專家們一致認為,未來戰爭的特點將是使用人工智能(AI)技術,特別是完全自主的武器系統。這些系統--如美國空軍的 "忠誠僚機 "無人機--能夠在無人監督的情況下識別、跟蹤和攻擊目標。最近在加沙、利比亞、納戈爾諾-卡拉巴赫和烏克蘭等地的沖突中使用這些致命的自主武器系統提出了重要的法律、倫理和道德問題。
盡管人工智能被廣泛應用,但目前仍不清楚人工智能增強型軍事技術會如何改變戰爭的性質和態勢。那些最擔心將人工智能用于軍事目的的人預見到了一個烏托邦式的未來或 "人工智能啟示錄",機器將成熟到足以主宰世界。一位政策分析師甚至預測,致命的自主武器系統 "將導致世界秩序的劇變,其程度將遠遠超過核武器問世時發生的變化"。其他觀察家則質疑,鑒于通過算法模擬生物智能的復雜性,人工智能系統能在多大程度上真正取代人類。假設人工智能的這種擴展是可能的,那么依賴人工智能的軍隊將承擔數據和判斷成本,這可以說 "使戰爭中人的因素變得更加重要,而不是更加不重要"。
這些觀點雖然有助于討論人工智能對全球政治的潛在影響,但卻無法解釋人工智能究竟會如何改變戰爭的進行,以及士兵們對這一問題的看法。為了解決這個問題,作者最近研究了人工智能增強型軍事技術--整合到不同決策層面和監督類型--如何影響美國軍官對這些系統的信任,從而影響他們對戰爭軌跡的理解。在人工智能領域,信任被定義為一種信念,即一項自主技術在追求共同目標的過程中將可靠地按照預期執行。
圖:XQ-58A Valkyrie "忠實僚機 "無人駕駛戰斗飛行器由人工智能驅動,可在無人監督的情況下識別、跟蹤和攻擊目標。(圖片:美國空軍。 設計:Fran?ois Diaz-Maurin/Erik English)
為了衡量軍方對致命自主武器系統的信任程度,本文作者研究了就讀于賓夕法尼亞州卡萊爾美國陸軍戰爭學院和羅德島州紐波特美國海軍戰爭學院的軍官的態度。軍隊未來的將軍和海軍上將都將來自這些軍官,他們負責管理未來沖突中新興能力的整合與使用。因此,他們的態度對于了解人工智能在多大程度上可能塑造一個由 "戰爭機器人 "陸軍作戰的新戰爭時代非常重要。
研究有三個重要發現。首先,軍官對人工智能增強型軍事技術的信任程度不同,這取決于整合這些技術的決策層以及對新能力的監督類型。其次,軍官可以批準或支持采用人工智能增強型軍事技術,但卻不信任它們,這表明他們的態度不一致,對軍事現代化產生了影響。第三,軍官對人工智能能力的態度還會受到其他因素的影響,包括他們的道德信念、對人工智能軍備競賽的擔憂以及教育水平。總之,這些發現首次提供了軍隊對戰爭中人工智能態度的實驗證據,對軍事現代化、自主武器的政策監督和專業軍事教育(包括核指揮與控制)都有影響。
不同國家采用人工智能增強型軍事技術的決策水平(戰術或戰略)和監督類型(人類或機器)各不相同。各國可以優化算法,在戰場上執行戰術行動,或進行戰略審議,以支持總體戰爭目標。在戰術上,此類技術可以快速分析從分布在戰場上的傳感器獲取的大量數據,比對手更快地生成目標選擇,從而提高戰地指揮官的殺傷力。正如網絡安全專家喬恩-林賽(Jon Lindsay)所說,"戰斗可以被模擬為一場游戲,通過摧毀更多的敵人同時保全更多的友軍來贏得勝利"。要做到這一點,就必須大大縮短 "從傳感器到射手 "的時間線,即從獲取目標到攻擊目標的時間間隔。美國國防部的 "利馬特遣部隊"(Task Force Lima)和 "Maven計劃"(Project Maven)都是此類人工智能應用的范例。
在戰略上,人工智能增強型軍事技術還能幫助政治和軍事領導人將關鍵目標(目的)與作戰方法(途徑)和有限資源(手段)(包括物資和人員)相結合,實現同步。在未來的軍事行動中,新的能力甚至可能出現并取代人類,包括制定戰略方向和國家級戰略。正如一位專家所言,人工智能已經顯示出 "參與復雜分析和戰略制定的潛力,可與發動戰爭所需的能力相媲美"。
與此同時,各國還可以調整對人工智能增強型軍事技術的監督或控制類型。這些技術在設計上可以允許更多的人為監督,從而增強決策的自主性。這類系統通常被稱為半自主系統,即仍受人類控制。這種監督模式是目前大多數人工智能增強武器系統(如通用原子公司的 MQ-9 "死神 "無人機)運行的特點。雖然 "死神 "可以自動駕駛,根據地形和天氣條件的變化調整飛行高度和速度,但人類仍然可以做出瞄準決定。
各國還可以設計人工智能增強型軍事技術,減少人工監督。這些系統通常被稱為 "殺手機器人",因為人類不在其中。在這些應用中,人類行使的監督即使有,也是有限的,甚至在目標選擇決策方面也是如此。決策水平和監督類型的差異表明,在采用人工智能增強型軍事技術后,全球可能出現四種類型的戰爭。
圖:人工智能戰爭的四種類型。(插圖:Fran?ois Diaz-Maurin)
首先,各國可以利用人工智能增強型軍事技術在人類監督下進行戰術決策。這就是保羅-沙雷(Paul Scharre)所說的 "半人馬作戰"。"半人馬 "是希臘神話中的一種生物,上半身像人,下半身和腿像馬,因此得名。半人馬作戰強調人類為戰場目的控制機器,例如摧毀敵方武器庫等目標。
其次,各國可以利用人工智能增強型軍事技術,在機器監督下進行戰術決策。這就從字面上顛覆了半人馬戰爭,讓人聯想到古希臘的另一種神話生物--牛頭人,它有牛的頭和尾巴,人的身體。"牛頭人戰爭 "的特點是在戰斗中機器控制人類和跨領域作戰,從地面上的士兵巡邏到海洋上的戰艦編隊,再到空中的戰斗機編隊,不一而足。
第三,戰略決策加上機器監督,構成了 "人工智能將軍 "或 "單兵 "類型的戰爭。這種方法為人工智能增強型軍事技術提供了非同尋常的空間,以塑造各國的作戰軌跡,但可能會對沖突期間國家間的攻防平衡產生嚴重影響。換言之,人工智能通用型作戰可使各國在時間和空間上獲得并保持對對手的優勢,從而影響戰爭的總體結果。
最后,"馬賽克戰 "保留了人類對人工智能增強型軍事技術的監督,但試圖利用算法來優化戰略決策,以強加和利用針對同行對手的弱點。美國海軍陸戰隊退役將軍約翰-艾倫(John Allen)將這種作戰模式稱為 "超戰爭",學者們通常將其稱為算法決策支持系統。這些任務包括通過 "實時威脅預測 "過程預測敵人可能采取的行動(這是美國防部新的機器輔助分析快速存儲系統或 MARS 的任務),確定最可行、最可接受和最合適的戰略(Palantir 和 Scale AI 等公司正在研究如何做到這一點),以及調整后勤等關鍵作戰功能,以幫助軍隊在印度洋-太平洋等補給線延伸的有爭議作戰環境中獲得并保持主動權。
為了解決軍官在決策水平和監督類型不同的情況下如何信任人工智能增強型軍事技術的問題,作者于 2023 年 10 月對分配到卡萊爾和紐波特戰爭學院的軍官進行了一次調查。調查涉及四個實驗組,這四個實驗組在決策(戰術或戰略)和監督(人類或機器)方面對人工智能增強型軍事技術的使用有所不同,還有一個基線組沒有操縱這些屬性。在閱讀了隨機分配的場景后,要求受訪者用 1 分(低)到 5 分(高)來評價他們對該能力的信任度和支持度。然后,使用統計方法對數據進行了分析。
雖然樣本不能代表美國軍隊(也不能代表其分支,如美國陸軍和海軍),但它是政治學家所說的便利樣本。這有助于得出極為罕見的見解,了解軍人如何信任人工智能增強型軍事技術,以及這種信任對戰爭性質的影響。
這個樣本也是對人工智能出現后未來戰爭可能發生的變化的理解的一個艱難考驗,因為抽取了過多的野戰軍級軍官,包括少校/中校、中校/指揮官和上校/上尉。他們接受過多年的訓練,是目標瞄準方面的專家,許多人都曾參加過戰斗部署,并對無人機做出過決策。他們也是新興的高級領導人,負責評估新技術對未來沖突的影響。這些特點意味著,樣本中的軍官可能比軍隊中的其他人員更不信任人工智能增強型軍事技術,尤其是那些常被稱為 "數字原住民 "的初級軍官。
這項調查揭示了幾個重要發現。首先,基于對這些新能力的決策水平和監督類型的不同,軍官對人工智能增強型軍事技術的信任程度也不同。雖然軍官們普遍不信任不同類型的人工智能增強型武器,但他們最不信任用于單兵作戰(由機器監督的戰略決策)的能力。另一方面,他們對馬賽克戰爭(人工智能優化戰略決策的人工監督)表現出更多的信任。這表明,軍官們始終傾向于由人類控制人工智能來識別敵方活動的細微模式、生成軍事方案以應對對手的多重困境,或者在長期沖突中幫助維持戰備狀態。
與基線組相比,軍官對人工智能軍事技術的信任度在單兵作戰(18.8%)方面的下降幅度要大于馬賽克作戰(10.5%)--見圖 1。雖然與基線組相比,兩種類型的人工智能增強型戰爭中軍官的平均信任度差異在統計上都很顯著,但用于單兵作戰的新軍事能力比用于馬賽克戰爭的更明顯。此外,軍官對兩類人工智能增強型戰爭的信任概率的平均變化(即人工智能增強型軍事技術對軍官信任的平均邊際效應)僅對單兵作戰具有統計意義。總體而言,這些結果表明,軍官對人工智能增強型軍事技術的不信任程度較低,因為這些技術是在人類監督下用于輔助高層決策的。
這些關于信任度的結果在很大程度上反映了軍官的支持態度。與基線組相比,軍官對用于單兵作戰的人工智能增強型軍事技術的支持程度較低,支持率為 18.3%,統計顯著性幾乎相同。不過,與基線組相比,軍官對牛頭人戰爭的支持程度也高于其他人工智能增強型戰爭模式,支持程度的變化約為 6.5%。這表明,雖然軍官們對用于較高層次決策和人工控制的人工智能增強型軍事技術的不信任程度較低,但他們更支持用于戰術級決策和機器監督的人工智能增強型軍事技術。總之,軍官們的態度似乎反映了國王學院教授肯尼斯-佩恩(Kenneth Payne)的論點:"戰爭機器人將成為令人難以置信的戰斗員,但卻是有限的戰略家"。
圖 1. 與基線組相比,四類人工智能戰爭的信任度和支持度。注:數值代表與基線組相比,各處理組對人工智能增強型軍事技術的支持度和信任度的變化。當支持度和信任度與基線組相比下降時,數值為負。(數據:Paul Lushenko;可視化:Fran?ois Diaz-Maurin)
軍官們對在戰術層面使用人工智能增強型軍事技術的支持度相對較高,這揭示了第二個關鍵發現。軍官們對人工智能增強型軍事技術的態度可能是支持比信任更明顯。這意味著一些學者所說的 "信任悖論"。軍官們似乎支持采用人工智能增強的新型戰場技術,即使他們并不一定信任這些技術。這種現象主要與 "牛頭人 "戰爭有關(使用人工智能進行戰術決策并由機器監督)。這表明,軍官們預計人工智能增強型軍事技術將壓縮對手的機動時間和空間,同時擴大美軍的機動時間和空間,而美軍的機動時間和空間是建立在縮短 "從傳感器到射手 "的時間線基礎上的,高級軍事領導人認為這是在未來沖突中擊敗近鄰對手的關鍵。
軍官對用于戰術層面決策和機器監督的人工智能增強型軍事技術的支持程度差異大于其信任度的變化(圖 2)。此外,結果表明,軍官在信任和支持態度上的差異在統計學上具有顯著性: 軍官對用于牛頭人戰爭的人工智能增強型軍事技術的支持程度要高于對它們的信任程度。軍官支持用于牛頭人戰爭的人工智能增強型軍事技術的平均概率變化也高于其他三種類型的人工智能增強型戰爭。
綜合來看,這些結果表明美國軍官對人工智能增強型軍事技術的支持和信任存在信念偏差。盡管軍官們支持采用此類技術來優化不同層次和不同程度的監督決策,但他們并不信任因新興的人工智能能力而導致的潛在戰爭類型。這一結果表明,美國軍官可能認為有義務接受與他們自己的偏好和態度相悖的預計戰爭形式,特別是作為美國陸軍和海軍新興作戰概念基礎的牛頭人戰爭。
圖 2. 對四類人工智能戰爭的信任和支持。注:數值代表各處理組對人工智能增強型軍事技術的支持和信任的平均水平。(數據:Paul Lushenko;可視化:Fran?ois Diaz-Maurin)
其他因素進一步解釋了軍官對人工智能增強型軍事技術信任度的差異。在作者的調查中,當控制了決策水平和監督類型的差異后,發現軍官對這些技術的態度也可能受到潛在的道德、工具和教育因素的影響。
認為美國有道義上的義務在國外使用人工智能增強型軍事技術的軍官,反映出他們對這些新戰場能力的信任程度較高,這與支持的態度也是一致的。這表明,軍官對在國外使用人工智能增強型軍事技術(如在人道主義援助和救災行動中)的潛在益處的道德信念,可能有助于克服他們對采用這些能力的固有不信任。
此外,重視人工智能增強型軍事技術的工具價值并對其抱有 "害怕錯過 "態度的軍官--即他們認為其他國家采用這些技術會迫使美國也采用這些技術,以免在潛在的人工智能軍備競賽中處于不利地位--也傾向于對這些新興能力抱有更大的信任。在考慮教育時,也觀察到了類似的信任態度。結果顯示,高等教育降低了軍官對人工智能增強型軍事技術的信任度,這意味著更多或更專業的知識會讓人對未來戰爭中人工智能的優點和局限性產生疑問。最后,在這些規范性和工具性考慮的交叉點上,作者發現那些認為軍事力量對于維護全球秩序是必要的軍官也更支持使用人工智能增強型軍事技術。這些結果共同加強了早先的研究,即軍官的世界觀決定了他們對戰場技術的態度,軍官在評估他們對在國外使用武力的信任和支持時可以整合不同的邏輯。
有關美國軍官對人工智能態度的第一手證據,描繪了一幅新興技術帶來的戰爭特征演變的復雜圖景,這比一些分析家所認為的要復雜得多。然而,這些態度對作戰現代化和政策以及軍官的專業軍事教育(包括核武器管理)都有影響。
首先,盡管一些美國軍事領導人聲稱 "我們正在目睹戰爭性質的巨大變化,而這主要又是由技術驅動的",但在沖突中出現的人工智能增強型軍事技術可能更多的是一種演變,而不是一場革命。雖然加沙戰爭和烏克蘭戰爭表明軍隊作戰方式發生了重要變化,但它們也反映了關鍵的連續性。軍隊傳統上一直尋求利用新技術來提高情報能力、保護部隊、擴大戰術和作戰火力范圍,這一切在戰場上產生了 "根本的不對稱"。最近,各國使用和限制無人機方式的變化也被證明影響了公眾對合法或非法使用武力的看法,這一結果與新興的完全自主軍事技術是一致的。
然而,這些能力和其他能力對戰爭中戰略結果的影響充其量只是個疑問。戰爭中的戰略成功仍然取決于各國是否愿意犧牲士兵的生命和納稅人的錢財來實現支持國家重大利益的政治和軍事目標。事實上,在研究中,軍官們可能最支持用于牛頭人戰爭的人工智能增強型軍事技術。但是,考慮到圍繞軍事創新的炒作--如果不是夸張和恐懼--,研究參與者對新戰場技術的總體信任和支持程度仍然遠遠低于預期。這些結果表明,對于人工智能對未來沖突的范式性影響,軍事領導人應該降低他們的預期。換句話說,應該 "做好被人工智能失望的準備"。美國陸軍中校邁克爾-弗格森(Michael Ferguson)認為,由于缺乏這種清晰的視角,"時髦的理論將戰爭變成了委婉語的歌舞伎",掩蓋了殘酷的戰斗現實。戰爭是意志的碰撞,充滿人性,并受政治目標的制約。
其次,軍官對人工智能增強型軍事技術的信任態度比本研究顯示的更為復雜。事實上,正如一位前美國空軍上校、現任聯合參謀部J-8局分析師所指出的,"操作人員很難高概率地預測系統在面對適應性對手時的實際表現,這可能會削弱對系統的信任"。在另一項正在進行的研究中,發現軍官對人工智能增強型軍事技術的信任會受到一系列復雜因素的影響。這些因素包括技術規格,即其非致命目的、更高的精確度和人類監督;在平民保護、部隊保護和任務完成方面的感知有效性;以及監督,包括國內監管,尤其是國際監管。事實上,本研究中的一名軍官指出,對人工智能增強型軍事技術的信任是建立在 "遵守國際法而非美國國內法 "的基礎上的。
這些結果表明,需要對新型能力進行更多的測試和實驗,使其使用符合軍人的期望。政策制定者和軍事領導人還必須明確應鼓勵開發人工智能增強型軍事技術的作戰概念;指導其在不同領域、不同層級和不同目的中整合的條令;以及規范其使用的政策。對于后一項任務,官員們必須解釋美國的政策如何與國際法律相吻合或背道而馳,以及哪些規范是使用人工智能增強型軍事技術的條件,至少要考慮到戰地級別的軍官期望如何使用這些能力。為了填補這一空白,白宮最近宣布了美國關于負責任地在軍事上使用人工智能和自主功能與系統的政策,國防部通過了一項指令,規范美軍自主武器的開發和使用,五角大樓還設立了首席數字與人工智能辦公室,以幫助執行這一指令,不過據報道,該辦公室受到預算和人事方面的挑戰。
最后,軍事領導人還應改革專業軍事教育,讓軍官了解人工智能的優點和局限性。他們應該探索人工智能在其他戰略環境中的應用,包括核指揮與控制。美國軍方的許多舉措已經反映了這一需求,尤其是考慮到軍官們在與人工智能能力合作時猶豫不決。
在作戰方面,由美國陸軍第 18 空降軍領導的 "里奇韋項目 "旨在將人工智能整合到瞄準過程中。與之相匹配的是 "阿米莉亞 "和 "忠誠僚機",它們是海軍和空軍旨在優化人員流程和作戰的項目。在體制上,除了預先存在的認證課程外,一些分析師鼓勵將數據素養評估納入基于人才的評估計劃,如美國陸軍的指揮官評估計劃。在教育方面,軍事院校和戰爭學院都有專門研究人工智能對未來戰爭影響的教師、研究中心和選修課。美國陸軍戰爭學院最近聘請了一名數據科學教授,美國海軍學院設有 "武器、機器人和控制工程 "研究集群,美國海軍戰爭學院開設了 "戰略領導人人工智能 "選修課。
圖:MQ-9 "死神 "發射了一枚空對地導彈-114 "地獄火 "導彈,它是一種無遙控駕駛飛機,可用于情報、偵察和打擊。(圖片:美國空軍。 設計:Fran?ois Diaz-Maurin)
與此同時,在美國海軍戰爭學院和其他地方進行的兵棋推演表明,網絡能力可以鼓勵自動化和將核指揮與控制權預先下放給戰術指揮層,并激勵積極的反擊戰略。但研究結果表明,一個令人費解的結果值得更多的檢驗。從表面上看,盡管結果可能與戰爭中使用核武器的結果相同,但這些結果提出了一個令人不安的問題: 正如研究結果所表明的那樣,即使軍官們不信任人工智能,不信任或不支持使用人工智能來管理反制戰略,他們是否真的愿意支持潛在的自動化以及將核指揮與控制權預先下放給戰術級人工智能?
俄羅斯威脅在烏克蘭使用核武器,這促使美國軍方重新審視在大國戰爭中有限使用核武器的可能性。盡管這種 "回到未來 "的情景令人恐懼,而且與冷戰期間戰術核武器的擴散不謀而合,但美國戰爭學院還是重振了教育工作,為參與大規模沖突的國家之間的戰術核交換做好作戰準備。
然而,這些舉措和其他舉措在多大程度上有效地對軍官進行了人工智能教育尚不清楚。問題的部分原因在于,這些舉措將相互競爭的教學方法對立起來。一些計劃以 "一英里寬、一英寸深 "的方式調查數據掃盲和人工智能,將一門課納入更廣泛課程的一門課程中。其他計劃則提供更多的發展機會,并采用 "更窄更深 "的方法,讓少數官員自愿選擇選修課,將其放在更廣泛的課程之上。還有一些項目,如美國陸軍戰爭學院的項目,嘗試采用 "金線 "方法,將數據素養和人工智能貫穿于課程中,從而構建出更廣泛的教學計劃。然而,后一種方法迫使管理者在內容和時間上做出重要權衡,并要求教師具備深入的專業知識。
展望未來,負責協調整個美國聯合部隊培訓和教育工作的聯合參謀部 J-7 應將專業軍事教育概念化,使其成為數據素養和人工智能教學方面長期持續、不斷豐富的連續體。服役院校的預備役學生或參加后備軍官培訓團的學生應接觸有關人工智能的基本概念。初級和中級軍官應在培訓、部署和參加中級教育(如美國陸軍指揮與總參謀學院)期間將這些見解融會貫通。在被選入戰爭學院后,軍官們應與有關在戰斗中使用人工智能的概念性、規范性和工具性考量因素進行斗爭,研究表明,這些考量因素可以塑造軍隊對新技術的態度。
當然,采用這種端對端的教育方法需要時間和資金。它還容易受到不同利益相關者的特權、軍種文化和軍種間競爭的影響。然而,通過將培訓和教育與明確可行的學習成果相結合,這種整體教學模式充分利用了現有的機會,確保美軍做好準備,愿意在和平時期和未來戰爭中采用人工智能增強型軍事技術,并使其使用方式符合國際法律和規范。
參考來源:Bulletin of the Atomic Scientists,Paul Lushenko
盡管人工智能作為宣傳工具的使用一直備受關注,但烏克蘭和以色列的熱點沖突正被證明是加速人工智能和其他信息技術工具在戰場上使用的活實驗室。特別是在烏克蘭,有報道稱,人工智能甚至被用于自主瞄準打擊目標。以色列國防軍(IDF)對人工智能的使用則更為隱秘,但它肯定被用作瞄準輔助工具,以擊敗來自加沙哈馬斯的鋪天蓋地的導彈攻擊。
烏克蘭在拒絕了其他 10 個國家的人工智能項目后,開發出了自己的人工智能,因為烏克蘭確信本國開發的人工智能會更有益處,而且可以規避向商業公司報告的任何要求。烏克蘭的人工智能主要集中在龐大的攝像頭和無人機網絡提供的計算機視覺數據上。例如,名稱和目標字符識別(OCR)可以快速識別伊朗制造的 "沙赫德 "神風無人機,而不是標準導彈。 人工智能還有助于烏克蘭自己的導彈瞄準。這些人工智能工作大多由烏克蘭的 IT 陸軍完成,據說他們有 25 萬人,其中許多人在創新的 "蝸牛車庫 "里工作,而他們的預算只有西方 IT 公司的一小部分。人工智能還被用于分析俄羅斯的無線電通信和清除地雷。與此同時,俄羅斯在軍事領域的人工智能應用似乎陷入了雄心壯志與實際用途之間的脫節,尤其是自主無人機,據說供不應求。
一些通訊社報道稱,無人化嚴重的烏克蘭已經更進一步,允許配備人工智能的無人機在某些情況下不受人類控制地識別和攻擊目標,從而引發了戰場上 "機器人殺手 "的幽靈。美國軍方已經啟動了一項為期兩年的 "復制者 "計劃,準備投入數千套價格相對低廉的自主系統,主要是為了應對大國在海軍艦艇等領域的數量優勢。澳大利亞一家名為 "Anduril "的公司(以《指環王》傳奇中的一把劍命名)正在向烏克蘭提供可發射彈藥、由人工智能驅動的 "幽靈鯊 "海上無人機。
雖然烏克蘭似乎正在使用自主人工智能來攻擊坦克等大型物體,但它幾乎可以指名道姓地攻擊單個士兵。據《時代》雜志報道,備受爭議的 Clearview 公司免費提供的面部識別系統已經識別出 23 萬多名參與烏克蘭戰爭的俄羅斯士兵和官員。Clearview 系統被用于偵測滲透者、識別親俄民兵和合作者,甚至烏克蘭稱被越過俄羅斯邊境綁架的兒童。Clearview 技術標志著 "戰斗識別系統 "的首次使用,該系統有可能被用于鎖定敵方關鍵人員。例如,一架攜帶彈藥的人工智能無人機可以在原地徘徊,直到發現一名反對派將軍。
與此同時,在立志成為 "人工智能超級大國 "的以色列,人工智能技術正在協助對加沙的哈馬斯目標進行快速定位空襲--該系統被稱為 "火力工廠",但其針對軍事目標的準確性目前尚不得而知。人工智能還幫助抵御來襲的導彈襲擊,這些導彈試圖以數量優勢壓倒以色列引以為傲的 "鐵穹 "導彈防御系統。以色列國防軍(IDF)越來越多地使用人工智能,并將其應用于移動平臺,如新型 "巴拉克 "超級坦克。巴拉克 "坦克的一個主要特點是配備了 "鐵視角 "頭盔,通過一系列外部傳感器和攝像頭,坦克乘員只需按下按鈕,就能 "看穿車輛的裝甲"。
主要得益于人工智能,坦克能夠在戰場上獨立學習、適應、導航和瞄準。以色列國防軍表示,一對 "巴拉克 "坦克將能夠執行以前需要一個坦克排才能完成的任務。
大多數分析家都認為,烏克蘭和以色列正被證明是在戰斗中加速使用人工智能的前所未有的試驗基地,而這一發展在和平時期通常需要更長的時間。現在,人工智能系統正在接受來自真實戰爭的真實數據的訓練,這意味著人工智能將在下一場武裝沖突中發揮更大的作用和效力,而下一場武裝沖突很可能包括人工智能自主作戰。
參考來源:techstrong.ai
大數據與人工智能(AI)的結合實現了準確預測和明智決策,為工業和研究帶來了革命性的變化。這些進步也在軍事領域找到了自己的應用位置,一些舉措整合來自不同領域的數據源和傳感器,提供共享的態勢感知。在城市軍事行動中,及時了解具體情況的信息對于實現精確和成功至關重要。數據融合將來自不同來源的信息結合在一起,對實現這一目標至關重要。此外,民用數據可提供關鍵的背景信息,并對任務規劃產生重大影響。本文提出了軍事數據空間(MDS)概念,探討大數據如何通過結合民用和軍用數據來支持軍事決策。文章介紹了使用案例,強調了數據融合和圖像認證在提高數據質量和可信度方面的優勢。此外,還討論了數據安全、隱私、完整性、獲取、融合、聯網和利用人工智能方法等方面的挑戰,同時強調了構建下一代軍事應用的機遇。
大數據的興起改變了企業存儲、管理和分析海量數據的方式。此外,大型數據集的可用性和更強大硬件的發展也為人工智能(AI)時代的到來鋪平了道路。盡管存在局限性,但這些課題在軍事領域也找到了適用性。其中一個例子是美軍使用的多域作戰(MDO),后來擴展為聯合全域指揮與控制(JADC2),以及 "共同作戰圖景"(COP)概念,這些概念整合了多個領域(陸地、海洋、空中、太空和網絡空間)的各種數據源和傳感器,使決策變得更快、更明智,提供了從戰術到戰略的各級組織的共享態勢感知。此外,北約社區已通過北約核心數據框架(NCDF)討論并測試了數據湖概念,以便在適當的時間/形式與聯盟伙伴共享可靠的跨域信息。
利用先進的算法和計算能力,人工智能可以處理龐大的數據集,揭示人類通常無法察覺的復雜模式。這使國防行動能夠增強實戰經驗、促進任務執行、做出數據驅動的決策、協調來自不同來源的數據,并加強應對威脅和災難的準備。通過整理來自不同來源的數據,指揮與控制(C2)部門可以深入了解城市景觀,并通過數據融合技術[3]、[4]促進態勢感知決策[1]、[2]。現代城市部署了傳感器網絡,利用大數據支持城市軍事戰略。此外,社交媒體平臺是寶貴的文本、圖像和視頻來源,豐富了態勢感知,但也帶來了數據完整性等挑戰。在 "非戰爭 "行動中,包括打擊腐敗政府、毒品販運和人道主義任務,大數據、數據融合、數據完整性和人工智能在任務成功中的重要作用在當代全球格局中變得顯而易見。
本文深入探討了利用大數據促進軍事決策以及相關挑戰。文章以簡明易讀的方式涵蓋了該領域相對欠缺探索的各個方面。在此背景下,研究介紹了軍事數據空間(MDS)的概念,這是一種將軍內數據(IMD)和軍外數據(EMD)結合在一起的新方法,旨在引發討論并開發軍事解決方案。然后,它通過以數據融合和圖像完整性機制為重點的使用案例來說明大數據的好處。最后,它討論了使用大數據的挑戰和機遇,集中在支持戰略性軍事決策必須考慮的四個主要方面:i) 數據融合;ii) 安全/隱私和完整性;iii) 人工智能;以及 iv) 網絡作為訪問大數據的手段。
從網絡視角討論數據傳播問題具有現實意義,文獻中也有廣泛論述。因此,本研究旨在引發對大數據觀點的討論,以及利用大數據造福軍事系統的可能性。此外,我們還強調了應對整合 IMD 和 EMD 相關挑戰的重要性。這種整合對于建立有凝聚力的大數據,最終提高軍事決策能力至關重要。總之,本文的貢獻如下:
文章結構如下。第二節介紹了 MDS 的概念。第三節回顧了有關軍事和民用場景中大數據的最新文獻。第四節介紹兩個使用案例,說明大數據如何支持軍事決策。第五節討論了軍事數據領域的挑戰和機遇。最后,第六節總結了本研究討論的主要方面,為文章畫上了句號。
軍事數據空間(MDS)的概念是根據 [5] 中討論的觀點提出的。它提供了一個以數據為驅動的軍事場景視角,有助于根據不同的數據源做出決策。MDS 包括兩個主要類別: 軍內數據(IMD)和軍外數據(EMD),如圖 1 所示。目前大多數軍事文獻都只針對 IMD 提出和評估系統(如中間件、協議)。然而,隨著信息和通信技術(ICT)的迅猛發展,民用系統已成為不可忽視的數據和基礎設施(網絡)的重要來源。因此,考慮到數據隱私/安全、完整性、獲取、融合、聯網和利用人工智能等挑戰,MDS 旨在支持關于 EMD 如何幫助軍事決策的討論。
圖1 軍事數據空間。
IMD 與軍方提供和消費的數據相對應,主要分為兩層:帶有真實/虛擬傳感器(來自空間/航空/地面/航海單元)的基礎設施和信息層,包括作戰、情報和后勤數據。
基礎設施包括傳感器(如雷達、聲納、照相機)和其他電子系統收集的數據,可探測和跟蹤空中、陸地或水中的物體;車輛傳感器可提供軍事單元和周圍的狀態;可穿戴/智能和物聯網(IoT)設備可通過 GPS 定位、地圖、健康測量、實時照相機(高分辨率、紅外線)等為戰場上的步兵提供支持。這些數據可用于監測和識別潛在威脅、協助鎖定敵軍目標以及監測步兵狀況。
除了來自真實/虛擬傳感器的原始數據外,IMD 還包括信息層,該層融合了從作戰到情報等各種來源收集的數據,以創建一個更可靠、更廣闊的作戰視圖,這也是 JADC2 和 COP 系統的目標。情報信息可幫助軍隊了解敵軍的能力和意圖,識別潛在威脅并制定作戰計劃。后勤數據提供有關物資、裝備和人員的信息,如運輸時間表、庫存水平和維護記錄。這些數據對于確保軍隊擁有有效執行任務的資源至關重要。
軍外數據是由真實/虛擬傳感器單獨或融合提供的數據子集,可描述軍事行動周圍的環境。因此,可定義用于支持軍事行動的兩個主要數據層:基礎設施(如交通系統、天氣、當局)和信息(如社交媒體、新聞、政府報告)。這些層產生了大量高度可變的信息,從用戶對實時事件(如事故、腐敗和恐怖主義)的感受和照片,到城市環境中的交通/天氣狀況和人們/駕駛員的行為。
信息和通信技術在城市地區的發展催生了智能城市的出現,智能城市通過增強流動性、安全性和健康解決方案來應對城市化帶來的挑戰。智能城市基礎設施包含傳感器,可捕捉有關車輛、交通、天氣和駕駛員行為的寶貴數據。傳感器和物聯網設備的激增也產生了大量數據,這使得利用云通信技術和人工智能應用開發智能系統成為可能。在大數據的推動下,數據融合應運而生,它整合了來自多個提供商的數據,以提高質量和覆蓋范圍,并減少海量數據流量。融合來自交通、天氣、攝像頭、醫療系統等的數據,不僅有可能支持民用應用,還能通過提供上下文數據支持戰略性軍事行動。在傳感器基礎設施有限的情況下,來自社交媒體和政府報告等媒體來源的數據可幫助了解當地行為,并識別影響犯罪、腐敗和毒品販運的因素。
社交媒體數據對于支持與緊急事件和災難相關的信息非常有價值,可通過捕捉獨特信息(如需要救援的群體的位置或隱藏人員的存在)來補充其他傳感器數據。建筑物上的固定傳感器和監控攝像頭可幫助進行人員跟蹤,以準確識別位置。社交媒體數據與其他數據源相結合,有助于敵情偵查和戰術規劃。與交通相關的傳感器數據,特別是交通監控攝像頭,在應急響應和軍事后勤方面發揮著重要作用。它可以檢測事故造成的擁堵和堵塞,從而改進軍事行動期間的路線規劃和交通管理。整合所有收集到的信息可增強態勢感知,促進城市環境中行動的有效規劃和管理。
針對近期發生的事件,如俄羅斯戰爭以及美國和巴西等國的反民主極端分子所帶來的挑戰,已經出現了多項舉措。其中一個例子是 ACLED(武裝沖突地點和事件數據)項目,該項目提供有關政治暴力和抗議事件的實時全球數據。另一個值得一提的項目是 DATTALION,這是一個廣泛的開源照片和視頻片段數據庫,記錄了俄羅斯對烏克蘭的戰爭。該數據庫的主要目的是反擊俄羅斯政府散布的錯誤信息。聯合國開發計劃署(UNDP)利用機器學習(ML)算法和大數據來檢測烏克蘭東部受損的基礎設施。語義損壞檢測器 (//tinyurl.com/semdam) 利用衛星圖像和地面照片對算法進行訓練,以識別建筑物、道路和橋梁的潛在損壞,協助地方當局和人道主義組織確定行動的優先次序。這些舉措極大地促進了 MDS,特別是 EMD,為分析和研究提供了寶貴的資源。
本節探討大數據在軍事領域的應用,重點從數據內(IMD)和數據外(EMD)兩個角度概述大數據在軍事行動中的重要意義,并探索利用其潛力的最新解決方案。
大數據在軍事領域的一些挑戰已在文獻中提出,并成為北約社區討論的主題,如作戰安全性、漏洞加固和數據可靠性[1]、[2]、[6],以及北約 IST160 和 IST-173。納入與外界幾乎沒有聯系的自主隔離(如 EMD)可能會限制大數據的自由流動,這就要求在保持系統自主性和保護性的同時,以創造性的方式利用大數據。在這一方向上,COP 和 JADC2 引導研究人員和行業使用和融合來自不同軍事實體的數據,以支持戰略決策。
Kun 等人[1]提出了在軍工企業構建大數據平臺、建立多級數據通道、實現全面數據管理和控制的詳細技術方案。該平臺有利于數據的收集、組織、處理和分析,將數據轉化為知識,以加強決策/服務支持、創新、質量控制和風險管理。Xu 等人[6]強調了數據科學在當代戰爭中實現信息優勢的重要性。他們的系統性綜述顯示,社會科學文獻對數據科學風險給予了極大關注,這可能會影響政治和軍事決策者。然而,與戰術層面相比,科學文獻缺乏對作戰和戰略層面風險的關注,這表明存在研究空白。這一差距可能是由于 IMD 與 EMD 之間缺乏聯系造成的,而 EMD 可以支持行動和戰略決策。
多傳感器數據融合(MSDF)方法是在戰術場景中提供快速高效的目標探測、跟蹤和威脅評估的一個實例,如文獻[4]所示。數據融合的另一個應用領域是基于位置的社交媒體(LBSM),它可以增強各個領域的知識,包括交通特征描述和事故檢測[7]。利用 LBSM 系統可以獲得更詳細的交通數據,有利于軍事后勤工作。在特定的軍事環境中,可以利用 LBSM 系統的潛力來提高數據可用性,并實現情境感知操作。
數據完整性對于維護對 MDS 的信任至關重要[9]。被篡改的數據會產生嚴重后果,影響民事和軍事決策過程,破壞對數據源的信心。社交媒體平臺上錯誤信息的泛濫就是這一挑戰的例證,這些錯誤信息往往被利用來施加政治影響,烏克蘭正在發生的沖突就是一例。為應對此類問題,Twitter 等平臺修訂了其政策,標記了許多與俄羅斯國家附屬媒體相關的推文,并檢測了數十億條與沖突相關的實時推文印象[10]。
與此同時,圖像認證的出現解決了人們對圖像完整性和來源驗證的擔憂。然而,包括人工智能軟件在內的先進圖像處理工具的興起使圖像驗證變得越來越棘手。雖然圖像驗證引入了水印、數字簽名和感知散列(pHash)等多種技術[11],但每種技術都有其優勢和局限性。例如,水印可提供真實性和所有權保護,但可能會影響圖像質量,而且容易受到高級處理技術的影響。相比之下,pHash 可以靈活地進行圖像操作,并對內容變化敏感,因此特別適合在社交媒體平臺上使用。在數據完整性和圖像認證的背景下考慮這些挑戰和解決方案至關重要。
首先,大數據的時空融合是為了支持軍事決策。由于缺乏所討論的可用 IMD,多數據融合(MDF)框架[12]被實例化,用于收集、準備和處理 EMD,并將其融合以提供豐富的信息。為了證明時空數據的豐富性,MDF 利用基于云的系統共享數據的公共可用性獲取了交通系統數據。不過,該框架可擴展到其他各種數據類型。其目標是提高數據質量、改進 C2 系統和軍事后勤,并支持城市地區的 COP/JADC2,從而創造出將融合 EMD 與來自不同領域的可用 IMD 結合使用的新方法。下文圖 2 介紹了 MDF 的主要功能。此外,還通過分析數值結果討論了融合大數據的好處。
對于數據采集,圖 2 (1)配置了一組參數(如區域、請求頻率)和數據源,MDF 為此收集各種格式的數據,并將其存儲在文件中。在準備階段(2),通過將不同的地物名稱和類型轉換為統一的表示方法,對輸入數據集進行標準化。這包括各種數據映射,以生成統一的數據類型,例如將描述性映射為數值或降低數據粒度。此外,還啟動地圖匹配,將所有地理定位數據(可能具有不同的精確度)融合到同一個路網中。MDF 對所有收集到的數據進行預處理,并從收集到的區域獲取 Shapefile (SHP)。請注意,根據應用目標和可用數據類型,框架可能會應用不同的特征提取方法,如自然語言處理(NLP)(情感分析、關鍵詞提取、詞法化、詞干化和自動摘要)或圖像處理(圖像分割、邊緣檢測和對象檢測),以從非結構化數據類型中提取信息。在使用案例中,我們沒有使用 NLP 算法,因為數據是無文本圖像和基于交通的數據。不過,建議的數據融合框架具有多功能性,可以處理各種數據類型,包括可以應用 NLP 技術的文本數據。
圖2 數據融合框架工作流程。
第三階段實現時間/空間數據融合和數據導出。為確保數據完整性,需要事先過濾非信任信息或有偏見的信息,例如,根據信息在不同數據源或圖像認證機制中的出現情況,使用驗證信息的方法,如第四節B部分所述。時間數據融合是通過對任意時間窗口(如每分鐘、每小時、每天)內的數據進行分組來實現的。為了進行空間融合,MDF 利用地圖匹配,根據底層道路網絡在規定的精確度下對 GPS 點進行對齊。由于不同數據源的 GPS 報告精度各不相同,因此必須這樣做,才能將所有地理定位數據映射到相同的道路網絡中。
最后,在圖 2 (4)中,豐富的數據以不同的格式輸出,為軍事和民用領域提供了多種可能性。MDF 的輸出通過創建不同類型的統計數據和可視化效果來支持時空分析,從不同的空間和時間方面描述可用信息的特征。
表I 按數據來源分列的道路覆蓋情況。
之前的工作[11]介紹了一種利用 Twitter 和 Facebook 來確保圖像完整性的圖像認證系統。該系統采用卷積神經網絡(CNN)和全連接層(FCC)進行特征提取,采用位置敏感散列(LSH)進行散列構建,并采用對比度損失最大化原始圖像和篡改圖像之間的差異。該模型的輸出是每個圖像 1024 位的固定長度向量表示。
為解決在城市軍事行動和民用系統中保持圖像完整性的重要性,提出了圖像事實檢查器(IFC),如圖 3 所示。它能檢測虛假圖像,確保數據的可信度,并作為當局主導的認證系統,打擊錯誤信息。系統會生成帶有徽標或圖標的驗證版照片,表明其已通過 IFC 系統驗證。此外,IFC 還提供了圖像的感知散列(pHash)字符串表示,可將其納入描述或在其他網站上共享。數據融合系統是 IFC 的一個可能的終端用戶,它可以在應用時空融合和生成豐富數據之前對抓取的圖片進行驗證。
圖3 Image-Fact-Checker (IFC)。
建立一個能提供即時真實信息的自動化系統是一個相對較新的概念,因此通過比較來評估其有效性具有挑戰性。然而,由于創建令人信服的偽造圖像的人工智能生成模型的興起,實施圖像認證系統現在變得至關重要。添加這一系統作為驗證層有助于防止或減少虛假信息的傳播,尤其是考慮到不斷發展的互聯網法規會對缺乏反虛假信息措施的平臺進行處罰。一種有效的方法是將 IFC 系統與政府機構連接起來。IFC 方法具有通用性和可擴展性,可提高個人的意識和信任度。
圖 4(左)是通過 DATTALION 從普通社交媒體用戶那里收集到的兩張未經驗證的圖片。這些圖片只是更大數據集中的一小部分。用戶通常不愿意相信這些來源,因此有效利用這些來源具有挑戰性。然而,當這些圖像經過 IFC 機制處理后,其可靠性就會提高,因為任何進一步的篡改都很容易被檢測出來。如圖 4(右圖)所示,應用 IFC 后,每張圖片都會收到 pHash 和相關信息,如圖片描述、提取的特征、位置、事件日期、抓取日期、發布者 ID。這些經過處理的圖像將存儲在 IFC 數據庫中,供今后查詢。該數據庫有多種用途:重復檢測、完整性驗證以及滿足特定最終用戶的要求。
圖4 使用IFC提取圖像細節。
數據融合的第一個挑戰是尋找和獲取軍事和民用領域的可用數據。出于隱私/安全考慮,信息可能無法廣泛獲取或獲取途徑有限。在軍事領域(IMD),數據受到更多限制,這為探索可用的民用數據(EMD)以支持戰略性信息決策提供了機會。第二個值得注意的挑戰是融合多種數據源,這些數據源可能具有不同的結構(結構化、半結構化和非結構化數據)、標準、數據類型(如文本、圖像、視頻)、測量單元、粒度和時空覆蓋范圍。因此,需要深入了解如何準備和處理不同的數據集,并將其融合為一個數據集。
處理社交媒體中的圖像和文本需要進一步的程序,如特征提取方法(如 NLP 和圖像處理),以提取可用信息。盡管數據融合面臨諸多挑戰,但將從不同角度(如指揮部、用戶、記者、政府、傳感器)描述同一空間和時間的不同數據源結合起來的好處,可以加強軍事行動的規劃和戰略階段,為 COP 和 JADC2 系統提供支持。
數據安全與隱私: 保護敏感的軍事信息對國家安全至關重要。需要強大的加密、安全的數據存儲和訪問控制來降低風險。建議采用的技術包括公鑰基礎設施(PKI)安全、受保護內核、數據加密、防火墻和入侵檢測。然而,如何在數據共享、有利于信息融合和安全/隱私措施之間取得平衡,對軍方來說仍是一項具有挑戰性的任務。
數據完整性: 被操縱的數據會給民用和軍用決策帶來風險,并降低對數據提供者的信任度。在生成內容的人工智能模型不斷進步的幫助下,篡改圖像迅速傳播,參與度不斷提高,這凸顯了對智能綜合解決方案的需求。通過社交媒體分享的圖片能夠快速傳達復雜的想法,從而為救援行動提供支持,使人們能夠立即采取行動,如在城市發生事故/災難時改變交通路線。圖片還能喚起情感聯系,增強讀者對新聞事件的理解。然而,烏克蘭戰爭等危機擴大了錯誤信息的傳播,這就需要 snopes.com 和 norc.org 等人工事實核查機構的參與,以打擊錯誤信息。然而,在戰爭期間或為打擊腐敗政府而進行基于人工的實時核查可能會耗費大量時間,這就為設計自動系統來驗證圖像和處理虛假信息創造了機會。
雖然這項工作的主要重點在于數據視角,以及確保使用來自不同來源的可信數據來支持軍事行動的相關性,但同樣重要的是要認識到網絡在有效提供數據和服務方面的重要性。在以網絡為中心的軍事行動中,利用高頻、甚高頻、超高頻、衛星通信、Wi-Fi 和 LTE 4-5G 等各種技術進行無線通信至關重要。有些技術擅長長距離覆蓋,但帶寬有限、延遲高,而且容易受到干擾。另一些則以可靠性為先,覆蓋范圍較短,帶寬較大,延遲較低。
以信息為中心的網絡(ICN)和軟件定義網絡(SDN)等網絡范例對于優化數據傳播和網絡協調至關重要[13],尤其是在網絡資源有限的情況下。在軍事網絡中,尤其是在戰術邊緣,數據傳播過程中會出現資源有限和安全問題等挑戰。為解決這些問題,軍方可能會探索包括民用網絡在內的各種基礎設施,以獲取和融合非軍事數據。以歐洲 5G COMPAD 聯盟為例,目前正在考慮采用 5G 技術。然而,由于硬件通信系統成本高昂、帶寬和互操作性有限,因此具有挑戰性。這就需要定制參考架構來滿足軍事通信需求。
在最近的烏克蘭-俄羅斯沖突中,俄羅斯對烏克蘭基礎設施的攻擊導致互聯網中斷,暴露了通信網絡的脆弱性。SpaceX 的 Starlink 衛星互聯網星座提供了一種解決方案,證明了在戰時利用民用網絡基礎設施的價值。盡管該技術有望提高互聯網在數據和緊急通信方面的可靠性,但它在網絡安全、覆蓋范圍、可靠性和成本效益方面仍面臨挑戰。
由于隱私、安全以及軍事機構為防止濫用和限制 IMD 的可用性而施加的限制,為人工智能研究訪問軍方擁有的大數據帶來了挑戰。此外,人工智能功能可能會受到對抗性攻擊的影響,對抗性攻擊會通過改變造成錯誤分類來欺騙人工智能模型。快速梯度符號法(FGSM)和語義攻擊等技術分別有助于識別和減輕計算機視覺和 NLP 中的此類攻擊。Yuan等人[14]對攻擊、對策和基于應用的分類標準進行了全面評述。
要檢測對抗性攻擊,一種有效的方法是使用具有與主人工智能模型不同特征的輔助人工智能模型。這一想法源于早期的衛星通信。當時,人們使用電報等輔助系統來防止對衛星通信的中間人攻擊或干擾攻擊。由于帶寬有限,輔助系統只能傳輸與完整衛星數據相對應的摘要數據,用于偵測攻擊和應急通信。同樣,在人工智能中防范對抗性攻擊時,傳統的 ML 可以作為輔助系統,產生與主要 CNN 方法一致的結果。對抗性攻擊依賴于計算機視覺深度學習模型中的梯度技術,而傳統的 ML 方法則使用不同的方法,這些方法對這些攻擊操作大多具有免疫力。
在軍事領域使用人工智能的另一個問題是需要共享敏感數據來訓練模型。在這方面,聯邦學習(FL)作為一種訓練 ML 模型的技術已經出現,在這種技術中,數據不會暴露,從而確保了數據的安全性和隱私性[15]。雖然它不能被視為對抗惡意攻擊的防御技術,但這種方法隱藏了敏感數據和模型或參數的一部分。這種技術對于建立在人工智能基礎上的新興軍事應用非常有價值。
本文探討了大數據在軍事領域的應用。研究了與整合不同數據源、確保數據安全、隱私和完整性以及聯網和利用人工智能相關的機遇和挑戰。文章引入了 MDS 概念,以豐富和引導討論,強調納入民用數據的潛力,以提高軍事行動戰略決策所需的信息質量和數量。此外,文章還包括兩個實際使用案例,說明了數據融合的好處以及實施圖像認證機制以保持數據完整性的重要性。這些發現凸顯了大數據在軍事領域的重要意義,并強調了在該領域開展進一步研究和探索的必要性。
新一代由人工智能(AI)增強和支持的自主武器系統(AWS),尤其是蜂群戰術無人機的迅速擴散,可能會對未來戰爭中的威懾、核安全、升級和戰略穩定產生重大影響。融合了人工智能系統的新興迭代無人機系統將預示著未來沖突中射程、精度、規模、協調、智能和速度的增強將產生強大的相互作用。反過來,核武軍事強國之間升級的 "要么使用,要么失去"局勢的風險,以及使用不可靠、未經驗證和不安全的預警系統所帶來隨之而來的危險將會增加,并可能帶來災難性的戰略結果。
廣泛的人工智能(AI)增強型自主武器系統(AWS)的擴散可能會對核安全和未來戰爭的升級產生重大戰略影響。一些觀察家預計,復雜的人工智能增強型自動武器系統不久將被部署到一系列 ISR 和打擊任務中。專家們普遍認為,人工智能機器學習系統是實現完全自主系統的基本要素。即使預警系統僅用于常規行動,其擴散也會產生破壞穩定的影響,并增加意外核升級的風險。例如,人工智能增強型無人機群可能會被有核國家用于針對地面防空系統的進攻性出動,以保衛其戰略資產(如發射設施及其隨附的指揮、控制和預警系統),并對較弱的有核國家施加壓力,迫使其在 "要么使用,要么失去"的情況下使用核武器進行反擊。
人工智能和自主性方面的最新進展大大提高了軍事大國對開發一系列預警系統作戰價值的認識,這有可能使致命權力下放給預警系統的前景變得越來越不可抗拒,但卻會破壞穩定。也就是說,捍衛或奪取戰略對手(傳統上保守的軍隊)尖端作戰資產的技術優勢,可能會避免部署不可靠、未經驗證和不安全預警系統的潛在風險。因此,當前人工智能機器學習軟件的技術局限性(脆性、可解釋性、機器學習的不可預測性、易被顛覆或 "數據中毒",以及人工智能系統易受偏見影響)是穩定和升級的主要風險。可以肯定的是,在核領域部署這些不成熟的新生系統將產生嚴重后果。
根據目前對新興技術的了解,人工智能增強的先進常規能力(如網絡武器、精確彈藥和高超音速武器)的新迭代將加劇軍事升級的風險,尤其是無心和意外的升級。核能力與非核能力的混合和糾纏以及戰爭速度的加快可能會破壞戰略穩定。雖然學術文獻廣泛討論了新興技術帶來的潛在升級風險,但迄今為止,對軍事人工智能加劇這些風險并引發意外升級的可能性的研究還很有限。本文探討了人工智能增強型無人機蜂群如何以及為何會影響有核大國之間的戰略穩定。
從概念上講,自主系統將結合視覺感知、語音、面部識別和決策工具等人工智能技術,在不受人類干預和監督的情況下執行一系列核心的空中攔截、兩棲地面攻擊、遠程打擊和海上行動。目前,只有少數武器系統在沒有人類干預的情況下選擇和攻擊目標。游蕩攻擊彈藥(LAMs)--也稱為 "游蕩彈藥 "或 "自殺式無人機"--根據預先設定的目標標準追擊目標(如敵方雷達、艦艇或坦克),并在其傳感器探測到敵方防空雷達時發動攻擊。與巡航導彈(設計用于實現類似功能)相比,LAMs 利用人工智能技術擊落來襲彈丸的速度比人類操作員更快,而且可以保持飛行(或游蕩)的時間比人類操作的彈藥要長得多。與現有的由人類操作的自動化系統(例如有人系統和遙控無人機)相比,像 LAMs 這樣的預警系統會使國家可靠地預測和識別自主攻擊的能力變得更加復雜。
例如,一架低成本的 "獨狼 "無人機不太可能對 F-35 隱形戰斗機構成重大威脅,但數百架人工智能機器學習自動無人機蜂擁出動,即使在防御嚴密的地區,也有可能躲過并壓倒對手的尖端防御能力。此外,這些系統的隱形變體與小型化電磁干擾器和網絡武器一起,可用于干擾或顛覆對手的目標傳感器和通信系統,破壞其多層防空體系,為無人機蜂群和遠程隱形轟炸機進攻做好準備。例如,2011 年,在克里奇美國空軍基地,在中東操作 MQ-1 和 MQ-9 無人機的飛機駕駛艙系統感染了惡意軟件,暴露了美國系統易受網絡攻擊的弱點。不過,未來將人工智能技術迭代整合到隱形戰斗機(如 F-35 戰斗機)中,可能會抵消這種威脅。美國研制的有人駕駛 F-35 戰斗機很快就能利用人工智能控制小型無人機蜂群在飛機附近執行感知、偵察和瞄準功能,包括針對無人機群攻擊的反制措施。未來,無人機和無人支援平臺續航時間的延長有可能提高無人機蜂群在這類反制措施下的生存能力。
由于軍事指揮官關注的是如何嚴格控制 "升級階梯 "上的各個等級,因此從理論上講,他們應該反對將過多的決策權下放給機器--尤其是在涉及核武器的情況下。然而,軍事強國之間的競爭壓力,以及對其他國家在開發和部署軍事人工智能(以及人工智能可能賦予權力的 AWS)方面占據上風的擔憂,可能會壓倒“人在環內”。值得強調的是一個注意事項。下文描述的無人機蜂群用途并不假定軍方一定能在短期內實施這些 AWS。當然,人工智能研究人員和分析人員對各國在部署人工智能預警機群時面臨的重大作戰挑戰存在分歧,特別是與機器對機器通信、復雜和有爭議環境中的機群協調以及電池技術等有關的問題。
一些著名的研究人員認為,盡管還存在技術挑戰以及法律和倫理方面的可行性,但很可能在幾年內就能看到可運行的 AWS。與使用自主控制武器和自主瞄準有關的道德和倫理考量十分復雜,爭議很大;人類創造自主控制技術來攻擊人類本身就存在問題。美國國防部前副部長羅伯特-沃克(Robert Work)認為,美國在使用軍事力量時 "不會將致命的決定權交給機器"。然而,沃克補充說,這種自我克制可能會受到戰略競爭對手的考驗,"他們比我們更愿意將權力下放給機器,隨著競爭的展開,我們將不得不就如何更好地競爭做出決定"。然而,將人類的判斷從危機決策過程中移除,并預先將權力下放給自主系統,可能會嚴重挑戰核武器在未來戰爭中的安全性、復原力和可信度。
歷史上有許多險些發生核失誤的例子,這表明人類的判斷對于降低誤判和誤解的風險,以及在危機期間對手的意圖、紅線和使用武力的意愿非常重要。然而,盡管有這些先例,全球防務界仍未充分認識到不可預測的人工智能增強型自主系統在動態、復雜,甚至可能是先驗未知的環境中運行所帶來的風險。為了規避這些風險,一些競爭對手計劃將人工智能融入無人機和無人潛航器(UUV),利用人工智能機器學習技術執行蜂擁任務。據報道,某國戰略家研究了 "蜂群 "無人機的數據鏈技術,強調網絡架構、導航和抗干擾軍事行動,尤其是針對美國航母的行動。
成群使用的無人機非常適合對對手的核和非核機動導彈發射器、核動力彈道導彈潛艇及其附屬輔助設施(如 C3I 和預警系統、天線、傳感器和進氣口)實施先發制人的攻擊和核-ISR 任務。一些觀察家認為,自主系統(如美國國防部的 "海上獵人"--一種自主水面飛行器原型)可能會使水下領域變得透明,從而削弱隱身 SSBN 的二次打擊威懾作用。不過,這一假設在技術上是否可行還存在很大爭議。由于這些技術上的挑戰,在可預見的未來,冷戰時期以相互確保摧毀(MAD)為基礎的核威懾很可能不會受到人工智能增強的反威懾能力的挑戰。
一方面,一些專家認為,這些平臺成群部署,可以改變反潛戰(ASW),使海上核威懾幾乎成為多余。另一方面,其他專家認為這種假設在技術上還為時過早,因為:AWS 上的傳感器不太可能可靠地探測到深潛的潛艇;這些傳感器(以及無人機本身)的探測距離會受到遠距離電池電量的限制;而且,鑒于執行威懾任務的 SSBN 穿越的區域廣闊,即使部署大量的自主蜂群執行偵察任務,被探測到的幾率也微乎其微。
盡管旨在克服反潛戰中潛艇靜音挑戰(降低成本、減小尺寸和探測范圍)的傳感器技術不斷進步,但仍存在一些技術挑戰,包括:多個系統之間的水下通信;處理功率要求;電池壽命和能源生成;以及系統擴展。因此,現代反潛戰能力非但沒有使潛艇成為多余,反而降低了潛艇的效能,減緩了潛艇在巡邏區的部署速度,使其無法進入射擊位置,并破壞了攻擊的協調性。
傳感器、通信和處理技術(尤其是大數據分析和機器學習)的最新進展可能成為未來反潛和水下支援平臺(如無人潛航器、無人水面飛行器(USV)和無人機)的顛覆性變革技術,用于實時定位和攻擊潛艇,并增強潛艇及其附屬武器系統的隱身性和耐久性。人工智能機器學習和大數據分析的結合可提高冷戰時期的靈敏度技術,以探測潛艇的輻射和化學排放,進而實現在遠程反潛作戰(可能是 "開火即忘")中探測和提示魚雷搜索器的新能力。但目前,這一假設的技術可行性仍存在很大爭議。
在這些自主系統對潛艇偵察產生改變游戲規則的戰略影響之前,需要在動力、傳感器技術和通信方面取得重大進展。然而,無論這種新興能力的真實性如何,只要認為核能力面臨新的戰略挑戰,就會引起核武對手之間的不信任,尤其是在戰略力量不對稱的情況下。自主能力--如 DARPA 的 "海上獵手"--展示了自主武器如何加速完成迭代瞄準周期,以支持聯合作戰;從而降低國家核二次打擊能力的可靠性和生存能力,并可能導致 "要么使用,要么失去"的局面。
因此,在短期內,人工智能對核威懾產生的最重要的不穩定影響可能是將自主性與一系列機器學習增強型傳感器相結合,這可能會削弱各國對其二次打擊能力存續的信心,從而引發報復性的第一次打擊。計算性能呈指數級增長,加上可實時快速處理數據的機器學習技術的進步,將使無人機群有能力執行日益復雜的任務,如獵殺迄今為止隱藏的核威懾力量。簡而言之,未來人工智能的迭代能力將不斷增強,能夠在融合擴大和分散的數據集的基礎上進行預測,然后定位、跟蹤和瞄準地下發射井(特別是移動式洲際彈道導彈發射器)、隱形飛機、SSBN 和卡車或鐵路運輸豎起發射器(TEL)中的戰略導彈。
以下三種情況說明了人工智能增強型無人機群可能執行的戰略行動。
首先,可部署無人機群執行核-ISR 行動,以定位和跟蹤分散的(核與非核)移動導彈發射器及其隨附的輔助 C3I 系統。具體來說,集人工智能注入的 ISR、自主傳感器平臺、自動目標識別(ATR)系統和數據分析系統于一體的無人機群可提高傳感無人機的效率和速度,以確定移動導彈的位置并躲避敵方防御。然后,這些蜂群提供的衛星圖像和信號情報可提示隱形戰斗機或武裝無人機摧毀這些導彈。
未來,人工智能增強型無人機群可用于定位和跟蹤移動導彈發射器等分散目標,壓制敵方防空系統,為裝備常規或核載荷的高超音速自主運載系統群掃清道路。高超音速助推滑翔武器(HGVs)利用助推滑翔技術推進裝有常規載荷(以及潛在核載荷)的彈頭,其開發和部署可能最終會加劇目標模糊問題,增加意外升級的風險,進而降低核門檻。
由于尋找移動導彈本身就很困難,因此即使在使這種能力(甚至是對其脆弱性的認識)方面稍有改進,也可能改變戰略游戲規則。根據蘭德公司的分析,"對常規武裝導彈的追逐可能導致具備核能力的導彈部隊遭到削弱",從而破壞危機的穩定性,并造成 "要么使用,要么失去 "的局面。因此,先進的人工智能增強型無人機群的自主性可能會加劇共混問題集,進而增加戰略不穩定性。
其次,無人機群可能會增強傳統的常規武器和核武器運載系統(例如洲際彈道導彈和潛射彈道導彈),并可能納入高超音速變體(下文將詳細討論)。人工智能的應用很可能會增強運載系統的瞄準和跟蹤能力,并提高無人機群對抗當前一代導彈防御系統的生存能力。例如,高超音速助推滑翔武器的技術進步--特別是與巡航導彈、導彈防御能力結合部署,并得到無人機群的支持--可以瞄準對手的高價值資產,如雷達、反衛星武器、移動導彈發射器、C3I 系統以及用于支持核導彈和常規導彈的 TEL。然而,無人機群對這些系統的依賴性(類似于下文討論的網絡防御)可能使其更容易受到攻擊,例如來自欺騙、操縱、數字干擾和電磁脈沖的攻擊。
為了降低這些脆弱性,傳感器無人機群編隊可以應用人工智能增強的 ISR 來加強情報收集、群內通信和分析,擴大其行動的地理范圍,并監測對無人機群的潛在威脅,從而讓無人機群的其余部分不受束縛地開展進攻活動。例如,美國國防部高級研究計劃局(DARPA)最近測試了無人機群如何在極少(或被拒絕)通信的高威脅環境中進行協作并協調戰術決策。
第三,無人機群戰術同樣可以增強國家壓制對手防御系統(如防空系統、導彈防御系統和反潛防御系統)的能力,為解除攻擊掃清道路。無人機群可能配備網絡或電子戰(EW)能力(除了反艦導彈、反輻射導彈或常規巡航導彈和彈道導彈外),以干擾或摧毀對手的預警探測和 C3I 系統,為更廣泛的進攻行動打前站。例如,在傳統防御中,一國可以通過拒止戰術,用配備電子戰或網絡武器的無人機群攻擊敵方的傳感器和控制系統,削弱敵方的綜合防空系統(如欺騙和電磁脈沖攻擊),同時部署單獨的無人機群,吸引敵方武器系統的火力,保護敵方的傳感器,從而為出動常規(可能還有核)武裝無人機和遠程隱形轟炸機掃清道路。
相反,無人機群可能會加強各國的導彈防御,以抵御這些進攻性威脅。例如,無人機群可以形成一道防御墻,吸收來襲的導彈炮彈,將其攔截或作為誘餌,利用搭載的激光技術使其偏離航道。
在海洋領域,UUV、USV 和 UAV 在人工智能支持的群內通信和 ISR 系統的支持下,可同時部署在進攻性和防御性反潛行動中,以飽和敵方防御,并定位、削弱和摧毀其核武或非核攻擊潛艇。由于現代柴電潛艇(SSK)和 SSBN 采用了隱身技術,尤其是聲學特征極小,再加上協調此類行動的巨大挑戰,因此即使在相對有利的條件下,從艦艇(甚至從另一艘潛艇)跟蹤潛艇也是一項具有挑戰性的行動。
一些專家預計至少十年內這種技術上可靠有效的能力還無法投入使用,而另一些專家則比較樂觀。從戰術角度看,無人機群不需要覆蓋整個海洋(或完全透明的海洋)就能有效探測和跟蹤潛艇。英國海軍少將約翰-高爾(John Gower)認為,"在公海上構想一個可行的搜索和探測計劃",相對均勻的傳感器分布可能就足夠了,只需要 "多則數萬、少則數十萬的 UUV"。此外,移動傳感平臺的進步可使無人機群在潛艇出港時通過咽喉(或網關)定位潛艇,然后自主跟蹤潛艇。這樣,機器學習增強型 UUV 和 USV 的新迭代可能會補充甚至完全取代通用 SSBN 和載人水面飛行器在扼守點跟蹤敵方潛艇的傳統作用,同時在 UUV 上安裝稀疏分布和移動分布的網絡系統傳感器。
如果一個國家認為其可生存核武器(尤其是核潛艇)的可信度受到威脅,那么無人機群等常規能力很可能會在戰略層面上產生破壞穩定的影響。因此,即使蜂群出擊不打算作為(或確實在技術上有能力)解除武裝的第一次打擊,這種行動的可行性本身就會破壞穩定。此外,人工智能的速度可能會使防御者處于明顯的劣勢,從而產生更多的動機,先發制人打擊技術上更勝一籌的軍事對手。因此,一個國家認為其二次打擊能力越不安全,就越有可能支持在其核武器綜合體中使用自主系統來增強其戰略力量的生存能力。分析家保羅-沙爾(Paul Scharre)認為,"在蜂群作戰中獲勝可能取決于是否擁有最好的算法來實現更好的協調和更快的反應時間,而不僅僅是最好的平臺"。
AWS 集速度、持久性、范圍、協調性和戰場規模于一身,將為各國在有爭議的反介入/區域拒止(A2/AD)區域內投射軍事力量提供極具吸引力的非對稱選擇。在復雜的機器學習神經網絡的強化下,有人和無人機聯合作戰有可能阻礙美國未來在南海的航行自由行動。如果在巡航導彈和高超音速滑翔能力中注入人工智能和自主能力,那么在近距離遭遇戰將變得更加復雜、更易發生事故,并在常規和核層面上破壞穩定。據報道,大國正在開發和部署 UUV,以加強其水下監測和反潛能力,作為建立 "水下長城 "以反制美國水下軍事優勢這一更廣泛目標的一部分。例如,美國的人工智能增強型 UUV 有可能威脅到大國的核彈道導彈潛艇和非核攻擊潛艇。因此,即使美國的 UUV 只對大國的非核(或非戰略)攻擊潛艇艦隊構成威脅,大國的指揮官也可能會擔心新生的、噪音相對較小的(與美國和俄羅斯的 SSBN 相比)海基核威懾力量會更容易被削弱。
因此,核領域新軍事技術的部署對各國的影響因其戰略力量結構的相對強度而異。此外,機器學習傳感器技術的進步可以更準確地探測到大國SSBNs,這可能會加強大國政府的擔憂,即它正被一個軍事上更強大的國家--尤其是美國--作為目標。要驗證這一設想的真實性,需要更好地了解大國在使用核能力和非核戰略能力方面的想法,以及這些想法如何影響大國對局勢升級風險的態度。
自主武器被認為是一種風險相對較低的不可抗力,其交戰規則模糊不清,在缺乏強有力的規范和法律框架的情況下,很可能會成為一種越來越有吸引力的不對稱工具,削弱軍事上占優勢的對手的威懾力和決心。例如,空基和海基無人機與復雜的神經網絡相連,可以支持有人和無人聯合作戰,監視和控制海域,有可能阻礙美國未來的航行自由行動。如果為巡航導彈和高超音速滑翔能力注入人工智能和自主能力,那么在近距離遭遇戰將變得更加復雜,更易發生事故,并在常規和核層面上破壞穩定。
總之,盡管仍然存在技術挑戰(尤其是對動力的需求),但機器人系統群與人工智能機器學習技術的融合可能預示著在未來沖突中,射程、精度、質量、協調、智能和速度的提高將產生強大的相互作用。
參考來源:蒙特雷米德爾伯里國際研究所詹姆斯-馬丁防擴散研究中心(CNS)
盡管有人擔心這場戰爭會成為歷史上第一場充斥著機器制造的假圖像的戰爭,但這并沒有發生。這項技術對沖突的影響要微妙得多。
自10 月 7 日以色列-哈馬斯沖突以來的幾周內,隨之而來的沖突引發了前所未有的虛假信息浪潮,這種 "算法驅動的戰爭迷霧 "絆倒了各大新組織,也讓社交媒體公司陷入困境。
然而,在社交媒體上流傳的所有欺騙性圖片和視頻中,人工智能工具生成的內容仍然相對邊緣化。即使有人懷疑以色列-哈馬斯戰爭是否會成為第一場由虛假人工智能生成圖像主導的沖突,但這項技術已經產生了更復雜、更微妙的影響。
大西洋理事會數字取證研究實驗室(Digital Forensic Research Lab)的副編輯萊拉-馬什科爾(Layla Mashkoor)說:"肯定有人工智能圖像在流傳,但還沒到我認為它在信息傳播中發揮核心作用的程度。"
馬什科爾說,人工智能生成的虛假信息主要被激進分子用來爭取支持,或者給人一種某一方得到更廣泛支持的印象。這方面的例子包括特拉維夫一塊人工智能生成的支持以色列國防軍的廣告牌、一個以色列賬戶分享人們為以色列國防軍歡呼的虛假圖片、一個以色列有影響力的人利用人工智能生成對哈馬斯的譴責。
她說:"就我在網上看到的一般使用情況而言,主要是為了爭取支持,這并不是目前利用人工智能的最惡意的方式。"
這里的一個關鍵因素是流傳著大量的錯誤信息,這使得人工智能圖像很難影響對話。馬什科爾說:"信息空間已經充斥著真實可信的圖像和鏡頭,""這本身就充斥著社交媒體平臺。"
哈佛大學肯尼迪學院《錯誤信息評論》(Misinformation Review)最近發表的一篇論文反映了這一點,該論文探討了生成式人工智能在全球虛假信息傳播中可能扮演的角色。作者在文中寫道,對該技術影響的擔憂 "被夸大了"。是的,從理論上講,生成式人工智能能讓人們以未來的速度傳播虛假信息,但那些尋找虛假信息的人--通常是那些 "對機構信任度低......(或)有強烈黨派傾向 "的人--已經有大量耳熟能詳的虛假信息可供選擇,從陰謀論網站到 4chan 論壇。沒有更多的需求。
馬什科爾解釋說,供應方面也是如此;發明不是實施。她說:"操縱對話或操縱在線信息空間的方法有很多。而有些事情有時比較低級,或者比較容易做到,可能不需要接觸特定的技術,即使人工智能生成軟件目前很容易獲得,但如果你想找的話,肯定有更容易操縱的方法。"
肯尼迪學院論文的另一位作者費利克斯-西蒙(Felix Simon)是牛津大學互聯網研究所的一名博士生,他提醒說,他的團隊的評論并不是要結束關于可能的危害的爭論,而是試圖回擊關于人工智能將引發 "真理末日 "的說法。這類恐慌往往伴隨著新技術的出現。
拋開世界末日的觀點不談,我們更容易研究生成式人工智能是如何真正融入現有的虛假信息生態系統的。例如,加州大學伯克利分校信息學院教授哈尼-法里德(Hany Farid)認為,它比俄烏戰爭之初要普遍得多。
法里德將這種技術形容為籠罩在聲稱來自沖突現場的音頻和視頻上的 "幽靈",他每天都會接到半打到十幾個記者打來的電話,詢問其真實性。"他說,"對很多人來說,拒絕接受不方便的事實的能力在這場沖突中絕對起到了作用。
法里德列舉了多個立即招致這種否定的例子,包括人們指出各種數字證據,證明誰是導彈襲擊加沙阿赫利阿拉伯醫院的幕后黑手,以及兒童被埋在廢墟下的圖片,有些是真的,有些是假的。
其中最突出的例子是以色列總理本雅明-內塔尼亞胡在其 X 賬戶上發布的兒童被燒傷的照片。法里德說,他的團隊分析了這些照片,得出的結論是沒有使用人工智能,但懷疑的種子已經種下。當有人使用人工智能將其中一張照片中的孩子替換成一只小狗時,事情就變得更加撲朔迷離了。
換句話說,這種傳播遵循的是一種歷史模式: 錯誤的信息在社交媒體上被分享,然后通過算法和人工放大。"法里德說:"從更廣闊的角度來看,從我們對快速發展、影響巨大的世界進行推理的能力來看,我認為這場沖突比我們過去所看到的更加嚴重。"我認為人工智能是其中的一部分,但它并不完全是人工智能。這太簡單化了。"
參考來源://www.wired.com/story/israel-hamas-war-generative-artificial-intelligence-disinformation/
在不到一年的時間里,Chat-GPT 已成為一個家喻戶曉的名字,反映了人工智能驅動的軟件工具,特別是生成式人工智能模型的驚人進步。伴隨著這些發展,人們頻頻預測人工智能將徹底改變戰爭。在人工智能發展的現階段,人們仍在探索可能的參數,但軍方對人工智能技術的反應是不可否認的。美國網絡安全和基礎設施安全局局長詹-伊斯特里警告說,人工智能可能是 "我們這個時代最強大的武器"。雖然自主武器系統在有關人工智能軍事應用的討論中往往占據主導地位,但人們較少關注在武裝沖突中支持人類決策的系統中使用人工智能的問題。
在這篇文章中,紅十字國際委員會軍事顧問魯本-斯圖爾特(Ruben Stewart)和法律顧問喬治婭-海因茲(Georgia Hinds)試圖批判性地審視人工智能用于支持戰爭中武裝人員決策時被吹噓的一些益處。其中特別討論了減輕對平民的傷害和節奏問題,尤其關注武裝沖突中對平民的影響。
即使在最近的炒作之前,人們可能已經以各種形式使用過人工智能,事實上,人們可能正在使用主要由人工智能驅動的設備閱讀這篇文章。如果您使用指紋或人臉打開過手機,參與過社交媒體,使用手機應用程序規劃過旅程,或者在網上購買過披薩和書籍等任何物品,那么這些都可能與人工智能有關。在很多方面,我們對人工智能已經習以為常,常常在不知不覺中將其應用到我們的日常生活中。
但如果人臉識別軟件被用來識別要攻擊的人呢?如果類似的軟件不是尋找最便宜的航班將你送往目的地,而是尋找飛機對目標實施空襲呢?或者,機器推薦的不是最好的披薩店或最近的出租車,而是攻擊計劃?這顯然是開發基于人工智能的國防決策平臺的公司 "即將到來 "的現實。
這類人工智能決策支持系統(AI-DSS)是一種計算機化工具,使用人工智能軟件顯示、綜合和/或分析數據,并在某些情況下提出建議,甚至預測,以幫助人類在戰爭中做出決策。
AI-DSS 的優勢往往體現在提高態勢感知能力和加快決策周期上。下文將根據人工智能系統和人類的局限性,并結合現代沖突的規劃過程,對這些說法進行解讀。
新技術在戰爭中的出現往往伴隨著這樣的說法,即新技術的整合將減少對平民的傷害(盡管在實踐中并不總是如此)。就 AI-DSS 而言,有人聲稱這種工具在某些情況下有助于更好地保護沖突中的平民。當然,國際人道主義法(IHL)規定,軍事指揮官和其他負責攻擊的人員有義務根據他們在相關時間所掌握的所有來源的信息做出決定。特別是在城市戰爭的背景下,紅十字國際委員會建議,有關平民和民用物體存在等因素的信息應包括互聯網等公開來源資料庫。此外,具體到人工智能和機器學習,紅十字國際委員會認為,只要人工智能-DSS工具能夠促進更快、更廣泛地收集和分析這類信息,就能使人類在沖突中做出更好的決策,從而最大限度地減少對平民的風險。
與此同時,任何 AI-DSS 的輸出都應在多個來源之間進行交叉核對,以防止信息有偏差或不準確。雖然這對沖突中的任何信息來源都是如此,但對AI-DSS 尤為重要;正如紅十字國際委員會先前所概述的那樣,由于系統的功能以及人類用戶與機器的交互方式,要核實輸出信息的準確性可能極其困難,有時甚至是不可能的。下文將進一步闡述這些方面。
最近關于人工智能發展的報道經常包括人工智能失敗的例子,有時是致命的。例如,軟件無法識別或錯誤識別膚色較深的人,推薦的旅行路線沒有考慮最新的路況,以及自動駕駛汽車造成死亡的例子。其中一些失誤是可以解釋的,但不可原諒,例如,因為其輸出所依據的數據有偏差、被破壞、中毒或根本不正確。這些系統仍然很容易被 "欺騙";可以使用一些技術來欺騙系統,使其對數據進行錯誤分類。例如,可以想象在沖突中使用對抗性技術來影響瞄準輔助系統的源代碼,使其將校車識別為敵方車輛,從而造成毀滅性后果。
隨著人工智能被用于執行更復雜的任務,特別是當多層分析(可能還有決策和判斷)不斷累積時,驗證最終輸出以及導致最終輸出的任何錯誤的來源就變得幾乎不可能。隨著系統越來越復雜,出現復合錯誤的可能性也越來越大--第一個算法建議中的一個微小不足會被反饋到第二個算法過程中并造成偏差,而第二個算法過程又會反饋到第三個算法過程中,依此類推。
因此,人工智能系統經常表現出用戶或開發者無法解釋的行為,即使經過大量的事后分析也是如此。一項針對備受矚目的大型語言模型 GPT-4 的研究發現,三個月后,該模型解決數學問題的能力從 83.6% 銳減至 35.2%,令人費解。不可預測的行為也可以通過強化學習產生,在強化學習中,機器已被證明能夠非常有效地采用和隱藏不可預見的行為,有時甚至是負面行為,從而戰勝或超越人類:無論是通過撒謊贏得談判,還是通過走捷徑擊敗電腦游戲。
AI-DSS 不會 "做出 "決定。不過,它們確實會直接影響人類的決策,而且往往影響很大,其中包括人類在與機器交互時的認知局限性和傾向性。
例如,"自動化偏差 "指的是人類傾向于不批判性地質疑系統的輸出,或搜索矛盾的信息--尤其是在時間緊迫的情況下。在醫療保健等其他領域已經觀察到了這種情況,經驗豐富的放射科醫生的診斷準確性受到了人工智能錯誤輸出的不利影響。
在醫療領域,不準確的診斷可能是致命的。同樣,在武裝沖突中,過度信任也會帶來致命后果。2003 年,美國的 "愛國者 "防御系統兩次向友軍聯軍飛機開火,原因是這些飛機被誤認為是攻擊導彈。在隨后的調查中,發現的主要缺陷之一是 "操作員接受了信任系統軟件的培訓"。
這些運作方式,再加上人機互動的這些特點,有可能增加結果偏離人類決策者意圖的可能性。在戰爭中,這可能導致意外升級,無論如何都會增加平民和受保護人員的風險。
人工智能在軍事上被吹捧的一個優勢是,它能讓用戶的決策節奏快于對手。節奏的加快往往會給平民帶來額外的風險,這就是為什么要采用 "戰術忍耐 "等降低節奏的技術來減少平民傷亡。放慢決策節奏,包括為決策提供信息的過程和評估,可以讓系統和用戶有額外的時間:
2021 年 8 月 29 日,在喀布爾大撤退期間,無人機對喀布爾進行了臭名昭著的空襲,造成 10 名平民死亡,中央司令部指揮官將這次空襲歸咎于 "我們沒有多余的時間來分析生活模式和做其他一些事情"。
"生活模式"分析是一些軍隊對平民和戰斗人員的存在和密度、他們的時間表、在考慮攻擊的地區內和周圍的移動模式等進行評估的描述。這是減少平民傷害的重要方法。然而,對生活模式的評估只能實時進行--平民創造這種模式需要時間--無法加快。
試圖根據歷史趨勢預測未來行為的做法無法顧及當前情況。在這個例子中,回顧舊的情報資料,特別是喀布爾的全動態視頻,并不能反映出由于塔利班接管和正在進行的疏散工作而發生的形勢和行為變化。
正如預防平民傷亡指南所解釋的那樣,"等待和觀察的時間越長,你就會對發生的事情了解得越多,也就能更好地做出使用致命或非致命手段的決定",或者正如拿破侖所說的那樣 "慢慢給我穿衣服,我趕時間"--有時,刻意為之才能達到最佳效果。
放慢決策速度的另一個原因是,人的理解能力,尤其是對復雜和混亂情況的理解能力,需要時間來培養,也需要時間來斟酌適當的應對措施。時間越少,人理解局勢的能力就越弱。軍事規劃流程旨在讓指揮官和參謀人員有時間考慮作戰環境、對手、友軍和平民,以及所考慮的行動方案的利弊。正如德懷特-D-艾森豪威爾將軍所解釋的,"在準備戰斗的過程中,我總是發現計劃是無用的,但規劃是不可或缺的"。
當人類決策者考慮由 AI-DSS 生成或 "推薦 "的行動方案時,這一點就會產生影響,因為相對于對手而言,AI-DSS 加快行動節奏的能力可能是被利用的最主要原因。如果人類計劃人員沒有經歷或甚至完全不了解 AI-DSS 提出的計劃的制定過程,那么他對局勢、各種影響因素和相關人員的了解可能就會很有限。 事實上,人們已經注意到,使用自動輔助工具會降低人類用戶的警覺性,損害他們保持態勢感知的能力。這一點應從如何影響遵守國際人道主義法義務的角度加以考慮;盡一切可能核查目標的義務表明,需要最大限度地利用現有情報、監視和偵察資產,以獲得在當時情況下盡可能全面的態勢感知。
除了能讓指揮官看到和了解更多情況外,額外的時間還能讓指揮官制定戰術備選方案,包括決定不使用武力或緩和局勢。額外的時間可以讓其他單元和平臺脫離接觸、重新定位、重新補給、計劃和準備協助即將到來的行動。這為指揮官提供了更多選擇,包括可更好地減少平民傷害的替代計劃。額外的時間可能允許采取額外的緩解措施,如發布警告,從平民的角度來看,這也允許他們實施應對機制,如躲避、重新補給食物和水或撤離。
正如軍事規劃理論中的一個例子所解釋的那樣,"如果時間充裕,而且更快采取行動也沒有好處,那么就沒有什么借口不花時間進行充分規劃"。正如北約的《保護平民手冊》所回顧的那樣,"如果有時間按照國際人道主義法的原則對部隊或目標進行蓄意規劃、區分和精確瞄準,那么CIVCAS[平民傷亡]的可能性就會大大降低"。
"戰爭是混亂的、致命的,從根本上說是人類的努力。它是人與人之間的意志沖突。所有戰爭本質上都是為了改變人類的行為,每一方都試圖通過武力改變另一方的行為"。"戰爭源于人類的分歧,在人類群體之間展開,由人類控制,由人類結束,而在戰爭結束后,人類又必須共存。最重要的是,沖突中的苦難由人類承擔。
這一現實,乃至國際人道主義法本身,都要求在武裝沖突中開發和使用人工智能時采取 "以人為本 "的方法--努力在本已不人道的活動中維護人性。這種方法至少有兩個關鍵方面:(1) 關注可能受影響的人;(2) 關注使用或下令使用人工智能的人的義務和責任。
在研究可能受影響的人時,不僅要考慮在使用 AI-DSS 獲取軍事優勢時減少對平民的風險,還要考慮專門為保護平民的目標設計和使用這類工具的可能性。在這方面已經提出的可能性包括識別、跟蹤和提醒部隊注意平民人口存在的工具,或識別在武裝沖突中表明受保護地位的特殊標志的工具(見這里和這里)。
確保人類能夠履行其在國際人道主義法下的義務意味著 AI-DSS 應為人類決策提供信息,但不能取代人類對武裝沖突中人們的生命和尊嚴構成風險的判斷。在自主武器系統方面,各國已廣泛認識到這一點(例如,見此處、此處和此處)。遵守國際人道主義法的責任在于個人及其指揮官,而非計算機。正如美國國防部《戰爭法手冊》所述:"戰爭法并不要求武器做出法律決定......相反,必須遵守戰爭法的是人。中國在《新一代人工智能倫理規范》中更普遍地強調了這一點,堅持 "人是最終的責任主體"。
關于 AI-DSS 必然會加強平民保護和遵守國際人道主義法的說法必須受到嚴格質疑,并根據這些考慮因素進行衡量,同時考慮到我們對系統局限性、人機互動以及行動節奏加快的影響的了解。
參考來源:International Committee of the Red Cross
人工智能(AI)究竟是什么?它與電子戰(EW)的未來有什么關系?人工智能正在改變我們所做的一切嗎?如果忽視人工智能,那將是一個錯誤。眾所周知,特斯拉采用了人工智能算法,特別是卷積神經網絡、遞歸神經網絡和強化學習。從根本上說,這些算法可以匯編來自多個傳感器的數據,分析這些數據,然后做出決策或向最終用戶提供信息,從而以驚人的速度做出決策。這一過程以指數級的速度發生,超過了人腦的處理速度。因此,從根本上說,人工智能是機器像人類一樣執行認知功能的能力。
人工智能可以駕駛汽車、撰寫學期論文、以適當的語氣幫你創建電子郵件,因此,它在軍事領域的潛在應用也是理所當然的。具體來說,就是整合人工智能電子戰及其提供的潛在能力轉變。雖然 "電子戰 "一詞已經使用了相當長的一段時間,但將人工智能注入這一領域為提高速度和殺傷力和/或保護開辟了新的途徑。
電子戰包含一系列與控制電磁頻譜有關的活動,傳統上一直依賴人類的專業知識來探測、利用和防御電子信號。然而,現代戰爭的速度和復雜性已經超出了人類操作員的能力。這正是人工智能的優勢所在,它帶來的一系列優勢將徹底改變電子戰的格局。
將人工智能融入電子戰的首要好處之一是增強了實時處理和分析海量數據的能力。在數字時代,戰場上充斥著來自通信網絡、雷達系統和電子設備等各種來源的大量信息。人工智能算法可以迅速篩選這些數據,識別出人類操作員可能無法識別的模式、異常情況和潛在威脅。這種能力不僅能提高威脅檢測的準確性,還能大大縮短響應時間,使友軍在快速演變的局勢中獲得關鍵優勢。
在這種情況下,人工智能賦能的兵力倍增器就出現了,它能在面對復雜多變的局勢時做出更高效、更有效的決策。現代戰場會產生大量電子信號,需要快速準確地識別。人工智能驅動的算法擅長篩選這些數據、辨別模式,并識別在以往場景中可能被忽視的信息。這使兵力能夠迅速做出反應,以更快的速度做出關鍵決策。
此外,人工智能還具有適應和學習新信息的能力,這一特性在電子戰領域尤為有利。電子威脅和反制措施處于不斷演變的狀態,需要反應迅速和靈活的策略。人工智能驅動的系統可以根據不斷變化的情況迅速調整戰術,持續優化性能,而無需人工干預。這種適應性對于對抗復雜的電子攻擊和領先對手一步至關重要。
人工智能與電子戰的融合還為指揮官提供了更先進的決策工具,比歷史標準更詳細、更快速。人工智能算法可以分析各種場景,考慮地形、天氣以及友軍和敵軍兵力等因素。這種分析為指揮官提供了全面的戰場情況,使他們能夠在充分了解情況的基礎上做出決策,最大限度地提高任務成功的概率,最大限度地降低潛在風險。此外,人工智能驅動的模擬可以演繹不同的場景,使軍事規劃人員能夠完善戰略,評估不同行動方案的潛在結果。美國今年早些時候進行了一次以印度洋-太平洋地區為重點的演習,將大語言模型(LLM)作為規劃和決策過程的一部分。一位演習成員稱贊了系統 "學習 "的成功和速度,以及系統成為戰場上可行資源的速度。另一個例子是,利用已輸入人工智能系統的數據對目標清單進行優先排序,人工智能系統能夠考慮瞄準行動、網絡,從而比操作人員更快、更全面地了解戰區情況。
不過,必須承認,要完成人工智能整合,還存在一些潛在的障礙。首先,美國防部大多數實體無法直接獲得人工智能技術。大多數從事前沿人工智能工作的組織都是商業公司,它們必須與軍事系統合作或集成。這可能會受到美國現行預算和研發流程的阻礙。此外,美國的這些流程進展緩慢,人工智能技術很有可能無法融入美國兵力。還有潛在的道德和安全考慮。隨著人工智能系統在探測和應對威脅方面承擔更多責任,人類的監督和控制水平也會出現問題。為了與戰爭法則保持一致,需要有人工參與,而不是完全依賴人工智能來做出攻擊決策。任何時候,只要有可能造成人員傷亡、附帶損害或其他問題,就需要人類做出有意識的知情決策,而不能任由人工智能自生自滅。在人工智能自主決策和人工干預之間取得適當的平衡至關重要,以防止意外后果或機器在沒有適當問責的情況下做出生死攸關的選擇。
最后,人工智能的整合引發了對潛在網絡漏洞的擔憂。雖然人工智能可以提高電子戰的速度和準確性,但它也為試圖操縱或破壞人工智能系統的惡意行為者帶來了新的攻擊途徑。要保護這些系統免受網絡威脅,就必須采取強有力的整體網絡安全方法,同時考慮到人工智能驅動的電子戰的硬件和軟件層。
最后,不可否認,將人工智能融入戰爭預警的潛在戰略利益是巨大的。人工智能處理海量數據、適應不斷變化的條件和支持決策過程的能力有可能重塑現代戰爭的格局。隨著兵力越來越依賴技術來保持在數字化作戰空間中的優勢,負責任地開發和部署人工智能驅動的預警系統將是必要的。 如何在技術創新、人工監督和安全措施之間取得適當平衡,將決定能在多大程度上實現這些優勢,同時又不損害戰略目標或道德考量。美國采購系統面臨的挑戰也將在人工智能集成中發揮關鍵作用。人工智能在電子戰中的變革力量有可能改變游戲規則。問題是:它會嗎?人工智能將如何融入新型 EC-37B Compass Call 和 NexGen 干擾機等未來平臺?陸軍是否會將人工智能納入其推動營級決策的努力中?這些都是值得探討的問題,但有一點是肯定的:電磁作戰界必須繼續接受創新思維,因為我們知道未來的戰斗將在電磁頻譜中開始和結束。人工智能將在現代戰爭的新時代發揮關鍵作用。
美國陸軍近年來提出了 "信息優勢 "的概念,即士兵有能力比對手更快地做出決策和采取行動。陸軍現在認為,人工智能是實現這一戰略的關鍵。
人工智能的普及程度和能力都有了爆炸式的增長,ChatGPT 等大型語言模型和其他人工智能系統也越來越容易為大眾所使用。在工業界和美國防部,許多人都在探索將該技術用于軍事應用的可能性,陸軍也不例外。
陸軍賽博司令部司令瑪麗亞-巴雷特(Maria Barrett)中將說,人工智能具有 "真正、真正推動變革的最大潛力......但它也給我們帶來了非常、非常現實的挑戰,以及整個信息維度的挑戰"。
負責政策的國防部副部長辦公室副首席信息作戰顧問、陸軍少將馬修-伊斯利(Matthew Easley)說,軍方正在經歷 "從傳統的信息作戰,即我們如何將不同的信息效果結合起來,為我們的行動創造我們想要的協同效應 "到新的信息優勢概念的轉變。
伊斯利在 6 月份美國陸軍協會的一次活動中說,這一概念的目標是確保陸軍在信息環境中掌握 "主動權","能夠看清自己、了解自己并更快地采取行動"。他說,信息優勢包括五大功能:輔助決策;保護士兵和軍隊信息;教育和告知國內受眾;告知和影響國外受眾;以及開展信息戰。
他補充說:"所有這五個領域都可以利用人工智能和機器學習取得一定效果"。
伊斯利在 2019 年幫助建立了陸軍人工智能兵力工作組。但他說,在他任職期間,該小組在全軍范圍內采用人工智能時遇到了兩個挑戰:遷移到混合云環境和移動設備。
陸軍將 "繼續擁有大量的傳統數據中心,但隨著我們需要激增,我們需要在全球范圍內移動--云環境使我們更容易開展全球業務,"他說。根據陸軍預算文件,陸軍正在為2024財年申請4.69億美元,用于向云過渡和數據環境投資。
巴雷特在 AUSA 會議上說: "沒有數據存儲庫,就無法實現人工智能和機器學習"。陸軍賽博司令部對其大數據平臺進行了大量投資,將 "進入我們平臺的數據流數量翻了一番,解析器翻了一番,我們現在存儲的數據存儲量也翻了一番,"她說。她說:"我們將繼續沿著這條軌跡前進,這意味著我們已經準備好開始利用 "人工智能能力"。
她說,對于指揮部來說,人工智能主要用于網絡防御,但在 "信息層面 "也有應用。"引入各種不同的信息源......并真正了解特定環境的信息基線,這意味著什么?所有這些都對我們大有幫助,而且我認為這只會不斷擴大"。
伊斯利說,移動設備的普及大大增加了潛在的饋送量,但也會擴大對手的潛在目標。這些設備 "有很多功能,也有很多漏洞。我們必須考慮并使用人工智能......既能保護我們自己,又能管理我們擁有的大量數據"。
陸軍參謀長詹姆斯-麥康維爾(James McConville)將軍在6月的一次媒體吹風會上說,在潛在沖突中,人工智能可以幫助士兵整理所有數據,并將正確的信息 "送到箭筒中"。
根據陸軍預算文件,陸軍正在為2024財年的人工智能和機器學習申請2.83億美元,其中包括用于增強自主實驗的研發資金,以及為集成視覺增強系統、可選載人戰車(最近被重新命名為XM30機械化步兵戰車)、遠程戰車、TITAN地面站和 "具有邊緣處理功能的更智能傳感器 "等系統的人工智能/機器學習項目活動提供資金。
"陸軍部長克里斯蒂娜-沃穆斯(Christine Wormuth)在簡報會上說:"我們當然在尋找如何利用人工智能使我們的能力(包括新能力和正在開發的能力)更加有效。她說,陸軍尤其在 "融合項目"(Project Convergence)演習中使用了人工智能目標定位程序。
融合項目是陸軍對國防部聯合全域指揮與控制概念的貢獻,該概念旨在通過網絡將傳感器和射手聯系起來。陸軍發布的一份新聞稿稱,在2022年底的上一次演習中,參演人員使用了陸軍的 "火風暴 "系統--"一種人工智能驅動的網絡,將傳感器與射手配對",向參加實驗的澳大利亞兵力發送情報。
麥康維爾說,軍方還將人工智能用于預測性后勤工作。他說:"我們正在使用人工智能來幫助我們預測所需的零部件,這對龐大的軍隊來說意義重大"。
除了簡單的維護之外,預測性后勤還涉及陸軍的不同供應類別,如燃料和彈藥,"以及我們如何看待消耗,如何預測在哪里可以將正確的供應品送到需要的地方",負責維持的陸軍副助理部長蒂莫西-戈德特(Timothy Goddette)說。
戈德特在國防工業協會戰術輪式車輛會議上說:"我們的目標是提前計劃這些物資需要運往何處或何時需要進行維護,而不是作出反應。
他說:"如果計劃的維護是正確的,但條件是錯誤的--如果你處于低[操作]節奏,我們如何改變計劃的維護?如果你處于炎熱、寒冷或腐蝕性環境中,你該如何改變維護計劃?這可能正是我們需要思考的地方。"
他補充說,在數字化世界中,陸軍必須 "學會如何使用數據和以不同的方式使用數據"。"我承認,我們還沒有完全弄懂[預測性后勤]。我們確實需要大家的幫助來思考這個問題。
McConville 和 Wormuth 說,人工智能未來的其他應用還包括人才管理和招聘。"Wormuth 說:"人工智能可能有辦法幫助我們以人類不擅長的方式識別優質線索或潛在客戶。
不過,McConville 強調,在使用人工智能時,"人在回路中 "非常重要。
他說:"實際做所有工作的可能不是人,但我們會看到人工智能幫助我們更好地完成工作。"但與此同時,我們也希望有人能說'發射這個武器系統',或者至少能考慮到這一點。"
巴雷特贊同麥康維爾的說法:"每個人都會把[人工智能]當成一臺機器。但是......你猜怎么著:每個玩過 ChatGPT 的人--是的,是人在喂養那臺機器。"
伊斯利說,隨著陸軍引入人工智能系統,士兵們可以做四件事來幫助技術正常成熟:收集和注釋數據;使用這些數據訓練人工智能模型;使用這些模型來檢驗它們是否有效;以及幫助改進模型。
他說,軍方在收集數據方面做得 "很好","但軍隊中仍有很多數據我們沒有完全捕捉到......我們可以利用這些數據來訓練我們自己的大型語言模型。"要使這些模型對我們的領域有效,我們必須在我們的數據上進行訓練。因此,我們必須研究:我們的人力資源數據是什么?我們的人力資源數據是什么?我們的醫療數據是什么?我們的業務數據是什么?我們的情報數據是什么?我們如何在受控環境下利用這些數據來建立更好的模型?
他說,這些模型必須根據軍隊的數據進行快速訓練和再訓練,以便不斷改進。他以自己手機上的餐廳推薦算法為例,"它之所以這么好,是因為它有10年的時間,我只告訴它我喜歡世界上哪些餐廳"。
伊斯利說,雖然他們將來可能會收到人工智能的推薦,但武器系統將始終由人類來管理,但 "其他系統,如果不是那么關鍵的話......[機器]可以做出決定"。不過,他補充說,人類將對人工智能進行培訓,使其在執行陸軍任務時可以信賴。"他說:"你不會質疑你的地圖算法告訴你在城市中往哪里走--你知道該算法比你掌握更好的信息。但是,"我們如何獲得數據背后的真實性,讓我們能夠相信模型的內容、模型是如何訓練的,以及我們是如何使用它的?我認為這都是......人類的努力"。
參考來源:NDIA網站;作者:Josh Luckenbaugh
自主系統將塑造戰爭的未來。因此,土耳其的國防人工智能(AI)發展主要側重于提高自主系統、傳感器和決策支持系統的能力。提高自主系統的情報收集和作戰能力,以及實現蜂群作戰,是發展國防人工智能的優先事項。雖然土耳其加強了自主系統的能力,但在可預見的未來,人類仍將是決策的關鍵。
人類參與決策過程提出了一個重要問題:如何有效確保人機互動?目前,自主系統的快速發展和部署使人機互動的問題更加惡化。正如土耳其國防工業代表所爭論的那樣,讓機器相互交談比較容易,但將人類加入其中卻非常困難,因為現有的結構并不適合有效的人機互動。此外,人們認為,人工智能對決策系統的增強將有助于人類做出更快的決定,并緩解人機互動。
土耳其發展人工智能的意圖和計劃可以從官方戰略文件以及研發焦點小組報告中找到。突出的文件包括以下內容:
第11個發展計劃,其中規定了土耳其的經濟發展目標和關鍵技術投資。
《2021-2025年國家人工智能戰略》,它為土耳其的人工智能發展制定了框架。
焦點技術網絡(Odak Teknoloji A??,OTA?)報告,為特定的國防技術制定了技術路線圖。這些文件提供了關于土耳其如何對待人工智能、國防人工智能和相關技術的見解。
土耳其特別關注人工智能相關技術,如機器學習、計算機視覺和自然語言處理,其應用重點是自主車輛和機器人技術。自2011年以來,自主系統,主要是無人駕駛飛行器(UAV),仍然是土耳其人工智能發展的重點。此后,這已擴大到包括所有類型的無機組人員的車輛。同時,用人工智能來增強這些車輛的能力也越來越受到重視。人工智能和相關技術的交織發展構成了土耳其人工智能生態系統的核心。
土耳其的人工智能生態系統剛剛起步,但正在成長。截至2022年10月,有254家人工智能初創企業被列入土耳其人工智能倡議(TRAI)數據庫。土耳其旨在通過各種生態系統倡議在其國防和民用產業、學術機構和政府之間創造協同效應。由于許多組織都參與其中,這些倡議導致了重復和冗余。冗余也來自于人工智能技術本身的性質。由于人工智能是一種通用技術,可以應用于不同的環境,各種公司都有用于民用和國防部門的產品;因此相同的公司參與了不同的生態系統倡議。此外,民用公司與國防公司合作,在國防人工智能研究中合作,并提供產品,這是司空見慣的。
土耳其鼓勵國際人工智能在民用領域的合作,但不鼓勵在國防領域的合作。然而,由于技能是可轉移的,國防人工智能間接地從這種合作中受益。
土耳其非常關注自主系統發展中的互操作性問題,特別是那些具有群集能力的系統。除了蜂群,北約盟國的互操作性也是一個重要問題。因此,土耳其認為北約標準在發展自主系統和基礎技術方面至關重要。
土耳其目前對人工智能采取了分布式的組織方式。每個政府機構都設立了自己的人工智能組織,職責重疊。目前,盡管國防工業局(Savunma Sanayi Ba?kanl???,SSB)還沒有建立專門的人工智能組織,但SSB的研發部管理一些人工智能項目,而SSB的無人駕駛和智能系統部管理平臺級項目。目前,根據現有信息,還不清楚這些組織結構如何實現國防創新或組織改革。
土耳其尋求增加其在人工智能方面的研發支出,旨在增加就業和發展生態系統。SSB將在未來授予更多基于人工智能的項目,并愿意購買更多的自主系統,鼓勵研發支出的上升趨勢。然而,盡管土耳其希望增加支出,但金融危機可能會阻礙目前的努力。
培訓和管理一支熟練的勞動力對于建立土耳其正在尋找的本土人工智能開發能力至關重要。這包括兩個部分。首先是培養能夠開發和生產國防人工智能的人力資源。因此,土耳其正在投資于新的大學課程、研究人員培訓、開源平臺和就業,同時支持技術競賽。第二是培訓將使用國防人工智能的軍事人員。國防人工智能也正在慢慢成為土耳其武裝部隊(Türk Silahl? Kuvvetleri,TSK)培訓活動的一部分。目前,關于土耳其打算如何培訓軍事人員使用國防人工智能的公開信息非常少。
所謂的殺手機器人已經到來,由人工智能支持的自主武器將成為未來戰爭的一個突出特征。在國際競爭者開發這些系統的背景下,在國際和多國公司的關注下,國家安全委員會關于人工智能的最后報告判斷,這些類型的無人駕駛武器可以而且應該以符合國際人道主義法律的方式使用,適用人類授權的使用條件和適當的設計和測試。人工智能支持的自主性及其軍事應用帶來了這些技術的基本風險,它們在無人武器中的使用進一步挑戰了軍隊在國際人道主義法和正義戰爭理論框架內尋求合法使用。因此,倫理學提供了優越的概念載體,以任命和授權人類授權者和使用者,并從質量上確定什么是 "適當的 "設計和測試。國防部的 "人工智能準備部隊運動 "所確立的七個人工智能工作者原型中的每一個都應該應用與角色相關的、與人工智能有關的道德規范,以充分實現《最后報告》中所確立的條件,并保留和支持控制暴力壟斷所必需的人性。對道德教育的需求單獨和集體地滲透到每個原型中,美國防部必須認識到公共/私人伙伴關系的價值,以充分考慮這些條件。
人工智能(AI)的進步為世界各地的軍隊帶來了巨大的機遇。隨著人工智能軍事系統日益增長的潛力,一些活動人士敲響了警鐘,呼吁限制或完全禁止一些人工智能武器系統相反,對人工智能武器控制持懷疑態度的人認為,人工智能作為一種在民用背景下開發的通用技術,將異常難以控制人工智能是一項具有無數非軍事應用的賦能技術;這一因素使它有別于其他許多軍事技術,如地雷或導彈由于人工智能的廣泛應用,絕對禁止人工智能的所有軍事應用可能是不可行的。然而,有可能禁止或規范特定的用例。國際社會有時在禁止或管制武器方面取得了不同程度的成功。在某些情況下,例如禁止永久致盲激光,武器控制迄今為止效果顯著。然而,在其他情況下,例如試圖限制無限制的潛艇戰或對城市的空中轟炸,國家未能在戰爭中實現持久的克制。各國控制或管制武器的動機各不相同。對于特別破壞政治或社會穩定、造成過多平民傷亡或對戰斗人員造成不人道傷害的武器,各國可設法限制其擴散。本文通過探索歷史上試圖進行軍備控制的案例,分析成功和失敗,研究了軍備控制在人工智能軍事應用中的潛力。論文的第一部分探討了現有的有關為什么一些軍備控制措施成功而另一些失敗的學術文獻。然后,本文提出了影響軍備控制成功的幾個標準最后,分析了人工智能武器控制的潛力,并為政策制定者提出了下一步措施。歷史上試圖進行軍備控制的詳細案例——從古代的禁令到現代的協議——可以在附錄a中找到。歷史告訴我們,政策制定者、學者和民間社會成員今天可以采取具體步驟,提高未來人工智能軍備控制成功的機會。這包括采取政策行動,塑造技術發展的方式,并在所有層面加強對話,以更好地理解人工智能應用可能如何在戰爭中使用。任何人工智能武器控制都將具有挑戰性。然而,在某些情況下,軍備控制在適當的條件下是可能實現的,今天的一些小步驟可以幫助為未來的成功奠定基礎。