大數據時代,數據爆炸式的增長,數據獲取變得更容易的同時數據缺失現象也更加普遍。數據的缺失極大的降低了數據的實用性。數據缺失問題的處理成為大數據處理的熱點研究課題。文章首先介紹了數據缺失問題的研究意義和國內外研究現狀。然后系統地分析了造成數據缺失的原因,對數據缺失問題進行了分類。對近年來國內外缺失數據處理方法進行了綜述,總結了各自優缺點、適用范圍、效果評價指標。其中重點闡述了回歸填充、聚類填充等填充方法。最后對缺失數據處理方法領域進行了總結與展望。
對話系統作為人機交互的重要方式,有著廣泛的應用前景。現有的對話系統專注于解決語義一致性和內容豐富性等問題,對于提高人機交互以及產生人機共鳴方向的研究關注度不高。如何讓生成的語句在具有語義相關性的基礎上更自然地與用戶交流是當前對話系統面臨的主要問題之一。首先對對話系統進行了整體情況的概括。接著介紹了情感對話系統中的對話情緒感知和情感對話生成兩大任務,并分別調研歸納了相關方法。對話情緒感知任務大致分為基于上下文和基于用戶信息兩類方法。情感對話生成的方法包括規則匹配算法、指定情感回復的生成模型和不指定情感回復的生成模型,并從情緒數據類別和模型方法等方面進行了對比分析。然后總結整理了兩大任務下數據集的特點和鏈接便于后續的研究,并歸納了當前情感對話系統中不同的評估方法。最后對情感對話系統的工作進行了總結和展望。
經典機器學習算法假設訓練數據和測試數據具有相同的輸入特征空間和相同的數據分布。在諸多現實問題中,這一假設往往不能滿足,導致經典機器學習算法失效。領域自適應是一種新的學習范式,其關鍵技術在于通過學習新的特征表達來對齊源域和目標域的數據分布,使得在有標簽源域訓練的模型可以直接遷移到沒有標簽的目標域上,同時不會引起性能的明顯損失。本文介紹領域自適應的定義,分類和代表性算法,重點討論基于度量學習的領域自適應算法和基于對抗學習的領域自適應算法。最后,分析領域自適應的典型應用和存在挑戰,明確領域自適應的發展趨勢,并提出未來可能的研究方向。
全球定位、移動通信技術迅速發展的背景下涌現出了海量的時空軌跡數據,這些數據是對移動對象在時空環境下的移動模式和行為特征的真實寫照,蘊含了豐富的信息,這些信息對于城市規劃、交通管理、服務推薦、位置預測等領域具有重要的應用價值,而這些過程通常需要通過對時空軌跡數據進行序列模式挖掘才能得以實現。時空軌跡序列模式挖掘旨在從時空軌跡數據集中找出頻繁出現的序列模式,挖掘時空數據中隱藏的信息,例如: 位置模式(頻繁軌跡、熱點區域)、活動周期模式、語義行為模式。綜述近來年時空軌跡序列模式挖掘的研究進展,先介紹時空軌跡序列的數據特點及應用,再描述時空軌跡模式的挖掘過程:從基于時空軌跡序列來挖掘位置模式、周期模式、語義模式三個方面來介紹該領域的研究情況,最后闡述現有時空軌跡序列模式挖掘方法存在的問題,展望其未來的發展趨勢。
摘要: 圖像修復是計算機視覺領域中極具挑戰性的研究課題。近年來,深度學習技術的發展推動了圖像修復性能的顯著提升,使得圖像修復這一傳統課題再次引起了學者們的廣泛關注。文章致力于綜述圖像修復研究的關鍵技術。由于深度學習技術在解決“大面積缺失圖像修復”問題時具有重要作用并帶來了深遠影響,文中在簡要介紹傳統圖像修復方法的基礎上,重點介紹了基于深度學習的修復模型,主要包括模型分類、優缺點對比、適用范圍和在常用數據集上的性能對比等,最后對圖像修復潛在的研究方向和發展動態進行了分析和展望。
隨著人工智能技術的深入發展,自動駕駛已經成為人工智能技術的典型應用,近十年得到了長足的發展,作為一類非確定性系統,自動駕駛車輛的質量和安全性得到越來越多的關注.對自動駕駛系統,特別是自動駕駛智能系統(如感知模塊,決策模塊,綜合功能及整車)的測試技術得到了業界和學界的深入研究.本文調研了56篇相關領域的學術論文,分別就感知模塊、決策模塊、綜合功能模塊及整車系統的測試技術、用例生成方法和測試覆蓋度量等維度對目前已有的研究成果進行了梳理,并描述了自動駕駛智能系統測試中的數據集及工具集.最后,對自動駕駛智能系統測試的未來工作進行了展望,為該領域的研究人員提供參考.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6266&flag=1
我們生活在一個由大量不同模態內容構建而成的多媒體世界中,不同模態信息之間具有高度的相關性和互補性,多模態表征學習的主要目的就是挖掘出不同模態之間的共性和特性,產生出可以表示多模態信息的隱含向量.該文章主要介紹了目前應用較廣的視覺語言表征的相應研究工作,包括傳統的基于相似性模型的研究方法和目前主流的基于語言模型的預訓練的方法.目前比較好的思路和解決方案是將視覺特征語義化然后與文本特征通過一個強大的特征抽取器產生出表征,其中Transformer[1]作為主要的特征抽取器被應用表征學習的各類任務中.文章分別從研究背景、不同研究方法的劃分、測評方法、未來發展趨勢等幾個不同角度進行闡述.
//www.jos.org.cn/jos/ch/reader/view_abstract.aspx?file_no=6125&flag=1
摘要:近年來,基于深度學習的表面缺陷檢測技術廣泛應用在各種工業場景中.本文對近年來基于深度學習的表面缺陷檢測方法進行了梳理,根據數據標簽的不同將其分為全監督學習模型方法、無監督學習模型方法和其他方法三大類,并對各種典型方法進一步細分歸類和對比分析,總結了每種方法的優缺點和應用場景.本文探討了表面缺陷檢測中三個關鍵問題,介紹了工業表面缺陷常用數據集.最后,對表面缺陷檢測的未來發展趨勢進行了展望.
摘要:大數據是多源異構的。在信息技術飛速發展的今天,多模態數據已成為近來數據資源的主要形式。研究多模態學習方法,賦予計算機理解多源異構海量數據的能力具有重要價值。本文歸納了多模態的定義與多模態學習的基本任務,介紹了多模態學習的認知機理與發展過程。在此基礎上,重點綜述了多模態統計學習方法與深度學習方法。此外,本文系統歸納了近兩年較為新穎的基于對抗學習的跨模態匹配與生成技術。本文總結了多模態學習的主要形式,并對未來可能的研究方向進行思考與展望。
摘要: 線條畫作為一種簡單而有效的視覺傳達手段,通過突出主要的細節特征,使得人們可以快速地獲得主要信息;同時,風格線條畫作為一種藝術形式,讓人們能夠快速欣賞和理解其藝術特征。文中對線條畫的生成方法進行了綜述與分析。線條畫生成技術可以分為基于2D圖像的方法與基于3D模型的方法。其中,基于2D圖像的線條畫生成技術包括樣本學習方法、非樣本學習的數據驅動方法與非數據驅動方法;基于3D模型的線條畫生成技術包括圖像空間方法、對象空間方法以及兩者的混合方法。通過介紹與分析各種方法并對比分析其優缺點,總結了線條畫生成技術現階段存在的問題及其可能的解決方案,并在此基礎上對線條畫生成的未來發展趨勢進行了展望。
摘要 : 零樣本圖像分類指訓練集和測試集在數據的類別上沒有交集的情況下進行圖像分類 . 該技術 是解決類別標簽缺失問題的一種有效手段 , 因此受到了日益廣泛的關注 . 自提出此問題至今 , 零樣本 圖像分類的研究已經大致有十年時間 . 本文系統地對過去十年中零樣本圖像分類技術的研究進展進行 了綜述 , 主要包括以下 4 個方面 . 首先介紹零樣本圖像分類技術的研究意義及其應用價值 , 然后重點 總結和歸納零樣本圖像分類的發展過程和研究現狀 , 接下來介紹常用的數據集和評價準則 , 以及與零 樣本學習相關的技術的區別和聯系 , 最后分析有待深入研究的熱點與難點問題 , 并對未來的發展趨勢 進行了展望 .
關鍵詞: 零樣本圖像分類 , 屬性 , 詞向量 , 跨模態映射 , 領域適應學習