈接近警告器的分辨率和靈敏度。
客觀評價未來概念在模擬中的表現的一個關鍵方面是環境和威脅的建模。必須考慮到,系統的方法在紅方和藍方都是有優勢的。現代國際防空系統的危險來自于結合不同的系統,從非常短的距離到遠距離。所有這些系統都有它們的長處和短處,但它們被組織起來,使個別的短處被其他系統所補償,并使整個系統的性能最大化。因此,第一個困難是必須對大量的系統進行模擬,并且必須確定這些系統的個別優勢和劣勢。通用物理模型的方法可用于這兩個方面。在通用防空系統模型被開發和驗證后,它可以迅速將新的系統整合到模擬中。根據模擬的物理效果,可以估計敵方系統的作戰優勢和弱點或未來可能的威脅概念。另一方面,使用通用模型的困難在于,必須將真實系統的功能映射到通用模型中,以便保留所有重要的單個系統屬性。這不可避免地導致了相當復雜和詳細的通用模型。我們將以地基雷達組件為例,概述我們平衡復雜性和保真度的方法。如圖2所示,IADS模擬中的一個實體由不同的組件組成。這些組件可以任意組合,以快速配置新系統。從功能角度看,地面雷達組件由控制器、探測模型和目標跟蹤器組成。根據實體的當前任務,控制器選擇所需的雷達模式,例如,360°搜索的監視或戰斗搜索,如果一個特定的部門必須優先考慮。為了對付干擾或地面雜波,可以使用不同的波形。根據雷達的類型,如機械或電子轉向的一維或二維,控制器有不同的可能性來適應搜索模式。在為一個波束位置選擇了波形的類型和數量后,探測模型根據目標、地面雜波、地形陰影、大氣衰減和電子對抗措施等方面的雷達截面模型,產生測量結果。測量誤差是由取決于隨機模型的信噪比引起的。由此產生的測量結果然后由目標跟蹤器處理,它執行測量-跟蹤關聯和跟蹤過濾。
這種詳細模型產生的另一個困難是必須估計的參數總數。在這一點上也要注意,模擬中的所有數據都是不受限制的。這一方面是由于大多數項目的限制,但另一方面,它在日常工作中也有實際優勢。我們必須牢記,模擬是用于概念驗證,而不是用于詳細的系統設計,所以在這個早期階段使用機密的威脅數據會對基礎設施和開發過程造成重大限制,而不會給結果帶來重大價值。基于此,所有的威脅數據都必須根據公開的來源或來自內部項目和外部合作伙伴的非限制性數據進行估算。這再次導致了大量的數據,而這些數據的詳細程度往往是非常不同的,或者是不一致的,例如,由于對限制性數據的去分類。隨著我們模型的不斷發展和多年來獲得的工程專業知識,我們有可能為不同的當前和推斷的未來威脅系統估計出一致的參數。這主要是在一個自下而上的迭代過程中完成的。根據現有的技術和性能參數,對缺失的模型參數進行估計以適應組件的性能。然后對單一系統的不同組件之間的行為和相互作用進行調整,以達到理想的系統性能。最后,在不同的情況下測試IADS內這些系統的協調,以使整個系統的性能最大化。
這個頂點項目評估了使用區塊鏈技術來解決一些挑戰,即越來越多的不同的傳感器數據和一個信息豐富的環境,可以迅速壓倒有效的決策過程。該團隊探討了區塊鏈如何用于各種國防應用,以驗證用戶,驗證輸入人工智能模型的傳感器數據,限制對數據的訪問,并在數據生命周期內提供審計跟蹤。該團隊為實施區塊鏈的戰術數據、人工智能和機器學習應用開發了一個概念設計;確定了在戰術領域實施區塊鏈所涉及的挑戰和限制;描述了區塊鏈對這些不同應用的好處;并評估了這個項目的發現,以提出未來對更廣泛的區塊鏈應用的研究。該團隊通過開發三個用例來實現這一目標。一個用例展示了區塊鏈在 "輕數據"信息環境中的戰術邊緣使用。第二個用例探索了區塊鏈在電子健康記錄中對醫療信息的保護。第三個用例研究了區塊鏈在使用多個傳感器收集化學武器防御數據方面的應用,以支持使用人工智能和機器學習的測量和簽名智能分析。
未來針對同級或近級對手的大規模作戰行動,除了更傳統的空中、陸地、海上和空間等物理領域外,還將涉及網絡空間領域。數據和信息在這個連續體中的每一個點上所發揮的作用都不能被低估。此外,同時在多個領域進行有效溝通和協調的能力--擁有必要的指揮和控制--取決于可獲得的和可靠的信息。美國陸軍正在起草一份新的陸軍學說出版物3-13,標題為 "信息","將信息的軍事應用與所有作戰功能、部門和戰爭形式聯系起來"(美國陸軍聯合武器中心2022,2)。陸軍如何在戰場上保持優勢的這些轉變,強調了數據和信息作為戰爭工具的關鍵作用。
這個頂點項目的主要目標是探索區塊鏈在與國防部相關的各種情況下的使用。首先,該團隊研究了目前關于區塊鏈和相鄰主題的工作,如物聯網(IoT)、大數據、人工智能(AI)和機器學習(ML)。研究揭示了一個名為 "戰場物聯網"(IoBT)的新興概念。Tosh等人(2018)寫道,IoBT可以滿足 "對分散框架的強烈需求......以服務于戰場環境的目的"(2)。Kott、Ananthram和West(2016)強調了與IoBT可用性、保密性和完整性相關的幾個網絡安全挑戰,而Tosh等人(2018)討論了區塊鏈技術如何有利于IoBT架構。
除了網絡上的無數設備(如IoBT),數據存儲是管理數據的另一個關鍵方面,無論是現在還是未來以去中心化信息為標志的環境。區塊鏈,當與數據存儲機制的使用相結合時,可以幫助IoBT設備及其數據的可用性、保密性和完整性。該團隊研究了使用戰術數據結構作為 "鏈外 "數據存儲機制的潛力。數據結構使數據的發現、治理和消費自動化,使用戶能夠在他們需要的時候和地點訪問數據,而不需要對數據的存放地點有任何了解。數據結構是一種機制,可以將眾多的數據管理源連接在一起,以促進數據的可訪問性--無論其位于何處。這些數據管理源可以是傳統的數據庫、數據湖(IBM 2018),或數據倉庫(IBM 2021)。因此,戰術數據結構可能是一個可行的解決方案,以促進跨作戰人員功能和任務指揮系統的數據訪問(Patel等人,2021)。
這項研究的洞察力與現有的概念重疊,如數據生命周期和國防部的共同決策框架:觀察-定向-決定-行動(OODA)循環。數據生命周期一般有四個階段:數據創建(或生成)、數據閱讀(或消費)、數據更新(或修改)和數據刪除(或歸檔)。這些階段幾乎適用于任何類型系統中的每一種數據。了解在生命周期的每個階段與數據的互動如何影響數據的固有可靠性是很重要的。追蹤數據在這個數據生命周期中的運動提供了數據來源,這使得潛在的數據消費者能夠確定數據的可靠性和有效性。隨著決策者在實施OODA循環框架中使用數據(以及對該數據的下游分析,例如在人工智能的協助下),數據出處的關鍵性變得很明顯。區塊鏈的使用可以提供數據可靠性的內在保證,這反過來又減少了OODA循環的時間,改善了決策。
接下來,該團隊開發了一些通用的系統工程架構,以說明區塊鏈如何解決數據出處并確保這些數據的信任。這個過程確定了從各種用戶(例如,如數據所有者和消費者)到需要的軟件系統,以及數據結構,和Hyperledger Fabric(HLF)網絡(即區塊鏈組件)的各種行為者。此外,可能需要幾個應用編程接口(API):一個訪問API,一個數據出處API,和一個企業API。利用區塊鏈提供可靠的數據出處的總體重點是提供一種新的方法,運營商可以跟蹤設備和數據的編輯者。
然后通過開發三個用例來擴展這個架構,每個用例都有其特定的架構,這進一步說明了區塊鏈的實施可以如何運作,并評估其效用和局限性。這些用例使團隊能夠探索區塊鏈在驗證用戶、驗證輸入人工智能模型的傳感器數據、限制對數據的訪問以及提供整個數據生命周期的審計跟蹤方面的潛力。
在第一個用例中,我們探討了區塊鏈如何在戰術邊緣促進安全和可信的數據傳輸,以利用遠程火力。第二個用例在更多的操作背景下提供了一個例子,區塊鏈提供了一個審計跟蹤,以實現一個強大的電子健康記錄(EHR),可以在醫療服務的連續過程中的任何點進行訪問。最后,該團隊的第三個用例是管理來自現場傳感器的數據流,并進入人工智能模型,以支持特定類型的情報(例如,用于化學防御工作的測量和簽名情報(MASINT))。這個用例既有業務背景,也有戰略背景,并展示了區塊鏈如何確保輸入人工智能模型的數據是有效和可靠的。
雖然這些用例利用了一個簡化的架構來促進區塊鏈的名義應用,但它還是展示了這項技術在解決或至少緩解當前和未來管理和保護大量數據的挑戰方面的真正潛力。該團隊能夠探索在區塊鏈上和區塊鏈外存儲數據的選項。這些選擇表明,區塊鏈技術如何能夠適應具體情況--不僅是在戰略、作戰和戰術背景下,而且是在各軍種之間,以滿足其獨特的任務需求。未來的聯合部隊在生成和消費數據方面需要精明,這些數據對于確保戰場上的優勢是必不可少的,但在武裝沖突之間的和平時期也是至關重要的,但競爭激烈。
目前,使用蒙特卡洛方法對導航系統進行分析可能很慢,而且計算成本很高。協方差分析是一種可以及時返回交易空間分析結果的工具,而且計算費用低廉。協方差分析工具大多是臨時性的或在專有接口內。這對導航領域來說尤其如此,因為大多數協方差分析的論文都是處理單一場景,并為所述場景編寫一個臨時的模擬器[1, 2]。
這項研究的目的是在一個新的模塊化和可插拔的導航框架庫--導航工具包中創建一個協方差分析工具。導航工具包是一個政府參考庫,可以與被稱為pntOS的模塊化和可插拔的傳感器融合架構一起開箱使用。在模塊化和可插拔的導航軟件包內創建一個協方差分析工具,將使研究人員能夠快速獲得交易空間分析結果,并使用與實際傳感器融合所使用的基本相同的代碼輕松進行自己的協方差分析模擬。研究人員將能夠利用導航工具包中預裝的大量的傳感器模型、算法和過濾器。
通過分析兩個不同的導航場景,解釋了這個協方差工具的創建。對這些不同的導航方案的結果進行了探討,以確定傳感器組合背后的好處和缺點。一個新的多普勒激光雷達速度傳感器首先用一組簡短的、四百秒的模擬飛行數據進行評估,以證明協方差工具的功能,并同時展示新傳感器的能力。最后的評估是使用3小時的飛行數據進行的。該方案將多普勒激光雷達速度傳感器與高靈敏度標量磁強計配對,以了解這兩種傳感器的組合如何改善導航解決方案。
這項工作從第二章開始,在第二章中介紹了用于創建協方差分析工具的軟件套件的背景。第二章還將描述我們將在未來的章節中使用協方差分析工具分析的用例。接下來的第三章和第四章是單獨的論文,介紹了協方差分析工具的兩個不同的使用案例。第三章在2021年的國家航空航天和電子會議(NAECON)上發表[11]。下一章,即第四章將之前的多普勒激光雷達速度傳感器與MagNav傳感器結合在一起,展示了兩個傳感器在組合導航方案中可以創建的解決方案,并將提交給《導航學會雜志》。最后,第五章總結了研究結果和工具的創建,然后以未來可能的工作作為結束。
北約的 "動態信使 "行動實驗演習,計劃于2022年9月進行(DYMS-22),研究海上無人系統在行動中的作用。為了減少海上演習的局限性,并進一步探索MUS的好處,一個基于使用建模和仿真(M&S)的合成環境支持沉浸式兵棋推演。這種方法延續了該團隊的長期研究目標;通過融合人類、技術和數據來支持決策。
該合成環境由三個主要元素組成。一個北約架構框架(NAF)儀表板,一個全面的海事模擬器聯盟和一套互動的數據分析工具。它們結合在一起,使玩家能夠測試新興技術,并在一個安全的環境中擴展演習插曲。
在兵棋推演中,基于網絡的NAF儀表板為玩家討論和選擇MUS技術和插曲的擴展提供了便利。通過使用海上模擬器聯盟,玩家在生成代表性數據集以填充DYMS-22關鍵性能指標(KPI)的同時,對選定的小插曲進行可視化。利用數據分析工具,玩家詳細調查他們的選擇對關鍵績效指標的影響。
與模塊化、適應性和沉浸式合成環境的互動使DYMS-22參與者能夠在一系列迭代的兵棋推演回合中確定MUS技術的局限性和優勢。
融合項目(PC)是一項美國陸軍學習活動,旨在整合和推進他們對聯合部隊(陸軍、海軍、空軍和海軍陸戰隊)的貢獻。根據研究和分析中心(TRAC)-蒙特雷的說法,"PC確保陸軍作為聯合戰斗的一部分,能夠快速和持續地整合或'融合'所有領域的效果--空中、陸地、海上、太空和網絡空間,以便在競爭和沖突中戰勝對手"(研究和分析中心[TRAC]2020)。目標是評估在PC21上展示的新的創新系統(SoS)技術是否滿足為聯合部隊提供必要的速度、范圍和融合所需的作戰能力,以產生未來的決策主導權和大國競爭的超能力。然而,鑒于PC期間各種現代技術的注入,TRAC-蒙特雷目前缺乏一種方法來衡量作戰效果以及作為軍隊和聯合部隊的融合是否正在實現。因此,本項目的重點是制定一個概念性的評估框架,以確定在PC21演習中測試的多域作戰(MDO)任務中SoS的作戰有效性。這個框架將集中在那些被證明可以減少傳感器到射手(S2S)時間的技術的行動有效性,以便在聯合MDO任務中消滅一個固定的目標。
該小組確定,對某一特定能力的功能分解,結合用于開發MOE的Langford綜合框架的修改版,將產生描述該特定能力的行動有效性的良好措施。為了將衡量標準轉化為價值分數,團隊使用了構建價值尺度的理想范圍方法,該方法為每個衡量標準建立了一個從最好到最壞的情況,使其具有適應任何能力的靈活性。帕內爾的搖擺加權法被用來量化利益相關者對每個蘭福衍生的MOE的重要性,以確定能力的每個MOE的加權價值分數(WVS)。WVS相加得出總分,這就提供了對運營有效性的最終評估。然后,該團隊產生了一個行動有效性量表,向利益相關者說明他們的能力在這個量表中的得分情況。
該項目最后針對概念評估框架應用了PC21用例,以衡量其在生成與用例中的能力最相關的MOE以及單一行動有效性分數方面的穩健性。該模型的最終驗證將在目前計劃于2021年10月開始的PC21期間進行。
總之,該團隊使用系統工程流程建立了一個概念性評估框架系統,該系統將使TRAC-Monterey有能力評估PC21期間展示的新的創新SoS技術的作戰能力。該團隊開發了一個利益相關者分析,一個由利益相關者衍生的目標層次,一個功能分解,以及一個創建良好措施的過程,將這些措施轉化為價值分數,量化措施的重要性,并將產生的價值匯總為一個單一的、行動有效性分數。該框架將為利益相關者提供信息,使他們能夠就進一步的技術開發做出明智的決定。TRAC-Monterey還可以將本研究中制定的衡量標準作為指南,在整個PC21和未來的PC活動中收集相關信息。
建議 TRAC 在 PC21 期間對照 S2S 用例 1-1 驗證概念性評估框架。還應采用其他用例來測試框架的靈活性和可用性。還建議進一步研究行動效率的認知方面,以及如何利用這些信息來擴大本評估框架的范圍。TRAC和JMC向團隊表示,PC的努力將有助于改寫聯合行動的理論。
本文件提供了北約AVT-294 RTG的活動總結。在簡要概述了電力推進(EP)計算工具對加速等離子體推進器技術轉型的重要性之后,這項工作的大部分內容集中在新的重點領域,這些領域應特別關注與大型新興技術趨勢的協同作用,包括大規模并行計算和機器學習。該文件還提供了一系列建議,以協助決策者確定更多的投資領域,以最大限度地提高用于EP的計算工具對推進北約空間能力的益處。
北約AVT-294 RTG的建立是為了評估和改善北約成員在支持電力推進(EP)的計算活動中的協調。這在一定程度上反映了EP被認為是北約關鍵空間資產的有利推進技術;然而,它也反映了計算工具的改進對于降低這些高性能推進系統的實際開發、部署和優化的高成本(包括性能和進度)至關重要。
本文件的結構如下。在第2.0節中,討論了EP裝置有效過渡到實用航天器設計的主要障礙。接下來,在第3.0節中,討論了突出EP推進器物理學的特殊復雜性,這使得數值模擬建模具有挑戰性。第4.0節對現有EP計算工具的狀況和分類進行了簡短介紹。本文件的核心內容包含在第5.0節中,該節討論了總體技術趨勢及其與未來改進的EP計算工具的關系。最后,第6.0節總結了這一努力所產生的主要建議。
本報告描述了北約STO RTG IST-149無人地面系統和C2內互操作性能力概念演示器的研究和實驗工作。無人地面車輛(UGVs)在現代戰斗空間中正變得越來越重要。這些系統可以攜帶大量的傳感器套件,從前線提供前所未有的數據流。另一方面,這些系統在大多數情況下仍然需要遠程操作。重要的是要認識到,如果沒有適當的方式在聯盟伙伴之間交換信息和/或將其納入C2系統,ISR數據在很大程度上將是無用的。該小組的主要目的是找到改善這種情況的方法,更具體地說,調查從操作員控制單元(OCU)控制UGV和接收數據的可能標準,并在現實世界的場景中測試它們。
該項目的努力有兩個方面。比利時的貢獻是在歐盟項目ICARUS中所做的工作。這個項目涉及一個用于搜索和救援的輔助性無人駕駛空中、地面和海上車輛團隊。互操作性在幾個不同的實驗中得到了驗證。ICARUS聯盟由幾個國際合作伙伴組成,其中比利時是這個小組的鏈接。第二項工作是該小組的聯合努力,在小組內進行實驗,展示UGV和OCU之間的互操作性。該小組于2018年在挪威的Rena進行了最后的演示。
這兩項工作都使用了無人系統聯合架構(JAUS)和互操作性配置文件(IOP),以成功實現系統間的互操作性。試驗表明,有可能相當容易地擴展系統,并在相對較短的時間內實現與部分標準的兼容。弗勞恩霍夫FKIE和TARDEC都開發了軟件,將信息從IOP域傳遞到機器人操作系統(ROS),并從該系統中獲取信息。ROS是一個廣泛使用的軟件,用于開發UGV和其他類型機器人的自主性,并被該小組的許多合作伙伴所使用。Fraunhofer FKIE和TARDEC提供的軟件對試驗的成功至關重要。
報告還討論了如何在采購前利用IOP標準來定義系統的要求。該標準本身定義了一套屬性,可以在采購新系統時作為要求來指定,可以是強制性要求,也可以是選擇性要求。這使得采購部門更容易定義要求,供應商也更容易符合要求,同時也明確了OCU在連接到系統時,在控制系統和可視化系統中的數據方面需要具備哪些能力。
該小組2018年在挪威瑞納的試驗重點是對UGV進行遠程操作,以及接收UGV的位置和視頻反饋。由于這是一次成功的試驗,下一步將是使用更高層次的控制輸入和反饋來測試互操作性,例如,向UGVs發送航點,并根據系統的感知接收系統周圍環境的地圖。
這是MSG-145技術活動(TA)的最終報告,即標準化C2-仿真互操作性的實施。其目標讀者是北約技術界,特別是那些在指揮與控制(C2)和建模與仿真(M&S)領域工作的人。
本文件描述了MSG-145 TA的工作和發現,它是MSG-085的后續活動。MSG-085的背景在最終報告[1]中已有記載。
本報告描述了北約建模與仿真小組145(MSG-145)的工作和成就。該小組的主要目的是提供證據,支持仿真標準互操作性組織(SISO)的指揮與控制仿真(C2SIM)互操作性標準的實施,從而建議將該標準作為北約標準化協議(STANAG)予以采納。
這項工作建立在北約早期M&S活動的基礎上,特別是MSG-048和MSG-085,它們涉及聯合作戰管理語言和軍事場景定義語言(C-BML和MSDL)的開發和使用。這項工作的成功鼓勵了SISO致力于制定一個統一的標準,即C2SIM,用于初始化、任務/報告和由此產生的系統(我們稱之為聯盟)的同步操作。MSG-145進行了補充研究和實驗,以確定、測試和展示相關的用例。
MSG-145的活動包括:評估SISO C2SIM草案并向SISO提供反饋;開發有代表性的用例并在實驗環境中實施;提供一個持久的、分布式的實驗/測試和評估環境,即C2SIM沙盒;開發一個架構以提供C2SIM作為服務,并收集證據以支持小組提議采用C2SIM作為STANAG。
對C2SIM標準包的評估是通過檢查C2SIM的基礎數據模型(由一套本體表達)、審查文件和指導過程進行的。
由不同國家團體主導的用例涵蓋了:
無人駕駛自主系統(意大利)。
軍事行動訓練中的網絡戰(美國)。
軍隊的任務規劃(挪威)。
使用戰術數據鏈的空中行動(法國和德國)。
聯合任務規劃(英國)。
指揮所培訓(德國)。
這些用例中的每一個都提供了一個框架,用于測試C2SIM標準,并幫助SISO完善該標準。支持性實驗在國家和聯盟環境中進行,包括北約的聯軍戰士互操作性演習、實驗、檢驗演習(CWIX)和小組自己的迷你演習(MiniEx)。用例和實驗也證明了在幫助識別和探索利用機會方面的價值。其他工作描述了一個與系統開發者相關的參考架構,包括那些與M&S即服務(MSaaS)相關的工作。
已經開展了大量的推廣活動:在國內和國際上都提供了技術論文、演講、演示和輔導,如:ITEC、I/ITSEC、TIDE Sprint、ICCRTS和SISO SIW。ITEC, I/ITSEC, TIDE Sprint, ICCRTS和SISO SIW。完整的細節和參考資料見本報告的主體部分。
該小組的C2SIM沙盒是一個完整的C2SIM環境,承載著一個有代表性的建設性仿真、一個C2代用品和一個C2SIM網絡服務器,以提供網絡通信能力。用戶可以從世界任何地方使用安全的虛擬專用網絡(VPN)連接自己的系統。沙盒已被廣泛使用,目前在羅馬的北約模擬和仿真卓越中心(MSCOE)有一個持久的能力。
最后,報告總結了該小組是如何實現其目標的,確定了開發路徑以及如何使用和擴展C2SIM標準。它還總結了外展活動。最后,對北約來說最重要的是,它涵蓋了北約作為STANAG采用C2SIM標準所需的建議和過程。
該報告建議
應在SISO C2SIM標準基礎上提出并批準C2SIM STANAG。
NMSG應向各國和業界推廣C2SIM標準。
NMSG應向北約聯邦任務網絡(FMN)推廣C2SIM標準,并將該標準加入北約互操作性標準和配置文件(NISP)以及北約M&S標準配置文件(STANREC 4815)。
需要繼續開發決策支持和實施工具,以進一步發展業務能力。
實驗水平應擴大到包括更多的用例,以支持作戰計劃。
本報告的結構如下。
附件包括:
C2和仿真系統之間的互操作是現代軍事力量轉型中一個共同的重要主題。它被要求支持軍事企業執行業務活動和任務主線,如作戰訓練、信息共享和決策支持。這一要求意味著有能力將C2系統和仿真系統無縫集成,并提供有意義的、明確的信息交流手段。C2SIM互操作適用于在不同層次上為共同目標運作的系統:
此外,自主無人駕駛車輛系統(UVS)的出現導致C2系統和新興的機器人部隊類別之間需要增加相互合作。越來越多的無人系統的使用產生了開發和驗證新操作概念的需要,因此需要有實驗能力。C2系統和機器人系統之間的通信要求在許多方面與C2系統和仿真系統之間的通信要求相似。
在這樣一個 "系統簇"環境中,一個系統對另一個系統的控制需要一個明確的、自動化的機制,其中C2和M&S概念可以以有效和開放的方式聯系起來。
需要C2和仿真系統之間的相互合作來支持軍事活動,例如部隊的準備工作;對行動的支持;和能力的發展。目前,不同制造商和/或國家的系統之間的互操作需要專有的接口,需要時間和金錢來開發和維護。此外,在許多情況下,除了這些供應商的特定接口外,在軍事場景定義、初始化和執行過程中還需要人為干預。所謂的 "旋轉椅"界面需要向仿真操作員提供信息,他們必須將這些信息手動翻譯成仿真可以處理的指令。用標準化、自動化的界面取代這樣的操作人員,可以節省大量的費用,同時也能使操作更加有力和及時。
因此,制定定義C2和仿真系統之間交換軍事信息的通用接口標準,可以大大降低成本,并大大促進系統集成。
C2SIM互操作標準化的好處包括:降低成本和工作量;減少場景準備時間;提高真實性和整體效果。
利益相關者已經認識到建立一個國際公認的標準的重要性,該標準提供了一個獨立于系統的語言和協議。
戰斗管理語言(BML)是一種不含糊的語言,用于指揮和控制進行軍事行動的部隊和系統。BML正在被開發為一種標準的表示和手段,用于交流數字化的C2信息,如命令和計劃,使軍事人員、仿真部隊和未來的機器人部隊能夠理解。此外,BML必須通過數字化報告提供態勢感知和共享的共同作戰圖像(COP)。在以網絡為中心的環境中,BML對于實現相互理解尤為重要。BML還必須在一個多國分布式綜合能力變得越來越普遍和重要的環境中促進C2SIM的互操作性。
BML是獨立于學說的,但提供了表達學說的手段。然而,BML并不作為標準化理論的手段:詞匯必須在各自的應用領域中得到很好的定義,以便在過程結束時毫不含糊地生成可執行的任務。BML必須以底層信息技術系統(M&S或C2系統)可以交換信息的方式對這些方面進行建模,同時也可以正確解釋結果。因此,仿真互操作性標準組織(SISO)承擔了BML標準的開發工作,即聯盟戰斗管理標準。
C-BML語言使用聯合協商指揮與控制信息交換數據模型(JC3IEDM)的數據定義,因為它代表了一套公認的、定義明確的信息元素。然而,JC3IEDM的信息結構不是C-BML標準的一部分。
2014年4月,SISO批準了C-BML的初始版本,這是一種標準化的正式語言,用于指揮和控制(C2)、仿真和自主系統之間的數字化軍事信息交流。C-BML是一種互操作性標準,可以大大促進軍事場景的準備和執行,以支持軍事企業活動。
涉及C2系統和仿真系統之間信息交換的用例情景,往往需要對所有系統進行與現有作戰和/或仿真數據庫一致的預先初始化。
軍事場景定義語言的目的是減少場景開發的時間和成本,它能夠創建一個獨立于仿真的軍事場景格式,側重于現實世界的軍事場景方面,使用行業標準的數據模型定義XML,可以方便和可靠地被當前和不斷發展的仿真所使用。最初的MSDL能力是在美國陸軍的 "半自動化部隊"(OneSAF)計劃中,在2001年至2004年的早期架構發展階段進行的原型設計。一個SISO研究小組(SG)得出結論,全社會都需要一個標準化的軍事場景格式,以減少開發時間和成本,并實現寶貴場景產品的共享。標準化的場景格式還提供了一種方法,可以將主要由人工復制的場景自動化為多種仿真場景格式,并減少這一人工過程中引入的錯誤數量。
2006年,一個正式的SISO MSDL標準產品開發小組(PDG)成立,其具體目的是制作一個標準的軍事場景定義語言數據模型。PDG審查了OneSAF以前的工作,并將其與JC3IEDM進行了擴展和調整。由此產生的SISO標準的1.0版本于2008年11月獲得批準。除了OneSAF,MSDL還被美國陸軍建模和仿真辦公室(AMSO)、空軍和海軍陸戰隊以及北約活動所采用。
由SISO開發的MSDL和C-BML標準分別用于支持場景初始化和場景執行,目前正在協調建立C-BML/MSDL聯合標準,也稱為C2SIM標準。為此,2014年,SISO將C-BML和MSDL產品開發組(PDG)合并,形成C2SIM PDG。這就產生了第二代協調的標準,它保持了C-BML和MSDL的優點,也提供了可擴展性。
圖1-1顯示了操作概念,C2SIM實現了C2系統、M&S應用和自主系統之間信息(如計劃、命令和報告)和初始化數據的交換。
北約協調支持辦公室(CSO)的建模與仿真組(MSG)近年來支持了一些與C2SIM互操作相關的技術活動。MSG-145是2006至2014年開展的MSG-085和MSG-048技術活動的后續活動。在2016年3月MSG-145開始之前,北約探索小組-038(ET-038)于2015年9月舉行。
MSG-048展示了C2SIM的可行性,MSG-085展示了C2SIM互操作性的效用。MSG-145打算將C2SIM投入使用。
MSG-048技術活動探討了 "戰斗管理語言"(BML)作為一個開放框架的組成部分,在北約范圍內連接C2系統和M&S或機器人系統的技術可行性。
MSG-048的研究結果提供了一套經驗教訓,豐富了MSG-048實驗項目的經驗。一套關于C2SIM互操作的操作和技術要求已被證明對仿真互操作性標準組織(SISO)的C-BML標準化活動有用,并為MSG-085技術活動提供了參考。2013年,MSG-048因這項工作獲得了北約科學成就獎。
MSG-048的后續活動,即2010年啟動的MSG-085 TA的結果,主要得益于作戰團體的大量參與,為C2SIM互操作性確立了更清晰的范圍和完善的作戰和技術要求集。MSG-085通過幾次實驗活動證明了概念的正確性。他們首先確認了現有C2SIM互操作性方法的操作相關性并衡量了其效益。他們還確定了現有技術的局限性和需要改進的地方,并有助于向更廣泛的社區通報C2SIM互操作性的最新情況。最重要的是,從這些活動中獲得的經驗教訓有助于為正在制定C2SIM互操作性標準的SISO標準化機構制定一套建議。一個主要的建議是,C-BML和MSDL應該基于一個共同的數據模型,并合并成一個C2SIM標準。
探索小組在2015年提出的范圍是探索和定義北約未來需要執行的技術工作,以實現C2SIM的互操作性。事實上,在改進C2SIM方面還有很多技術工作。MSDL和C-BML都需要有下一代的開發,以促進它們的合作以及它們能夠實現的互操作性的范圍。MSDL應該滿足廣泛的國家和北約系統的需求,而C-BML應該提高它所能代表的復雜性和使用它來代表復雜情況的便利性。利益相關者對合并這兩項活動以產生一個統一的、更易于管理和部署的C2SIM互操作性解決方案的共識進行了分析,以確定未來TA的范圍。這催生了MSG-145。
本報告描述了北約第一個多領域小組IST-173所取得的成果。與會者包括來自不同小組和團體的科學家,以及來自北約機構和軍事利益攸關方、學術界和工業界的科學家,這為AI和軍事決策大數據這一主題創造了第一個利益共同體。該團隊在實踐中證明了一種新的STO方法的可行性,即任務導向研究,以激發公開對話、自我形成的研究合作和跨小組活動。此外,該方法還有助于為人工智能和軍事決策大數據這兩個主要能力領域聯合開發北約首個科技路線圖,以應對北約在這些領域面臨的作戰挑戰。由于新的組織(軍事利益相關者積極參與的多領域團隊)和這種創新方法的應用,確定了一些經驗教訓,應該支持軍事決策AI和大數據的進一步操作。