亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本研究論文旨在探討人類信任的影響因素,因為它與人類-自主團隊合作有關。研究采用混合方法,通過在線調查實驗進行。實驗分析了幾個自變量和一個因變量(對人工智能(AI)系統的信任)。自變量包括個人的數字素養、人工智能系統的透明程度以及參與者對人工智能系統能力/性能的經驗水平。研究人員給參與者提供了一個假定的小故事,通過隨機處理來測量自變量,在這個故事中,參與者扮演了一個與假定的人工智能系統配對的操作團隊中的首席規劃師的角色。結果表明,無論處理條件如何,人工智能的基本信任水平都非常重要。最后,這項研究強調,人工智能系統的透明度對提高信任度的作用可能比以前想象的更加有限。

付費5元查看完整內容

相關內容

強化學習(RL)和人在回路(HitL)學習方面的最新進展使人類與人工智能體的合作變得更加容易。在智能系統中利用人類與人工智能的專業知識和經驗,既高效又有益。不過,人類與人工智能的協作能在多大程度上取得成功,以及這種組隊與僅有人類或人工智能體的組隊相比表現如何,目前仍不清楚。在這項工作中,我們證明了向人類學習是有效的,而且在復雜的模擬環境中,人類-人工智能協作的表現優于人類控制的和完全自主的人工智能體。此外,我們還開發了一種新的關鍵基礎設施保護模擬器,重點關注人工智能驅動的無人機和人類團隊合作抵御敵方無人機攻擊機場的場景。我們開發了一個用戶界面,讓人類能夠有效地協助人工智能體。我們證明,與向人類或智能體學習相比,智能體在向政策校正學習時學習速度更快。此外,與人類直接控制所有智能體相比,人類與人工智能的協作需要更低的精神和時間要求,減少了人類的努力,并產生了更高的性能。總之,我們的研究表明,人類可以為 RL 智能體提供有益的建議,讓它們在多智能體環境中提高學習能力。

保護機場等關鍵基礎設施免受安全威脅是一項復雜、敏感和昂貴的任務,因此人們一直在探索自動和自主解決方案[1]。然而,由于目前技術成熟度和訓練有素的操作員方面的限制,在關鍵應用中采用全自動和自主解決方案并不可取。這可能會導致性能低下、基礎設施嚴重受損以及其他附帶損害風險增加。此外,培訓人類如何有效地使用這些解決方案仍然是一個相當大的挑戰。另一方面,對此類系統的持續監控、快速評估和處理潛在威脅將受益于人工智能能力。在許多情況下,由于系統的復雜性或數據的稀缺性,人工智能體需要在合理的時間范圍內實現完全自主的協助[2]。另一個重大挑戰是人工智能體捕捉上下文理解的能力。例如,考慮一個機場安防場景,隸屬于機場當局的人工智能系統在夜間通過監控攝像頭或無人機檢測到快速移動。該系統可能會將這一移動歸類為入侵者,但由于缺乏上下文的細微差別,無法將其識別為當地警察在機場周邊的例行巡邏。

人類通常擁有解決復雜問題的領域專長、經驗和對上下文的理解,而這些是智能體難以學習或復制的。例如,考慮到上述例子,人類操作員可能會根據無人機出現和行為的相關情況,將無人機識別為例行巡邏。與此同時,智能體缺乏做出適當反應的知識。在安全關鍵型應用中,人的決策變得至關重要,因為在這種應用中,可能會出現部分預料不到的情況。考慮到人類專業知識的價值,有必要在協作環境中有效利用人類知識和態勢感知,尤其是在國防或安全等關鍵應用中。結合人類操作員和自主系統優勢的系統可能會使這些應用受益。這種整合旨在降低系統成本,提高任務性能,同時在危險或關鍵操作中保持有意義的人工控制。這種混合方法對于降低這些高風險環境中的潛在風險至關重要[3]。

最近,強化學習(RL)成功地解決了許多復雜的決策問題,例如掌握圍棋[4]、在平流層部署超壓氣球[5]和生成合成藥物[6, 7]。雖然 Atari 和 Mujoco 等成熟領域已成為前沿 RL 研究的基準[8, 9],但針對復雜領域引入模擬器以促進人類人工智能協作的探索還較少[10, 11]。然而,深度 RL 面臨的一個顯著挑戰是樣本效率低下 [12],需要與環境進行數百萬次交互,因此難以適應現實世界的問題。為了緩解這一問題,示范[13-15]、行動建議[16-18]、偏好[19-21]和獎勵塑造[22-25]等給出建議的技術已被用于引導 RL 智能體進入狀態空間的相關部分。然而,這些工作大多局限于游戲領域和由訓練有素的智能體提供建議。一個重要且相對尚未探索的方面是,在復雜的真實世界環境中,通過人類示范來提高人類與智能體協作的潛力。此外,目前有關人類與智能體協作的文獻顯示,在為人類提供有效建議而進行的智能用戶界面設計和集成方面存在明顯的不足。這種稀缺性經常導致人類與智能體之間的誤解,阻礙了人類操作員專業知識的使用。

為了應對復雜現實世界領域的挑戰,我們針對機場禁區保護系統這一特定問題開發了一種新型模擬器和用戶界面。使用案例包括一個由盟友無人機組成的機群,試圖保護限制空域免受多架無人機的入侵。根據防空領域專家的建議,模擬器的設計模擬了真實世界的動態場景。這包括無人機的速度、飛行動態、地面雷達傳感器的規格、傳感有效載荷(雷達和光電),以及嵌入 "藍色 "無人機的中和有效載荷。這種真實世界的動態變化使得環境變得復雜。環境的復雜性意味著一個天真的 RL 智能體需要多次環境交互才能學習到最優策略。考慮到在指定領域中這些交互所帶來的成本和風險,經過訓練的智能體需要具有樣本效率。我們證明,對于所提到的復雜環境,從人類或智能體演示中學習可以最大限度地減少所需的環境交互次數。一些研究[26-28]表明,當一個人監督復雜系統中的多個智能體時,監控需求的增加會對他們的工作量和認知負荷產生負面影響--這最終會阻礙工作表現。

我們證明,訓練有素的智能體具有更好的決策能力,可以減少人類操作員的工作量,提高人類-智能體團隊的績效。創建人類-智能體協作的主要目標是利用智能體和人類的優勢,同時減輕它們的劣勢。例如,智能體擅長分析龐大的數據集和根據特定模式快速做出決策等任務,表現優于人類[29]。相反,與智能體相比,人類則表現出植根于道德價值觀和語境理解的卓越決策能力 [30]。特定國防領域用例的一個特點是,作戰行動是多變的,往往極難預測,而且道德風險可能極高。為了保持人類行使權力和指揮權,我們還使用人類策略修正來糾正受訓智能體的策略。我們的研究表明,在線策略修正是提高智能體學習效果、實現最佳性能的最有效建議形式。此外,我們還證明,與人類控制未經訓練的智能體(本領域中的無人機)相比,人類在進行策略修正時的認知工作量更低。我們使用非專家人類和智能體演示,以展示我們的方法在解決人類專家有限可用性方面的穩健性。

貢獻 本文有以下貢獻:

1.介紹了一種新型多智能體模擬器,用于國防特定機場保護用例建模,模擬多個盟友和敵方無人機智能體的真實世界動態。

2.使用最先進的深度 RL 算法在新型模擬器內訓練多個智能體。

3.在模擬器內開發用戶界面,使人類操作員能夠動態控制單個或多個智能體,進行情境演示,從而實現人機協作。

4.通過經驗證明,訓練有素的智能體演示或人類與智能體的混合演示有助于智能體更快地學習。

5.比較和評估多種建議提供技術,即從演示中學習和策略修正。

6.通過一項用戶研究,比較各種建議提供技術的人類認知工作量,證明與人類完全控制智能體相比,策略修正所需的工作量更少。

付費5元查看完整內容

目前,美國政府內部并不存在同步收集情報和調查的能力,而從整體上減輕無人駕駛航空器系統帶來的新威脅需要這種能力。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。本論文試圖找出最佳方法,匯集各個機構的力量,將情報和調查能力統一到應對無人機系統威脅的巨型行動中。為了解決這個問題,我們選擇了工作組、特遣部隊和單一機構指定作為可能的選擇,特別是考慮到它們的歷史先例和成功的可能性。每種方案都根據其接受兩個決定性特征的能力進行了比較:協作和承諾。分析結果表明,工作隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統殺傷鏈中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。本論文概述的結論和相應建議提供了明確的方向和合理的實施計劃。

目前,美國政府內部并不存在同步收集情報和調查的能力,而這種能力是全面緩解無人駕駛航空器系統帶來的新威脅所必需的。此外,擁有應對權力、知識和經驗的實體基本上都在獨立的環境中工作。這其中有一些是現行法律限制所規定的,但也有一股潛在的自私自利的政治潮流在其中彌漫。

本論文試圖找出最佳方法,將各個機構的優勢集合起來,將情報和調查能力統一到一個巨無霸級別的響應中,以應對無人機系統的威脅。本研究揭示的三個主要問題包括:當前技術的局限性、法律障礙,以及對無人機系統 "殺傷鏈 "中一個方面的短視。工作組、特別工作組和單一機構指定是根據其歷史先例和成功可能性而特別選擇的方案。每種方案都根據其是否具備兩個決定性特征進行了比較:協作和承諾。

首先對工作組進行了審查,并最終將其排除在外。雖然工作組具有較高的協作水平,但在無人機系統威脅環境下,有效的承諾水平要求極低。此外,工作組在聯邦、州和地方政府中已經非常普遍,這使它們看起來更像是現狀而非創新選擇。

特遣部隊是第二個被審查的對象,不容忽視。與工作組不同,特遣部隊具有高度的協作性和承諾性。特遣部隊模式在整合情報和調查行動以應對恐怖主義、有組織犯罪和毒品等其他重大威脅方面也有成功的歷史。

最后分析的方案是指定單一機構。就承諾而言,這一選擇的評分極高,因為它要對其行動的成敗負全部責任。遺憾的是,單一機構指定在協作方面的排名相應很低。

分析結果表明,特遣部隊模式最終是全面應對無人機系統威脅的最有效手段。它通過利用情報和調查行動能力來妥善解決無人機系統 "殺傷鏈 "中六個步驟中的每一個步驟,在高度協作和承諾的環境中減輕了與當前技術和法律限制相關的挑戰。

本論文中概述的建議提供了實施的方向和合理計劃。該計劃首先由國家行政工作組制定政策,并在州一級進行復制,以確保連續性。在考慮了行政和政策要求后,將建立一個與行政部門平等合作的國家行動工作組,通過制定包含任務導向目標和可實現的里程碑的戰略來履行這些政策義務。這也將在州一級得到體現。

付費5元查看完整內容

本論文旨在利用深度學習技術提高從二維目標圖像中估計目標姿態的能力。為此,我們采用了一種名為高分辨率網絡(High-Resolution Net)的尖端卷積神經網絡來訓練關鍵點檢測模型并評估其性能。實驗使用了兩個不同的數據集,包括 600,000 張合成圖像和 77,077 張高能激光束控制研究試驗臺(HBCRT)圖像。這些圖像來自六種不同的無人駕駛飛行器,用于訓練和評估目的,高分辨率網在 80% 的圖像上進行訓練,在其余 20% 的圖像上進行測試。運行高分辨率網絡時使用了 MMPose 框架,這是一個 Python 庫,其中包含多種卷積神經網絡選項。研究結果表明,High-Resolution Net 在姿勢估計方面表現良好,但由于目標形狀的對稱性,在左右反轉方面仍存在明顯差距。這項研究為今后利用高分辨率網絡進行目標姿態估計研究奠定了基礎。進一步的研究將集中式提高圖書館中左右分辨的準確性,以增強這些成果。

本論文分為五章。第一章是引言,介紹了本課題的概況及其相關性,以及如何進行實驗。第二章是文獻綜述,通過相關的學術和行業資料更詳細地介紹了這一研究領域。第三章是問題的提出和方法,介紹了將要解決的問題和解決問題的方法。第四章是模擬結果和深度學習性能評估,對結果進行評估,看是否取得了有意義的進展。第五章是結論,從更廣闊的視角看待結果,并討論未來工作的可能性。

付費5元查看完整內容

人工智能是下一個競爭領域;第一個開發出人類水平人工智能的國家將產生類似于原子彈開發的影響。為了維護美國及其人民的安全,美國國防部資助了人工智能及其應用的發展研究。本研究使用強化學習和深度強化學習方法作為當前和未來AI智能體,并評估開發中的潛在問題。在兩個游戲和一次遠足中對智能體的表現進行了比較: 分別是貨物裝載、河內塔和背包問題。據觀察,深度強化學習智能體能處理更廣泛的問題,但表現不如專門的強化學習算法。

付費5元查看完整內容

本報告重點討論與人工智能系統可能缺乏可預測性而導致的有關風險--被稱為可預測性問題--及其對國家安全領域人工智能系統治理的影響。人工智能系統的可預測性表明人們可以在多大程度上回答這個問題:人工智能系統會做什么?可預測性問題既可以指人工智能系統的正確結果,也可以指不正確的結果,因為問題不在于這些結果是否符合系統工作的邏輯,而是在部署時是否有可能預見到這些結果。

人們越來越擔心,使用不可預測的人工智能系統為高風險決策提供信息可能會導致災難性的后果,這將破壞公眾對部署這些系統的組織的信任,并可能侵蝕政府的聲譽。在國家安全領域,人工智能的使用引入了一個新的不確定性來源,可能會阻礙風險管理程序,并可能使責任鏈變得混亂。在這個領域,可預測性問題的影響可能導致關鍵基礎設施的安全風險、個人權利和福祉的風險、沖突升級或外交影響。

在本報告中,我們首先從技術和社會技術的角度分析了可預測性問題,然后集中討論了英國、歐盟和美國的相關政策,考慮它們是否以及如何解決這個問題。從技術角度來看,我們認為,鑒于人工智能系統的設計、開發和部署的多層面過程,不可能考慮到所有的錯誤來源或可能產生的新行為。此外,即使在理想的情況下,在設計或開發階段沒有錯誤可以假設或檢測,一旦部署了人工智能系統,仍然可能發展出形式上正確的(但不想要的)結果,這在部署時是無法預見的。

我們通過關注人機編隊(HMT-AI)來分析可預測性問題的社會技術影響。人機編隊代表了一種越來越普遍的人工智能系統部署模式。在HMT-AI中,人類咨詢、協調、依賴、發展并與人工智能代理交換任務。由于HMT-AI結合了人類和人工的自主性,它們通過增加人工和人類代理及其環境之間的互動的數量和類型而加劇了可預測性問題。在這種情況下,我們發現可預測性問題的三個主要來源:人機交互、人員培訓和(過度)信任。人機交互可能會助長不可預測的結果,因為它們可以掩蓋、扭曲或過分詳細地描述人工智能系統的工作原理,而培訓計劃可能沒有考慮到人工智能技術的學習能力和HMT-AI的長期慣例建設。同樣,在HMTAI中,人類代理人不加批判地接受AI系統的結果,這種過度信任的動態也可能導致無法預測的結果。

在確定了可預測性問題的一些根本原因之后,我們分析了英國、歐盟和美國的政策,以評估這些原因是否在相關的政策文件中被涵蓋,如果是的話,如何以及在何種程度上被涵蓋。我們確定了四個主要主題和一個缺口。它們是:控制、監督和價值調整;資源提升的方法;可信賴人工智能的發展;以及缺乏對風險管理措施的關注,以遏制可預測性問題的影響。

我們的政策分析包括八個建議,以減輕與可預測性問題有關的風險。關鍵的建議是將治理方法集中在HMTAI上,而不僅僅是AI系統,并將可預測性問題概念化為多維度的,解決方案集中在HMT-AI組成的共同標準和準則上。在這些標準和準則中,可信人工智能的要求是特別相關的,應該與評估人工智能系統的可預測性的標準和認證計劃以及審計HMT-AI的程序結合起來。支持在國家安全中使用HMT-AI的決定的成本效益分析和影響評估應該考慮到可預測性問題及其對人權、民主價值的潛在影響,以及意外后果的風險。為了確保在部署潛在的不可預測的人工智能系統時進行充分的風險管理,我們建議調整ALARP原則--在合理可行的情況下盡量降低--作為制定HMT-AI中可預測性問題的人工智能特定風險評估框架的基礎。

擬議的基于ALARP的框架將提供有用的實際指導,但僅僅是這樣還不足以識別和減輕可預測性問題所帶來的風險。需要額外的政策、指導和培訓來充分考慮人工智能可預測性問題帶來的風險。人工智能系統支持的決策的影響越大,設計、開發和使用該系統的人的謹慎責任就越大,可接受的風險門檻也越低。這些分析和建議應該被理解為可操作的見解和實用的建議,以支持相關的利益相關者在國家安全背景下促進社會可接受的和道德上合理的人工智能的使用。

建議

建議1. 政府應撥出研究經費,發展公私合作,對HMT-AI進行縱向研究。這項研究應側重于HMT-AI中的新舊決策模式,以評估編隊協議建設和培訓對績效和控制措施的影響。重點應放在為HMT-AI的具體動態定義新的培訓協議,以及加快風險管理標準和HMT-AI績效評估的發展。

建議2. 應該建立一個專門的HMT-AI認證計劃,以促進行業對為HMT-AI設計的AI系統的設計要求和評估的共識。任務之間的通用性、有效的溝通、性能的一致性以及對新隊友的適應性都應該包括在這樣一個認證計劃中。在開發不足的ISO標準的基礎上,這個認證計劃還應該擴展到過程的可追溯性和決策的問責制,以及評估HMT-AI信任程度的審計機制。這對于抑制HMT-AI中的過度信任和自滿態度是必要的,這種態度維持或擴大了可預測性問題。

建議3. 對國家安全領域的可預測性問題的政策反應應該側重于管理HMT-AI團隊,而不是單獨的AI系統。

建議4. 國家安全領域的HMT-AI的成本效益分析(CBA)應該包括對AI系統的可預測性以及技術和操作層面的相關道德風險的評估。為了促進各安全機構之間的一致評估,應該定義一個評估人工智能系統可預測性的標準量表,在這個量表上,使用(或不使用)人工智能的選擇應該根據上下文的CBA以及考慮公眾對風險和相關利益的態度來證明。這個尺度的定義應屬于獨立的第三方行為者的職權范圍,即與部署HMT-AI的公共機構不同。

建議5. 與其說是 "更多 "或 "更少 "的可預測性,政策建議應側重于可預測性的權衡,明確具體建議旨在解決可預測性問題的哪個方面,以何種方式解決,以及它們有可能加劇哪些方面,哪些緩解措施將被落實到位。政策應該認識到,可預測性是一個多維度的概念,在一個層面上可預測性的收益可能會以另一個層面的損失為代價。

建議6. 關于國家安全中人工智能可預測性問題的政策應該在正式和操作層面上解決可信度和不可預測性之間的聯系。例如,應該給人工智能系統一個可修正的可預測性分數,這應該包括在對系統的可信任度的評估中。人工智能系統的可信賴性應包括成本效益分析,以評估不想要的行為在不同部署背景下可能帶來的風險。

建議7. 應該為不可預測的人工智能建立風險閾值,這些閾值將圍繞不可預測行為的風險嚴重程度映射到其自身的可預測程度(例如,劃分為已知的已知因素、已知的未知因素等)。這些閾值反過來將為風險管理過程的發展提供信息,允許根據風險的可預測性及其影響對其進行優先排序。

建議8. 應該制定一個基于ALARP的框架,以評估不可預測的人工智能和HMT-AI的風險,并為任何給定的環境確定可接受的最大程度的不可預測性。這個框架應該包括:

  • 對特定人工智能系統和HMT-AI的可預測程度的定量評估;
  • 對導致部署人工智能系統的設計、開發和/或采購步驟的可追溯性的評估;
  • 對部署條件的評估,例如,HMT-AI、操作員(或HMT-AI成員)的培訓水平、交互的透明程度、人類對AI系統的控制水平;
  • 對部署該系統的潛在風險和預期收益進行成本效益分析(根據建議4);
  • 對假設情況的分析,以考慮風險暴露或緩解措施的有效性如何隨部署情況而變化;
  • 人為推翻系統的協議和補救機制。

付費5元查看完整內容

這項工作提出了一個支持決策過程的算法框架,其中終端用戶在領域專家的協助下解決一個問題。此外,終端用戶和領域專家之間的交流的特點是問題和答案的數量有限。開發的框架可以幫助領域專家向終端用戶精確定位少量的問題,以增加其見解正確的可能性。建議的框架是基于領域專家的知識,包括與領域專家和終端用戶的互動。領域專家的知識由知識圖譜表示,而終端用戶與問題相關的信息作為證據被輸入圖譜。這就觸發了圖中的推理算法,該算法向領域專家建議最終用戶的下一個問題。本文在醫學診斷領域提出了一個詳細的建議框架;然而,它也可以適應具有類似設置的其他領域。我們開發的軟件框架使決策過程以互動和可解釋的方式進行,這包括使用語義技術,因此是創新的。

簡介

近年來,"大數據 "世界獲得了巨大的發展動力,并不斷產生機遇和挑戰[1,2]。大數據的各種用途已經滲透到技術世界的幾乎每一個領域。我們對在處理決策過程的技術領域整合大數據的挑戰感興趣,以便利用這些過程。

這些過程可以在各種各樣的內容世界(醫學、商業、教育等)中找到,并且需要了解情況意識、數據建模以及提供智能見解的算法。然而,這些過程為不同的需求提供不同的答案;因此,有幾種類型的決策過程,每一種都有合適的設置[3,4]。

在這項工作中,我們專注于具有以下設置的決策過程:(a)該過程涉及兩個實體:一個最終用戶和一個領域專家,(b)最終用戶啟動該過程,(c)兩個實體之間存在互動,包括(領域專家的)問題和(最終用戶的)答案,(d)兩個實體之間的互動盡可能有限(在時間、問題數量、金錢等方面)。

鑒于上述情況,本報告的目的是提供一個基于語義技術的框架,該框架能夠整合大數據,在決策過程中協助領域專家,向他們建議一套針對最終用戶的問題(從數據中推斷出來的),這將減少問題和答案的循環。 考慮以下兩個領域的例子,其流程自然適合這樣的設置:醫療診斷[5]和家電維修[6](表1)。

如前所述,上述兩個領域包含了一個兩方面的有限互動。這種限制可以用時間、問題的數量等來表示。請注意,醫療和家電維修這兩個領域都是寬泛的領域,可以被專門化為特定的子領域。例如,家電維修領域可以被專業化為建筑服務、互聯網服務、家庭故障服務等。醫療領域也是如此。它也可以包含一些子域,如各領域的醫療咨詢(如心理學)、緊急醫療電話的處理等。

建議的框架包括兩個主要部分:(a) 使用語義技術對相關領域專家的知識進行正式表示,特別是知識圖譜,以及(b) 一套互動的算法,從一組初始領域值(即最終用戶的先驗知識)開始,然后,基于這些先驗知識和知識圖譜表示,它將向最終用戶提出具體問題。這些問題的答案將推動領域專家的決策過程,并成為下一次迭代的輸入。迭代將繼續進行,直到領域專家感到滿意并做出決定。

我們有動力通過知識圖譜來表示專家的知識,因為圖譜已經成為表示連接數據的一種自然方式[7]。在過去的十年中,人們努力將大量的數據組織成節點和邊的集合,特別是在推薦系統、搜索引擎優化和決策過程中[8,9,10]。由此產生的靈活結構,稱為知識圖譜,允許快速適應復雜的數據和通過關系的連接。它們固有的互連性使人們能夠使用圖算法來揭示隱藏的模式和推斷新的知識[11,12,13,14]。此外,知識圖譜在計算上是高效的,并且可以擴展到非常大的規模,社會圖譜分析就是一個例子[15,16]。

我們的框架受到了Musen和他的同事[17]的啟發,他們是生物醫學信息學領域的知名研究者,提出了關于協助臨床決策支持(CDS)的信息技術的看法。Musen等人[17]提出了提供CDS的系統的指導原則:他們的論述是關于交流而不是檢索信息,建議而不是產生報告,以及協助領域專家發展更多的知情判斷。分別來說,引導我們開發框架的概念是為領域專家提供從分析圖表示的相關數據中推斷出的建議,并使他能夠做出明智的決定。然而,另外一個領先的概念是以有限的迭代次數來進行。我們的框架可以擴展到其他領域。

在所提交的工作中,我們為一個交互式框架引入了一種新的方法,以支持以有限的交互次數為特征的決策過程。該框架通過使用圖數據模型、圖算法和語義技術,以通用的方式進行創新。我們在一個真實的數據集上運行我們的算法,并在一個可能的現實場景中展示框架的可行性。因此,我們為我們的框架提供了一個概念證明。

為了說明擬議的框架,我們首先回顧了知識圖譜和決策過程(第2節)。然后,我們定義了該框架的術語和算法(第3節)。隨后,我們在醫學診斷領域使用由疾病和病人癥狀組成的數據集來演示該框架(第4節)。最后,我們總結并考慮潛在的未來方向(第5節)。

框架與算法

這一節中介紹了所提出的框架,其中包括一個算法集合和它們之間的互動。

目標是基于互動的決策過程。互動是在領域專家和終端用戶之間進行的,結果是有限的迭代,由框架建議領域專家問終端用戶的問題組成。決策過程將根據終端用戶的回答而進行。

當分析這些類型的過程時,我們得出結論,它們可以被籠統地建模為一個癥狀和疾病的集合。最終,該過程的目標是協助領域專家決定診斷(即在分析現有數據的基礎上為一組給定的癥狀提供解釋)。Musen將診斷過程描述為決定要問哪些問題,要做哪些測試,或要執行哪些程序[7,17]。診斷過程中可能出現的問題有以下幾種類型。終端用戶是否有一個特定的癥狀?

上述術語(即癥狀、疾病、問題和診斷)產生的行話可以自然地用于醫學診斷領域,然而它也適用于其他領域,如家電維修:癥狀代表問題,疾病代表故障,診斷是一種故障識別,一個典型的問題可以是。終端用戶的電器有什么特別的問題嗎?

當在提議的框架中使用這個行話時,我們用假設一詞來代替診斷,因為該框架并不向領域專家提供診斷,而是提供可能的假設。每個假說實際上是一種潛在的疾病,它伴隨著一個問題,是表明疾病(假說)的癥狀。因此,我們在本文中用來描述框架及其各種算法的行話包括:癥狀、疾病、問題和假設。特別是,該框架推斷出假設及其相關的問題,并將它們提交給領域專家,后者決定是否使用(或不使用)這些問題來確認(或不確認)這些假設(疾病)。

在本節的其余部分,我們將描述該框架及其算法,首先是一般的,然后是詳細的。

一般來說,我們首先從原始數據建立一個知識圖譜,這將有助于探索疾病和癥狀之間的關系。在此之后,我們在KG上使用魯汶分層聚類法[21](算法1)來尋找社區(即具有類似癥狀的疾病群)。然后,給定最終用戶報告的癥狀(稱為證據癥狀),我們使用KG上的推理找到與證據癥狀相匹配的可能疾病(算法2)。在這一點上,我們推斷出最可能的社區,以包括最終用戶的疾病,并向領域專家建議一個表明這個社區的問題(癥狀)(算法3)。最后,我們找到最佳假設建議給領域專家(算法4),也就是說,我們向領域專家建議最終用戶可能有的疾病和癥狀,以解決診斷過程的改進。

整個框架分為兩個主要部分:第一部分,預處理部分,在框架啟動后進行;而第二部分,處理部分,在每次有新請求到達框架時進行。預處理部分包括兩個步驟和一個算法(算法1),而處理部分包括三個步驟和三個算法(算法2-4),正如我們在下面描述的那樣。

我們使用的數據結構包括代表KG的結構(默認是鄰接列表)和運行算法所需的額外結構。在下面描述算法的段落中,我們將詳細介紹這些結構和它們的用途。

預處理部分:

輸入:一個疾病及其癥狀的列表

第1步:構建一個疾病和癥狀的知識圖(KG)(見第3.1節)。

第2步:根據疾病的癥狀將其聚類為一組(稱為社區),即具有類似癥狀的疾病將在同一個社區中(算法1)。

輸出:(1)每一種疾病都與KG中的一個社區相關聯;(2)額外的數據結構,稱為癥狀社區矩陣(SCM),表示疾病組和各種癥狀之間的聯系 處理部分:

輸入:K證據癥狀

第一步:尋找最可能的疾病,即與證據癥狀相匹配的可能疾病(算法2)。

第2步:推斷并向領域專家建議(根據需要重復)一個問題(癥狀),表明最可能的社區包括最終用戶疾病(算法3)。

第3步:推斷并向領域專家建議一個假說(最終用戶可能患有的疾病)及其相關問題(癥狀)的列表,并按相關性排序(算法4)。

圖1顯示了整個建議框架的高級視圖。

付費5元查看完整內容

人工智能(AI)的最新進展引起了人們對人工智能系統需要被人類用戶理解的關注。可解釋人工智能(XAI)文獻旨在通過向用戶提供有關人工智能系統行為的必要信息來增強人類的理解和人類-人工智能團隊的表現。同時,人為因素文獻長期以來一直在解決有助于人類表現的重要考慮因素,包括如何確定人類的信息需求、人類負荷以及人類對自主系統的信任。從人類因素的文獻中,提出了可解釋人工智能的態勢感知框架(SAFE-AI),這是一個關于人工智能系統行為解釋的發展和評估的三級框架。提出的XAI級別是基于人類用戶的信息需求,這些需求可以用人因文獻中的態勢感知(SA)級別框架來確定。基于我們的XAI等級框架,我們還提出了一種評估XAI系統有效性的方法。進一步詳細說明了在確定解釋的內容和頻率時對人為負荷的考慮,以及可用于評估人為負荷的指標。最后,討論了通過解釋適當校準用戶對人工智能系統信任的重要性,以及XAI的其他與信任有關的考慮,還詳細介紹了可用于評估用戶對這些系統信任的指標。

隨著最近人工智能文獻中對可解釋人工智能(XAI)的關注,定義XAI系統應該傳達哪些信息以及如何衡量其有效性變得越來越重要。Gunning和Aha(2019)將XAI定義為 "能夠向人類用戶解釋其原理的人工智能系統,描述其優勢和劣勢,并傳達對其未來行為方式的理解"。我們采用了XAI的這一定義,并將解釋定義為支持人類推斷人工智能系統上述細節的必要信息,包括關于其輸入、模型和輸出的信息。開發XAI技術的動機經常被說成是需要在日益復雜的人工智能系統中實現透明化(Fox等人,2017;Lipton,2016),以及需要在日益不透明的系統中獲得用戶信任(Borgo等人,2018;Fox等人,2017;Lipton,2016)。提高人工智能系統的透明度和說明人類對這些系統的信任都有助于提高人類-人工智能團隊的績效;因此,支持人類-人工智能團隊的績效是XAI的主要目標之一。事實上,以前的研究已經證明了智能體的透明度對人類-AI團隊中人類隊友的任務表現的積極影響(Chen等人,2017,2018;Stowers等人,2016)。一些文獻認為,存在性能-可解釋性的交換,即更多可解釋的人工智能系統會以某種方式犧牲算法性能(Gunning & Aha,2019;Lipton,2016)。然而,如果缺乏系統的可解釋性抑制了團隊的整體表現,那么改進算法性能所提供的好處可能會喪失。例如,如果一個基于醫學機器學習的成像系統能夠在對某些醫療問題進行分類時取得更大的準確性,但它的方式使人類醫生更難注意到其判斷中的錯誤,醫生-AI團隊的績效可能會受到整體影響。因此,我們認為優化人類-AI團隊的表現,通過對系統行為的解釋來實現,是XAI的主要目標。

在人因方面存在著豐富的文獻,探討了人類與自動化系統互動的場景,以及在任務執行過程中影響人類表現的各種因素。態勢感知(SA)的概念,已經在人為因素領域和人類-自動化團隊的背景下進行了研究(Chen等人,2014;Endsley,1995),定義了人類在任何場景下操作的信息需求(Endsley,1995)。XAI系統,作為提供人工智能行為信息的系統,可以為人類用戶的SA子集做出貢獻,該子集與人工智能行為有關。通過XAI系統提供的支持人工智能的信息,可以提高人類-人工智能團隊的績效;然而,除了XAI支持的人工智能子集之外,整體的人工智能也是支持團隊績效的必要條件,但并不完全是充分條件(Endsley,1995)。

人為因素的文獻討論了其他的因素,這些因素對于人與AI團隊的表現同樣是必要的,并且也與XAI系統有關。首先,雖然SA定義了人類需要的信息,但工作負荷的考慮影響了如何以及何時提供這些信息(Parasuraman等人,2008)。其次,用戶對自動化系統的信任的重要性已經在之前的文獻中得到了明確的探討(Lee & See, 2004; Schaefer等人, 2014)。重點不是增加用戶的信任,這通常被作為XAI的動機(Borgo等人,2018;Fox等人,2017;Krarup等人,2019),而是適當地校準信任,導致人工智能系統的適當使用(Chen等人,2014;Ososky等人,2014;Schaefer等人,2014)。

除了討論SA、負荷和信任的概念以及對這些考慮因素的相關設計建議之外,文獻還將這些概念操作化,提供了評估的方法和指標(Parasuraman等人,2008)。正如SA支持但不等同于性能一樣,XAI系統提供的高質量解釋支持但不等同于SA、適當的人類工作負荷或對AI系統的充分信任。然而,根據與這些因素相關的方法和指標來評估XAI系統,有助于了解所提供的解釋是否實現了提高人與AI團隊績效的最終目標。除了團隊績效之外,將SA、工作負荷和信任作為XAI的中間目標來衡量,可以明確績效評估中存在的潛在混淆因素。

雖然之前已經提出了一些評估XAI系統不同方面的指標(Doshi-Velez和Kim,2017;Hoffman、Miller等人,2018;Hoffman、Mueller等人,2018;Lage等人,2019),但XAI文獻目前缺乏一套全面的評估解釋質量的合適指標。雖然可能無法明確和獨立地定義一個解釋的質量,但在許多情況下,一個解釋只有在它有助于實現SA、適當的信任和適當的工作負荷等中間目標以及提高績效的最終目標時才是 "好 "的。換句話說,在許多情況下,SA、信任和工作負荷以及團隊績效可以作為代理,表明XAI系統是否實現了它的預期目標,因為XAI系統的目標往往與這些概念有關。因此,XAI從業者可以利用現有的人類因素指標來評估他們所提出的技術。

在本文中,我們討論了與XAI相關的人類因素文獻(包括現有的XAI技術),并根據人類因素界的發現提出了一套XAI系統的設計考慮和評估指標。我們首先更詳細地討論了人的因素中的SA概念,并提出了可解釋人工智能的態勢感知框架(SAFE-AI),其中包括XAI的級別,定義了哪些關于人工智能算法和過程的信息應該由XAI系統來支持;這些級別與Endsley(1995)提出的SA級別緊密對應。我們進一步強調了一套現有的XAI技術如何適合我們的框架,以及用于評估現有技術的指標如何映射到SA的評估。SAFE-AI旨在為定義XAI系統的需求提供一個以人為本的結構化方法,為XAI技術的開發提供指導,并為XAI系統的評估提供指導。

SAFE-AI可以用來定義XAI系統的信息要求,但是信息要求本身并不能決定XAI系統的整個設計。同樣重要的是,要考慮在交互過程中的任何給定點向用戶展示多少信息,以及展示信息的頻率,以便用戶能夠實際處理這些信息。這些考慮與人類的工作負荷有關。此外,系統可能有必要向人類用戶提供額外的信息,以便適當地校準人類對系統的信任,這可能會影響到適當的使用和團隊表現。因此,在本文中,我們還討論了工作負荷和信任的人為因素概念,XAI中考慮過這些概念的現有工作,以及如何將與每個概念相關的指標應用于XAI系統的評估。理想情況下,SAFE-AI可以被應用于確定一套初始的交互信息要求,而信任和工作負荷的考慮可以被用來完善這套初始要求,并充實與XAI系統如何被整合到真實世界環境中有關的額外細節。這項工作的初步版本可以在Sanneman和Shah(2020)中找到。本文通過擴展與SAFE-AI框架相關的XAI技術的文獻回顧,以及包括對工作負荷和信任及其與XAI系統的關系的額外討論,對初步版本進行了擴展。

本文的其余部分組織如下:在第2節中,我們討論了態勢感知,包括來自人類因素的相關文獻,我們基于態勢感知的XAI框架,來自XAI文獻的相關例子,以及一個激勵性的例子來澄清對框架的討論。在第3節中,我們擴展了人類因素中人類工作負荷的概念,以及XAI的相關考慮和衡量標準。在第4節中,我們討論了XAI的信任相關考慮。在第5節中,我們根據人類因素文獻的結果和發現,列舉了未來可能的方向,在第6節中,我們總結了本文。

付費5元查看完整內容

這篇研究論文的目的是研究什么會影響人類的信任,因為它與人類-自主性協作有關。該研究是通過一個在線調查實驗進行的混合方法研究。該實驗分析了幾個自變量和一個因變量(對人工智能(AI)系統的信任)。自變量是個人的數字素養,人工智能系統的透明度,以及參與者對人工智能系統的能力/性能的經驗水平。用隨機的處理方法來測量自變量,參與者在其中扮演了一個與人工智能系統配對運營團隊中的首席規劃師角色。結果顯示,無論處理條件如何,對人工智能的基本信任水平的重要性。最后,該研究強調,人工智能系統增加信任的透明度可能比以前認為的更有限。

付費5元查看完整內容

這篇論文提出了在自動化制造背景下的多智能體機器人裝配規劃的算法。我們的工作涉及到 "工廠自主權堆棧 "的許多部分。本論文的第一個貢獻是引入了一個離散工廠問題的表述,其中包括時間延長的多機器人任務分配、任務間的優先權約束和避免碰撞的約束。我們提出了一種解決此類問題的有效方法。我們算法效率的兩個關鍵是它將任務分配和路線規劃解耦,以及它能夠利用一些機器人在自己的時間表中被推遲而不對工廠的整體性能造成任何負面影響的情況。

本論文的下一個主要貢獻是針對我們的離散工廠問題的在線版本的重新規劃算法系列。在在線設置中,工廠指揮中心定期收到新的制造工作量,這些工作量必須被迅速納入整體計劃中。我們通過大量的實驗表明,我們的重新規劃方法適用于廣泛的問題。此外,我們提出的方法在應用時可以使工廠在等待收到更新的計劃時永遠不必凍結。

我們最后的貢獻是一個概念驗證系統,用于大規模的多機器人裝配計劃,包括任意形狀和尺寸的裝配體和原材料。我們的系統從原材料和一套關于這些材料如何組合的基本指令開始。然后,規劃器合成一個施工計劃,其中定義了每個有效載荷將如何攜帶(由一個或多個機器人攜帶),每個組件和子組件將在哪里建造,以及哪些特定的機器人將被分配到每個單獨和協作的運輸任務。最后,一個反應式防撞控制策略使機器人能夠以分布式方式執行建造計劃。我們在模擬中證明,我們的系統可以在幾分鐘內合成具有數百個部件的裝配體的施工計劃。雖然我們沒有解決圍繞多機器人制造的所有相關的 "現實世界 "的考慮,但我們的工作是向使用移動機器人的大規模自動化施工邁出的一小步。

付費5元查看完整內容

本研究的目的是通過使用供應鏈優化軟件anyLogistix來檢查空軍醫務處(AFMS)的戰爭儲備物資(WRM)的供應鏈管理。其目的是闡明對影響庫存管理的策略的潛在改進,并測試特定投入的效果,如網絡支持的涌入和能力的擴展,進入模型。網絡優化顯示了這些因素的成本效益分析以及需求是否通過所有的需求點得到滿足。

這項研究具體考察了五種院前鎮痛藥物的供應鏈管理:氯胺酮、嗎啡、芬太尼靜脈注射(IV)、芬太尼口服液和氫嗎啡酮。通過最近兩項涵蓋中東地區戰斗護理的研究,本論文預測了需求并將其建立在網絡中。為了說明供應鏈的有效性,本研究著眼于朝鮮地區的潛在沖突。通過三種不同的戰時情景和十種不同的投入,本研究考察了30個模型和投入對這些情景的影響。

通過運輸成本、攜帶成本、供應成本、擴張成本和滿足需求的范圍,本研究評估了所有30個模型。研究表明,鑒于對韓國戰爭需求的預測,用AFMS資產將很難滿足某些產品的需求,如氯胺酮和芬太尼口服液。網絡能力的擴展將減輕這種需求的不足,而引入具有必要資源的供應商將完全消除這些不足。

付費5元查看完整內容
北京阿比特科技有限公司