摘 要 圖像自動標注技術是減少圖像數據與內容之間“語義鴻溝”的其中一種最有效途徑,對于幫助人類理解圖像內容,從海量圖像數據中檢索感興趣的信息具有重要現實意義.通過研究近20年公開發表的圖像標注文獻,總結了圖像標注模型的一般性框架;并通過該框架結合各種具體工作,分析出在圖像標注研究過程中需要解決的一般性問題;將各種圖像標注模型所采用的主要方法歸為9種類型,分別為相關模型、隱Markov模型、主題模型、矩陣分解模型、近鄰模型、基于支持向量機的模型、圖模型、典型相關分析模型以及深度學習模型,并對每種類型的圖像標注模型,按照“基本原理介紹—具體模型差異—模型總結”3個層面進行了研究與分析.此外,總結了圖像標注模型常用的一些數據集、評測指標,對一些比較著名的標注模型的性能進行了比較,并據此對各種類型的標注模型做了優缺點分析.最后,提出了圖像標注領域一些開放式問題和研究方向.
深度學習在大量領域取得優異成果,但仍然存在著魯棒性和泛化性較差、難以學習和適應未觀測任務、極其依賴大規模數據等問題.近兩年元學習在深度學習上的發展,為解決上述問題提供了新的視野.元學習是一種模仿生物利用先前已有的知識,從而快速學習新的未見事物能力的一種學習定式.元學習的目標是利用已學習的信息,快速適應未學習的新任務.這與實現通用人工智能的目標相契合,對元學習問題的研究也是提高模型的魯棒性和泛化性的關鍵.近年來隨著深度學習的發展,元學習再度成為熱點,目前元學習的研究百家爭鳴、百花齊放. 本文從元學習的起源出發,系統地介紹元學習的發展歷史,包括元學習的由來和原始定義,然后給出當前元學習的通用定義,同時總結當前元學習一些不同方向的研究成果,包括基于度量的元學習方法、基于強泛化新的初始化參數的元學習方法、基于梯度優化器的元學習方法、基于外部記憶單元的元學方法、基于數據增強的元學方法等. 總結其共有的思想和存在的問題,對元學習的研究思想進行分類,并敘述不同方法和其相應的算法.最后論述了元學習研究中常用數據集和評判標準,并從元學習的自適應性、進化性、可解釋性、連續性、可擴展性展望其未來發展趨勢.
引言
隨著計算設備并行計算性能的大幅度 進步,以及近些年深度神經網絡在各個領域 不斷取得重大突破,由深度神經網絡模型衍 生而來的多個機器學習新領域也逐漸成型, 如強化學習、深度強化學習[1] [2] 、深度監督 學習等。在大量訓練數據的加持下,深度神 經網絡技術已經在機器翻譯、機器人控制、 大數據分析、智能推送、模式識別等方面取 得巨大成果[3] [4] [5] 。
實際上在機器學習與其他行業結合的 過程中,并不是所有領域都擁有足夠可以讓 深度神經網絡微調參數至收斂的海量數據, 相當多領域要求快速反應、快速學習,如新 興領域之一的仿人機器人領域,其面臨的現 實環境往往極為復雜且難以預測,若按照傳 統機器學習方法進行訓練則需要模擬所有 可能遇到的環境,工作量極大同時訓練成本 極高,嚴重制約了機器學習在其他領域的擴 展,因此在深度學習取得大量成果后,具有 自我學習能力與強泛化性能的元學習便成 為通用人工智能的關鍵。
元學習(Meta-learning)提出的目的是 針對傳統神經網絡模型泛化性能不足、對新 種類任務適應性較差的特點。在元學習介紹 中往往將元學習的訓練和測試過程類比為 人類在掌握一些基礎技能后可以快速學習并適應新任務,如兒童階段的人類也可以快 速通過一張某動物照片學會認出該動物,即 機 器 學 習 中 的 小 樣 本 學 習 ( Few-shot Learning)[6] [7] ,甚至不需要圖像,僅憑描 述就可學會認識新種類,對應機器學習領域 中的(Zero-shot Learning)[8] ,而不需要大 量該動物的不同照片。人類在幼兒階段掌握 的對世界的大量基礎知識和對行為模式的 認知基礎便對應元學習中的“元”概念,即一 個泛化性能強的初始網絡加上對新任務的 快速適應學習能力,元學習的遠期目標為通 過類似人類的學習能力實現強人工智能,當 前階段體現在對新數據集的快速適應帶來 較好的準確度,因此目前元學習主要表現為 提高泛化性能、獲取好的初始參數、通過少 量計算和新訓練數據即可在模型上實現和 海量訓練數據一樣的識別準確度,近些年基 于元學習,在小樣本學習領域做出了大量研 究[9] [10] [11] [12] [13] [14] [15] [16] [17] ,同時為模擬 人類認知,在 Zero-shot Learning 方向也進行 了大量探索[18] [19] [20] [21] [22] 。
在機器學習盛行之前,就已產生了元學習的相關概念。當時的元學習還停留在認知 教育科學相關領域,用于探討更加合理的教 學方法。Gene V. Glass 在 1976 年首次提出 了“元分析”這一概念[23] ,對大量的分析結 果進行統計分析,這是一種二次分析辦法。G Powell 使用“元分析”的方法對詞匯記憶 進行了研究[24] ,指出“強制”和“誘導”意象有 助于詞匯記憶。Donald B.Maudsley 在 1979 年首次提出了“元學習”這一概念,將其描述 為“學習者意識到并越來越多地控制他們已 經內化的感知、探究、學習和成長習慣的過 程”,Maudsley 將元學習做為在假設、結構、 變化、過程和發展這 5 個方面下的綜合,并 闡述了相關基本原則[25] 。BIGGS J.B 將元學 習描述為“意識到并控制自己的學習的狀 態” [26] ,即學習者對學習環境的感知。P Adey 將元學習的策略用在物理教學上[27] , Vanlehn K 探討了輔導教學中的元學習方法 [28] 。從元分析到元學習,研究人員主要關 注人是如何意識和控制自己學習的。一個具 有高度元學習觀念的學生,能夠從自己采用 的學習方法所產生的結果中獲得反饋信息,進一步評價自己的學習方法,更好地達到學 習目標[29] 。隨后元學習這一概念慢慢滲透 到機器學習領域。P.Chan 提出的元學習是一 種整合多種學習過程的技術,利用元學習的 策略組合多個不同算法設計的分類器,其整 體的準確度優于任何個別的學習算法[30] [31] [32] 。HilanBensusan 提出了基于元學習的決 策樹框架[33] 。Vilalta R 則認為元學習是通 過積累元知識動態地通過經驗來改善偏倚 的一種學習算法[34] 。
Meta-Learning 目前還沒有確切的定義, 一般認為一個元學習系統需結合三個要求:系統必須包含一個學習子系統;利用以前學 習中提取的元知識來獲得經驗,這些元知識 來自單個數據集或不同領域;動態選擇學習偏差。
元學習的目的就是為了設計一種機器學習模型,這種模型有類似上面提到的人的 學習特性,即使用少量樣本數據,快速學習 新的概念或技能。經過不同任務的訓練后, 元學習模型能很好的適應和泛化到一個新任務,也就學會了“Learning to learn”。
近年來,互聯網技術的蓬勃發展極大地便利了人類的日常生活,不可避免的是互聯網中的信息呈井噴式爆發,如何從中快速有效地獲取所需信息顯得極為重要.自動文本摘要技術的出現可以有效緩解該問題,其作為自然語言處理和人工智能領域的重要研究內容之一,利用計算機自動地從長文本或文本集合中提煉出一段能準確反映源文中心內容的簡潔連貫的短文.探討自動文本摘要任務的內涵,回顧和分析了自動文本摘要技術的發展,針對目前主要的2種摘要產生形式(抽取式和生成式)的具體工作進行了詳細介紹,包括特征評分、分類算法、線性規劃、次模函數、圖排序、序列標注、啟發式算法、深度學習等算法.并對自動文本摘要常用的數據集以及評價指標進行了分析,最后對其面臨的挑戰和未來的研究趨勢、應用等進行了預測.
//crad.ict.ac.cn/CN/10.7544/issn1000-1239.2021.20190785
21世紀互聯網快速發展,文本數據呈指數級增長,用戶如何快速有效地從海量信息中提煉出所需的有用資料,已經成為一個亟待解決的問題.自動文本摘要(automaticsummarization)技術,又被稱為自動文摘,它的出現恰逢其時,為用戶提供簡潔而不丟失原意的信息,可以有效地降低用戶的信息負擔、提高用戶的信息獲取速度,將用戶從繁瑣、冗余的信息中解脫出來,節省了大量的人力物力,在信息檢索、輿情分析、內容審查等領域具有較高的研究價值.
早期的文本摘要普遍是通過人工來完成的,文本數據量的激增使得這項工作日漸繁重且效率低下,逐漸不能滿足用戶的需求.近年來,隨著對非結構化文本數據研究的進展,自動文摘任務得到了廣泛的關注和研究,其已成為自然語言處理領域的研究熱點之一.學術界涌現出大量圍繞算法技術、數據集、評價指標和系統的相關工作,這些工作在一定程度上取得了較好的效果,快速應用到金融、新聞、醫學、媒體等各個領域,如社交媒體摘要[1]、新聞摘要[2]、專利摘要[3]、觀點摘要[4]以及學術文獻摘要[5].盡管如此,目前計算機自動產生的摘要還遠不能達到人工摘要的質量,在該任務上還有很大的提升空間,仍需要相關研究者進一步探索有效的自動文摘技術.
目前已有一些文獻對自動文摘任務進行了調研和評估.在早期的工作中,萬小軍等人[6]首次將自動文摘的研究工作從內容表示、權重計算、內容選擇、內容組織4個角度進行了深度剖析,并對發展趨勢進行了展望,為之后的研究工作打下了良好的基礎.王俊麗等人[7]則主要針對抽取式自動文摘的圖排序算法進行了介紹.曹洋等人[8]重點分析了3種主要的機器學習算法在自動文摘中的應用.此外,還有一些相關的研究工作,但他們基本僅針對自動文摘中的單個技術方向進行詳細綜述,經過調研發現目前尚缺乏對自動文摘任務進行全面的研究綜述.
基于此,為了便于研究者在現有研究工作的基礎上取得更好的進展,非常有必要對目前自動文摘的研究成果進行全面的分析和總結.因此,我們查閱整理了近年來學術界相關的研究工作,包括自然語言處理、人工智能等相關領域的國際會議和學術期刊,對這些研究成果按照摘要產生的技術算法進行了詳細的分類以及優缺點的對比與總結.除此之外,本文對自動文本摘要研究常用的數據集、評價方法進行歸納總結,最后對自動文摘任務未來的研究趨勢進行展望與總結.
隨著第一個去中心化加密貨幣系統——比特幣系統自2009年上線成功運行至今,其背后的區塊鏈技術也受到廣泛關注。區塊鏈技術獨有的去中心化去信任的特性,為構建價值互聯平臺提供了可能。在比特幣白皮書中,區塊鏈的概念十分模糊,而現有的一些介紹區塊鏈的文章中,也多從抽象層次進行介紹,對于更深入的后續研究提供的幫助十分有限。本文首先將區塊鏈技術中從具體應用場景中抽象出來,提取出其五層核心架構,并就其中數據、網絡、共識三層基礎架構作詳細說明。這三層架構包含了區塊鏈系統中的三大核心技術:密碼學、共識算法、網絡。文中介紹這三種技術的研究現狀,能夠使讀者迅速了解區塊鏈技術的發展狀況,并能根據自己的需要進行深入閱讀。最后,介紹了區塊鏈目前的應用現狀和技術展望。
摘要:醫學影像分割是計算機視覺在醫學影像處理中的一個重要應用領域,其目標是從醫學影像中分割出目標區域,為后續的疾病診斷和治療提供有效的幫助。近年來深度學習技術在圖像處理方面取得了巨大進展,基于深度學習的醫學影像分割算法逐漸成為該領域研究的重點和熱點。首先敘述了計算機視覺下的醫學影像分割任務及其難點,然后重點綜述了基于深度學習的醫學影像分割算法,對當前具有代表性的相關方法進行了分類和總結,進而介紹了醫學影像分割算法常用的評價指標和數據集。最后,對該技術的發展進行了總結和展望。
小樣本學習旨在通過少量樣本學習到解決問題的模型.近年來在大數據訓練模型的趨勢下,機器學習和深度學習在許多領域中取得了成功.但是在現實世界中的很多應用場景中,樣本量很少或者標注樣本很少,而對大量無標簽樣本進行標注工作將會耗費很大的人力.所以,如何用少量樣本進行學習就成為了目前人們需要關注的問題.本文系統梳理了當前小樣本學習的相關工作,具體介紹了基于模型微調、基于數據增強和基于遷移學習三大類小樣本學習模型與算法的研究進展;本文將基于數據增強的方法細分為基于無標簽數據、基于數據合成和基于特征增強三類,將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡三類.本文還總結了目前常用的小樣本數據集,以及代表性的小樣本學習模型在這些數據集上的實驗結果,隨后對小樣本學習的現狀和挑戰進行了概述,最后展望了小樣本學習的未來發展方向.
//www.jos.org.cn/jos/ch/reader/create_pdf.aspx?file_no=6138&journal_id=jos
隨著大數據時代的到來,深度學習模型已經在圖像分類、文本分類等任務中取得了先進成果.但深度學習模型的成功很大程度 上依賴于大量訓練數據,而在現實世界的真實場景中某些類別只有少量數據或少量標注數據,而對無標簽數據進行標注將會消耗 大量的時間和人力.與此相反,人類只需要通過少量數據就能做到快速學習.例如一個五六歲的小孩子從未見過企鵝,但如果給他看 過一張企鵝的圖像,當他進入動物園看到真正的企鵝時,就會馬上認出這是自己曾經在圖像上見過的“企鵝”,這就是機器學習和人類學習之間存在的差距.受到人類學習觀點的啟發[1],小樣本學習[2] [3](few-shot learning)的概念被提出,使得機器學習更加靠近人類思維.
早在 20 世紀八九十年代,就有一些研究人員注意到了單樣本學習(one-shot learning)的問題,直到 2003 年 Li 等[4]才正式提出了 單樣本學習的概念.他們認為當新的類別只有一個或幾個帶標簽的樣本時,已經學習到的舊類別可以幫助預測新類別[5].小樣本學 習也叫作少樣本學習(low-shot learning) [7],其目標是從少量樣本中學習到解決問題的方法.與小樣本學習相關的概念還有零樣本學 習(zero-shot learning)等.零樣本學習是指在沒有訓練數據的情況下,利用類別的屬性等信息訓練模型,從而識別新類別.
小樣本學習的概念最早從計算機視覺(Computer Vision) [8]領域興起,近幾年受到廣泛關注,在圖像分類任務中已有很多性能優 異的算法模型[34][37][45].但是在自然語言處理領域(Natural Language Processing) [9]的發展較為緩慢,原因在于圖像和語言特性不同.圖 像相比文本更為客觀,所以當樣本數量較少時,圖像的特征提取比文本更加容易[87].不過近年來小樣本學習在自然語言處理領域也 有了一些研究和發展[10][46][48].根據所采用方法的不同,本文將小樣本學習分為基于模型微調、基于數據增強和基于遷移學習三種. 基于模型微調的方法首先在含有大量數據的源數據集上訓練一個分類模型,然后在含有少量數據的目標數據集上對模型進行微 調.但這種做法可能導致模型過擬合,因為少量數據并不能很好地反映大量數據的真實分布情況.為解決上述過擬合的問題,基于數 據增強和基于遷移學習的小樣本學習方法被提出.基于數據增強的方法是利用輔助數據集或者輔助信息增強目標數據集中樣本的 特征或擴充對目標數據集,使模型能更好地提取特征.本文根據學習方法不同,將基于數據增強的小樣本學習方法進一步細分為基 于無標簽數據、基于數據合成和基于特征增強三類方法.基于遷移學習的方法是目前比較前沿的方法,是指將已經學會的知識遷移 到一個新的領域中.本文根據學習框架將基于遷移學習的方法細分為基于度量學習、基于元學習和基于圖神經網絡(Graph Neural Networks)的方法.在度量學習的框架下目前已有許多性能較好的小樣本學習模型,例如比較著名的原型網絡(Prototypical Networks) [34]和匹配網絡(Matching Networks) [31]等.基于元學習的方法不僅在目標任務上訓練模型,而是從許多不同的任務中學習 元知識,當一個新的任務到來時,利用元知識調整模型參數,使模型能夠快速收斂.近年來隨著圖神經網絡的興起,研究者將圖神經網 絡也應用到小樣本學習中,取得了先進的結果.
除了圖像分類和文本分類這兩個主要任務,許多其他任務也面臨著小樣本問題.在計算機視覺應用中,利用小樣本學習進行人臉識別[8][60][82]、食品識別[61]、表情識別[66]、手寫字體識別[70][79]以及其他的圖像識別[65]. 在自然語言處理應用中,使用小樣本方法 實現對話系統[67]、口語理解[62],或者完成 NLP 的基本任務,例如 word embedding[63].在多媒體領域應用中,可以使用小樣本方法實現 影像提取[73]和聲紋識別[80]等.在生物與醫學領域,可以應用于疾病診斷[71][72]、臨床實驗[84]、護士能力評價[75]、農作物病害識別[69][81]、 水量分析[76]等.在經濟領域,可應用于產品銷量預測[77]等.在工業與軍事領域,可應用于齒輪泵壽命預測[78]、軍事目標識別[74]和目標 威脅評估[83]等.
本文首先從基于模型微調、基于數據增強和基于遷移學習三種方法介紹小樣本學習的研究進展,總結小樣本學習的幾個著名數據集以及已有模型在這些數據集上的實驗結果;接下來,本文對小樣本學習的研究現狀和主要挑戰進行總結;最后展望了未來的 發展趨勢.
通過學習可觀測數據的概率密度而隨機生成樣本的生成模型在近年來受到人們的廣泛關注, 網絡結構中包含多個隱藏層的深度生成式模型以更出色的生成能力成為研究熱點, 深度生成模型在計算機視覺、密度估計、自然語言和語音識別、半監督學習等領域得到成功應用, 并給無監督學習提供了良好的范式. 本文根據深度生成模型處理似然函數的不同方法將模型分為三類: 第一類方法是近似方法, 包括采用抽樣方法近似計算似然函數的受限玻爾茲曼機和以受限玻爾茲曼機為基礎模塊的深度置信網絡、深度玻爾茲曼機和亥姆霍茲機, 與之對應的另一種模型是直接優化似然函數變分下界的變分自編碼器以及其重要的改進模型, 包括重要性加權自編碼和可用于半監督學習的深度輔助深度模型; 第二類方法是避開求極大似然過程的隱式方法, 其代表模型是通過生成器和判別器之間的對抗行為來優化模型參數從而巧妙避開求解似然函數的生成對抗網絡以及重要的改進模型, 包括WGAN、深度卷積生成對抗網絡和當前最頂級的深度生成模型BigGAN; 第三類方法是對似然函數進行適當變形的流模型和自回歸模型, 流模型利用可逆函數構造似然函數后直接優化模型參數, 包括以NICE為基礎的常規流模型、變分流模型和可逆殘差網絡(i-ResNet), 自回歸模型(NADE)將目標函數分解為條件概率乘積的形式, 包括神經自回歸密度估計(NADE)、像素循環神經網絡(PixelRNN)、掩碼自編碼器(MADE)以及WaveNet等. 詳細描述上述模型的原理和結構以及模型變形后, 闡述各個模型的研究進展和應用, 最后對深度生成式模型進行展望和總結.
//www.aas.net.cn/cn/article/doi/10.16383/j.aas.c190866
受益于當前計算機性能的快速提升, 學習可觀測樣本的概率密度并隨機生成新樣本的生成模型成為熱點. 相比于需要學習條件概率分布的判別模型, 生成模型的訓練難度大、模型結構復雜, 但除了能夠生成新樣本外, 生成模型在圖像重構、缺失數據填充、密度估計、風格遷移和半監督學習等應用領域也獲得了巨大的成功. 當前可觀測樣本的數量和維數都大幅度增加, 淺層的生成模型受到性能瓶頸的限制而無法滿足應用需求, 從而被含有多個隱藏層的深度生成模型替代, 深度生成模型能夠學習到更好的隱表示, 模型性能更好. 本文對有重要意義的深度生成模型進行全面的分析和討論, 對各大類模型的結構和基本原理進行梳理和分類. 本文第1節介紹深度生成模型的概念和分類; 第2節介紹受限玻爾茲曼機和以受限玻爾茲曼機為基礎模塊的幾種深度生成模型, 重點內容是各種模型的不同訓練算法; 第3節介紹變分自編碼器的基本結構、變分下界的推理和重參數化方法; 第4節介紹生成對抗網絡, 主要內容為模型原理、訓練方法和穩定性研究, 以及兩種重要的模型結構; 第5節總結了流模型的結構, 詳細介紹了流模型的技術特點; 第6節分析了自回歸模型的模型結構以及幾種重要分支的研究進展; 第7節將介紹生成模型中的兩個小分支: 矩陣匹配模型和隨機生成模型; 第8節對深度生成模型存在的問題進行分析討論, 并對未來的研究方向和發展趨勢做出了展望.
題目: 基于深度學習的主題模型研究
摘要: 主題模型作為一個發展二十余年的研究問題,一直是篇章級別文本語義理解的重要工具.主題模型善于從一組文檔中抽取出若干組關鍵詞來表達該文檔集的核心思想,因而也為文本分類、信息檢索、自動摘要、文本生成、情感分析等其他文本分析任務提供重要支撐.雖然基于三層貝葉斯網絡的傳統概率主題模型在過去十余年已被充分研究,但隨著深度學習技術在自然語言處理領域的廣泛應用,結合深度學習思想與方法的主題模型煥發出新的生機.研究如何整合深度學習的先進技術,構建更加準確高效的文本生成模型成為基于深度學習主題建模的主要任務.本文首先概述并對比了傳統主題模型中四個經典的概率主題模型與兩個稀疏約束的主題模型.接著對近幾年基于深度學習的主題模型研究進展進行綜述,分析其與傳統模型的聯系、區別與優勢,并對其中的主要研究方向和進展進行歸納、分析與比較.此外,本文還介紹了主題模型常用公開數據集及評測指標.最后,總結了主題模型現有技術的特點,并分析與展望了基于深度學習的主題模型的未來發展趨勢。
簡介:
如今,深度學習已被廣泛應用于圖像分類和圖像識別的問題中,取得了令人滿意的實際效果,成為許多人 工智能應用的關鍵所在.在對于模型準確率的不斷探究中,研究人員在近期提出了“對抗樣本”這一概念.通過在原有 樣本中添加微小擾動的方法,成功地大幅度降低原有分類深度模型的準確率,實現了對于深度學習的對抗目的,同時 也給深度學習的攻方提供了新的思路,對如何開展防御提出了新的要求.在介紹對抗樣本生成技術的起源和原理的 基礎上,對近年來有關對抗樣本的研究和文獻進行了總結,按照各自的算法原理將經典的生成算法分成兩大類——全像素添加擾動和部分像素添加擾動.之后,以目標定向和目標非定向、黑盒測試和白盒測試、肉眼可見和肉眼不可見的二級分類標準進行二次分類.同時,使用 MNIST 數據集對各類代表性的方法進行了實驗驗證,以探究各種方法的優缺點.最后總結了生成對抗樣本所面臨的挑戰及其可以發展的方向,并就該技術的發展前景進行了探討.
內容簡介:
本文重點對生成對抗樣本的已有研究工作進行綜述,主要選取了近年來有代表性的或取得比較顯著效果的方法進行詳細的原理介紹和優缺點分析.按照其生成方式和原理的不同,分為全像素添加擾動和部分像素添 加擾動兩類.在此基礎上,根據目標是否定向、是否黑盒和是否肉眼可見這 3 個標準進行細分,將各類方法中的 代表性算法在統一數據集(MNIST)上進行測試,驗證并分析其優缺點,終總結提出未來的發展前景. 本文第 1 節主要介紹對抗樣本的基本概念和基礎知識,包括對抗樣本本身的定義、其延伸有關的相關概念 以及基本操作流程.第 2 節則指出對抗樣本是從深度學習中衍生出來的概念,同時介紹了對抗樣本有效性的評估方法.第 3 節則介紹對抗樣本的起源,說明了對抗樣本的產生契機和原理解釋.第 4 節介紹生成對抗樣本的發展狀況,以全像素添加擾動和部分像素添加擾動兩大類進行算法說明,同時總結生成方法中常用的數據集.第 5 節是對第 4 節中代表方法的實驗,結合對同一數據集的效果測試來說明各類方法的優缺點.通過這些優缺點,在 第 6 節中討論對抗樣本生成技術面臨的挑戰和前景預測.
目錄:
1 簡 介
2 前 傳
3 起源
4 發 展
5 實驗結果對比
6 面臨挑戰與前景預測
摘要: 圖像內容自動描述是計算機視覺和自然語言處理領域的一個重要任務,在生活娛樂、智慧 交通以及幫助視覺障礙者理解視覺內容等領域有著廣泛而重要的應用價值.相比于圖像分類和目標 檢測等感知任務,圖像內容自動描述是一種更高級別、更復雜的認知任務,對幫助分析和理解圖像有 著重要的意義.旨在對現有的圖像自動描述技術進行全面的綜述.討論圖像內容自動描述中常用的數 據集和評價指標,以及現有圖像自動描述技術的性能、優點和局限性。
關鍵詞: 圖像內容描述;卷積神經網絡;循環神經網絡;注意力機制;深度學習