盡管有人擔心這場戰爭會成為歷史上第一場充斥著機器制造的假圖像的戰爭,但這并沒有發生。這項技術對沖突的影響要微妙得多。
自10 月 7 日以色列-哈馬斯沖突以來的幾周內,隨之而來的沖突引發了前所未有的虛假信息浪潮,這種 "算法驅動的戰爭迷霧 "絆倒了各大新組織,也讓社交媒體公司陷入困境。
然而,在社交媒體上流傳的所有欺騙性圖片和視頻中,人工智能工具生成的內容仍然相對邊緣化。即使有人懷疑以色列-哈馬斯戰爭是否會成為第一場由虛假人工智能生成圖像主導的沖突,但這項技術已經產生了更復雜、更微妙的影響。
大西洋理事會數字取證研究實驗室(Digital Forensic Research Lab)的副編輯萊拉-馬什科爾(Layla Mashkoor)說:"肯定有人工智能圖像在流傳,但還沒到我認為它在信息傳播中發揮核心作用的程度。"
馬什科爾說,人工智能生成的虛假信息主要被激進分子用來爭取支持,或者給人一種某一方得到更廣泛支持的印象。這方面的例子包括特拉維夫一塊人工智能生成的支持以色列國防軍的廣告牌、一個以色列賬戶分享人們為以色列國防軍歡呼的虛假圖片、一個以色列有影響力的人利用人工智能生成對哈馬斯的譴責。
她說:"就我在網上看到的一般使用情況而言,主要是為了爭取支持,這并不是目前利用人工智能的最惡意的方式。"
這里的一個關鍵因素是流傳著大量的錯誤信息,這使得人工智能圖像很難影響對話。馬什科爾說:"信息空間已經充斥著真實可信的圖像和鏡頭,""這本身就充斥著社交媒體平臺。"
哈佛大學肯尼迪學院《錯誤信息評論》(Misinformation Review)最近發表的一篇論文反映了這一點,該論文探討了生成式人工智能在全球虛假信息傳播中可能扮演的角色。作者在文中寫道,對該技術影響的擔憂 "被夸大了"。是的,從理論上講,生成式人工智能能讓人們以未來的速度傳播虛假信息,但那些尋找虛假信息的人--通常是那些 "對機構信任度低......(或)有強烈黨派傾向 "的人--已經有大量耳熟能詳的虛假信息可供選擇,從陰謀論網站到 4chan 論壇。沒有更多的需求。
馬什科爾解釋說,供應方面也是如此;發明不是實施。她說:"操縱對話或操縱在線信息空間的方法有很多。而有些事情有時比較低級,或者比較容易做到,可能不需要接觸特定的技術,即使人工智能生成軟件目前很容易獲得,但如果你想找的話,肯定有更容易操縱的方法。"
肯尼迪學院論文的另一位作者費利克斯-西蒙(Felix Simon)是牛津大學互聯網研究所的一名博士生,他提醒說,他的團隊的評論并不是要結束關于可能的危害的爭論,而是試圖回擊關于人工智能將引發 "真理末日 "的說法。這類恐慌往往伴隨著新技術的出現。
拋開世界末日的觀點不談,我們更容易研究生成式人工智能是如何真正融入現有的虛假信息生態系統的。例如,加州大學伯克利分校信息學院教授哈尼-法里德(Hany Farid)認為,它比俄烏戰爭之初要普遍得多。
法里德將這種技術形容為籠罩在聲稱來自沖突現場的音頻和視頻上的 "幽靈",他每天都會接到半打到十幾個記者打來的電話,詢問其真實性。"他說,"對很多人來說,拒絕接受不方便的事實的能力在這場沖突中絕對起到了作用。
法里德列舉了多個立即招致這種否定的例子,包括人們指出各種數字證據,證明誰是導彈襲擊加沙阿赫利阿拉伯醫院的幕后黑手,以及兒童被埋在廢墟下的圖片,有些是真的,有些是假的。
其中最突出的例子是以色列總理本雅明-內塔尼亞胡在其 X 賬戶上發布的兒童被燒傷的照片。法里德說,他的團隊分析了這些照片,得出的結論是沒有使用人工智能,但懷疑的種子已經種下。當有人使用人工智能將其中一張照片中的孩子替換成一只小狗時,事情就變得更加撲朔迷離了。
換句話說,這種傳播遵循的是一種歷史模式: 錯誤的信息在社交媒體上被分享,然后通過算法和人工放大。"法里德說:"從更廣闊的角度來看,從我們對快速發展、影響巨大的世界進行推理的能力來看,我認為這場沖突比我們過去所看到的更加嚴重。"我認為人工智能是其中的一部分,但它并不完全是人工智能。這太簡單化了。"
參考來源://www.wired.com/story/israel-hamas-war-generative-artificial-intelligence-disinformation/
太空是廣闊的--軍用衛星收集的數據量也是如此。太空部隊的技術負責人說,大型語言模型的訓練有助于理清這一切。
"從人工智能的角度來看,真正的關鍵在于我們何時能對這些大型語言模型進行更實時的訓練,然后如何將其應用于控制不同的傳感器和傳感器網,"11月8日,在米切爾航空航天研究所主辦的一個小組討論會上,太空部隊技術與創新官麗莎-科斯塔博士說。
當涉及到基于人工智能的數據收集和識別時,數量與質量通常是一個挑戰。數據不一定越多越好,尤其是在作戰環境中。然而,利用現代機器學習和語言處理技術,基于計算機的實時標記和識別大量信息是完全可能的,就人工智能在作戰領域的應用而言,這是一個 "真正的游戲規則改變者",她說。
科斯塔說:"如果你是一名身處戰爭迷霧中的指揮官,獲得 9 萬條數據是無濟于事的"。"我只需要知道我需要知道的數據,我還必須有辦法把我收集到的數據,也許從任務式指揮的角度,反饋到一個更大的網絡,這樣其他人就可以使用這些數據。這就是要讓數據可以在最戰術的邊緣被發現。"
人工智能還能幫助太空部隊不僅高效地收集新數據,而且改變現有數據的分類和利用方式。
該部隊為增強型統一數據圖書館(UDL)制定了 176 項新要求,以幫助指導人工智能如何清理現有數據。
科斯塔說:"我們希望監護人能夠將數據直接放入統一數據庫,而無需通過承包商......我們希望減少需要大量人工干預的系統中產生的積壓"。科斯塔說:"這些要求非常注重如何引入數據,包括靜態數據和動態數據,處理這些數據,然后確定單個組織需要哪些信息,以及我們需要在通信管道上發送哪些信息,因為如果我們必須在戰術通信管道上發送所有數據,那是行不通的"。
太空部隊是目前美國唯一一支在數字時代開發和建設的軍事力量,在實施和開發人工智能能力方面面臨著獨特的挑戰。由于太空部隊是一支新部隊,因此與人們普遍認為的相反,它并非 "從零開始"。科斯塔說,它實際上繼承了許多舊設備、網絡和基礎設施,因此必須努力消除這些繼承下來的技術債務。
"努力實現這些能力的現代化絕對是至關重要的,因為要在老舊的基礎設施上構建無比先進的人工智能、建模與仿真、數字孿生是非常困難的。它根本無法運行,"她說。"舊的基礎設施并不具備如此大的數據吞吐量和處理能力。因此,從根本上說,我們要解決的是基礎問題"。
預計大國僅在今年就將花費 147 億美元用于人工智能的開發和能力建設,因此這項技術將在美國的現代國防戰略中發揮巨大作用。
"我們有許多團隊在負責人工智能領域的工作,"科斯塔說。"關鍵是要了解這些限制何時失效,可能會發生什么,以及我們的對手可能會如何利用這些限制"。
參考來源:National DEFENSE,Allyson Park
專家們一致認為,未來戰爭的特點將是使用人工智能(AI)技術,特別是完全自主的武器系統。這些系統--如美國空軍的 "忠誠僚機 "無人機--能夠在無人監督的情況下識別、跟蹤和攻擊目標。最近在加沙、利比亞、納戈爾諾-卡拉巴赫和烏克蘭等地的沖突中使用這些致命的自主武器系統提出了重要的法律、倫理和道德問題。
盡管人工智能被廣泛應用,但目前仍不清楚人工智能增強型軍事技術會如何改變戰爭的性質和態勢。那些最擔心將人工智能用于軍事目的的人預見到了一個烏托邦式的未來或 "人工智能啟示錄",機器將成熟到足以主宰世界。一位政策分析師甚至預測,致命的自主武器系統 "將導致世界秩序的劇變,其程度將遠遠超過核武器問世時發生的變化"。其他觀察家則質疑,鑒于通過算法模擬生物智能的復雜性,人工智能系統能在多大程度上真正取代人類。假設人工智能的這種擴展是可能的,那么依賴人工智能的軍隊將承擔數據和判斷成本,這可以說 "使戰爭中人的因素變得更加重要,而不是更加不重要"。
這些觀點雖然有助于討論人工智能對全球政治的潛在影響,但卻無法解釋人工智能究竟會如何改變戰爭的進行,以及士兵們對這一問題的看法。為了解決這個問題,作者最近研究了人工智能增強型軍事技術--整合到不同決策層面和監督類型--如何影響美國軍官對這些系統的信任,從而影響他們對戰爭軌跡的理解。在人工智能領域,信任被定義為一種信念,即一項自主技術在追求共同目標的過程中將可靠地按照預期執行。
圖:XQ-58A Valkyrie "忠實僚機 "無人駕駛戰斗飛行器由人工智能驅動,可在無人監督的情況下識別、跟蹤和攻擊目標。(圖片:美國空軍。 設計:Fran?ois Diaz-Maurin/Erik English)
為了衡量軍方對致命自主武器系統的信任程度,本文作者研究了就讀于賓夕法尼亞州卡萊爾美國陸軍戰爭學院和羅德島州紐波特美國海軍戰爭學院的軍官的態度。軍隊未來的將軍和海軍上將都將來自這些軍官,他們負責管理未來沖突中新興能力的整合與使用。因此,他們的態度對于了解人工智能在多大程度上可能塑造一個由 "戰爭機器人 "陸軍作戰的新戰爭時代非常重要。
研究有三個重要發現。首先,軍官對人工智能增強型軍事技術的信任程度不同,這取決于整合這些技術的決策層以及對新能力的監督類型。其次,軍官可以批準或支持采用人工智能增強型軍事技術,但卻不信任它們,這表明他們的態度不一致,對軍事現代化產生了影響。第三,軍官對人工智能能力的態度還會受到其他因素的影響,包括他們的道德信念、對人工智能軍備競賽的擔憂以及教育水平。總之,這些發現首次提供了軍隊對戰爭中人工智能態度的實驗證據,對軍事現代化、自主武器的政策監督和專業軍事教育(包括核指揮與控制)都有影響。
不同國家采用人工智能增強型軍事技術的決策水平(戰術或戰略)和監督類型(人類或機器)各不相同。各國可以優化算法,在戰場上執行戰術行動,或進行戰略審議,以支持總體戰爭目標。在戰術上,此類技術可以快速分析從分布在戰場上的傳感器獲取的大量數據,比對手更快地生成目標選擇,從而提高戰地指揮官的殺傷力。正如網絡安全專家喬恩-林賽(Jon Lindsay)所說,"戰斗可以被模擬為一場游戲,通過摧毀更多的敵人同時保全更多的友軍來贏得勝利"。要做到這一點,就必須大大縮短 "從傳感器到射手 "的時間線,即從獲取目標到攻擊目標的時間間隔。美國國防部的 "利馬特遣部隊"(Task Force Lima)和 "Maven計劃"(Project Maven)都是此類人工智能應用的范例。
在戰略上,人工智能增強型軍事技術還能幫助政治和軍事領導人將關鍵目標(目的)與作戰方法(途徑)和有限資源(手段)(包括物資和人員)相結合,實現同步。在未來的軍事行動中,新的能力甚至可能出現并取代人類,包括制定戰略方向和國家級戰略。正如一位專家所言,人工智能已經顯示出 "參與復雜分析和戰略制定的潛力,可與發動戰爭所需的能力相媲美"。
與此同時,各國還可以調整對人工智能增強型軍事技術的監督或控制類型。這些技術在設計上可以允許更多的人為監督,從而增強決策的自主性。這類系統通常被稱為半自主系統,即仍受人類控制。這種監督模式是目前大多數人工智能增強武器系統(如通用原子公司的 MQ-9 "死神 "無人機)運行的特點。雖然 "死神 "可以自動駕駛,根據地形和天氣條件的變化調整飛行高度和速度,但人類仍然可以做出瞄準決定。
各國還可以設計人工智能增強型軍事技術,減少人工監督。這些系統通常被稱為 "殺手機器人",因為人類不在其中。在這些應用中,人類行使的監督即使有,也是有限的,甚至在目標選擇決策方面也是如此。決策水平和監督類型的差異表明,在采用人工智能增強型軍事技術后,全球可能出現四種類型的戰爭。
圖:人工智能戰爭的四種類型。(插圖:Fran?ois Diaz-Maurin)
首先,各國可以利用人工智能增強型軍事技術在人類監督下進行戰術決策。這就是保羅-沙雷(Paul Scharre)所說的 "半人馬作戰"。"半人馬 "是希臘神話中的一種生物,上半身像人,下半身和腿像馬,因此得名。半人馬作戰強調人類為戰場目的控制機器,例如摧毀敵方武器庫等目標。
其次,各國可以利用人工智能增強型軍事技術,在機器監督下進行戰術決策。這就從字面上顛覆了半人馬戰爭,讓人聯想到古希臘的另一種神話生物--牛頭人,它有牛的頭和尾巴,人的身體。"牛頭人戰爭 "的特點是在戰斗中機器控制人類和跨領域作戰,從地面上的士兵巡邏到海洋上的戰艦編隊,再到空中的戰斗機編隊,不一而足。
第三,戰略決策加上機器監督,構成了 "人工智能將軍 "或 "單兵 "類型的戰爭。這種方法為人工智能增強型軍事技術提供了非同尋常的空間,以塑造各國的作戰軌跡,但可能會對沖突期間國家間的攻防平衡產生嚴重影響。換言之,人工智能通用型作戰可使各國在時間和空間上獲得并保持對對手的優勢,從而影響戰爭的總體結果。
最后,"馬賽克戰 "保留了人類對人工智能增強型軍事技術的監督,但試圖利用算法來優化戰略決策,以強加和利用針對同行對手的弱點。美國海軍陸戰隊退役將軍約翰-艾倫(John Allen)將這種作戰模式稱為 "超戰爭",學者們通常將其稱為算法決策支持系統。這些任務包括通過 "實時威脅預測 "過程預測敵人可能采取的行動(這是美國防部新的機器輔助分析快速存儲系統或 MARS 的任務),確定最可行、最可接受和最合適的戰略(Palantir 和 Scale AI 等公司正在研究如何做到這一點),以及調整后勤等關鍵作戰功能,以幫助軍隊在印度洋-太平洋等補給線延伸的有爭議作戰環境中獲得并保持主動權。
為了解決軍官在決策水平和監督類型不同的情況下如何信任人工智能增強型軍事技術的問題,作者于 2023 年 10 月對分配到卡萊爾和紐波特戰爭學院的軍官進行了一次調查。調查涉及四個實驗組,這四個實驗組在決策(戰術或戰略)和監督(人類或機器)方面對人工智能增強型軍事技術的使用有所不同,還有一個基線組沒有操縱這些屬性。在閱讀了隨機分配的場景后,要求受訪者用 1 分(低)到 5 分(高)來評價他們對該能力的信任度和支持度。然后,使用統計方法對數據進行了分析。
雖然樣本不能代表美國軍隊(也不能代表其分支,如美國陸軍和海軍),但它是政治學家所說的便利樣本。這有助于得出極為罕見的見解,了解軍人如何信任人工智能增強型軍事技術,以及這種信任對戰爭性質的影響。
這個樣本也是對人工智能出現后未來戰爭可能發生的變化的理解的一個艱難考驗,因為抽取了過多的野戰軍級軍官,包括少校/中校、中校/指揮官和上校/上尉。他們接受過多年的訓練,是目標瞄準方面的專家,許多人都曾參加過戰斗部署,并對無人機做出過決策。他們也是新興的高級領導人,負責評估新技術對未來沖突的影響。這些特點意味著,樣本中的軍官可能比軍隊中的其他人員更不信任人工智能增強型軍事技術,尤其是那些常被稱為 "數字原住民 "的初級軍官。
這項調查揭示了幾個重要發現。首先,基于對這些新能力的決策水平和監督類型的不同,軍官對人工智能增強型軍事技術的信任程度也不同。雖然軍官們普遍不信任不同類型的人工智能增強型武器,但他們最不信任用于單兵作戰(由機器監督的戰略決策)的能力。另一方面,他們對馬賽克戰爭(人工智能優化戰略決策的人工監督)表現出更多的信任。這表明,軍官們始終傾向于由人類控制人工智能來識別敵方活動的細微模式、生成軍事方案以應對對手的多重困境,或者在長期沖突中幫助維持戰備狀態。
與基線組相比,軍官對人工智能軍事技術的信任度在單兵作戰(18.8%)方面的下降幅度要大于馬賽克作戰(10.5%)--見圖 1。雖然與基線組相比,兩種類型的人工智能增強型戰爭中軍官的平均信任度差異在統計上都很顯著,但用于單兵作戰的新軍事能力比用于馬賽克戰爭的更明顯。此外,軍官對兩類人工智能增強型戰爭的信任概率的平均變化(即人工智能增強型軍事技術對軍官信任的平均邊際效應)僅對單兵作戰具有統計意義。總體而言,這些結果表明,軍官對人工智能增強型軍事技術的不信任程度較低,因為這些技術是在人類監督下用于輔助高層決策的。
這些關于信任度的結果在很大程度上反映了軍官的支持態度。與基線組相比,軍官對用于單兵作戰的人工智能增強型軍事技術的支持程度較低,支持率為 18.3%,統計顯著性幾乎相同。不過,與基線組相比,軍官對牛頭人戰爭的支持程度也高于其他人工智能增強型戰爭模式,支持程度的變化約為 6.5%。這表明,雖然軍官們對用于較高層次決策和人工控制的人工智能增強型軍事技術的不信任程度較低,但他們更支持用于戰術級決策和機器監督的人工智能增強型軍事技術。總之,軍官們的態度似乎反映了國王學院教授肯尼斯-佩恩(Kenneth Payne)的論點:"戰爭機器人將成為令人難以置信的戰斗員,但卻是有限的戰略家"。
圖 1. 與基線組相比,四類人工智能戰爭的信任度和支持度。注:數值代表與基線組相比,各處理組對人工智能增強型軍事技術的支持度和信任度的變化。當支持度和信任度與基線組相比下降時,數值為負。(數據:Paul Lushenko;可視化:Fran?ois Diaz-Maurin)
軍官們對在戰術層面使用人工智能增強型軍事技術的支持度相對較高,這揭示了第二個關鍵發現。軍官們對人工智能增強型軍事技術的態度可能是支持比信任更明顯。這意味著一些學者所說的 "信任悖論"。軍官們似乎支持采用人工智能增強的新型戰場技術,即使他們并不一定信任這些技術。這種現象主要與 "牛頭人 "戰爭有關(使用人工智能進行戰術決策并由機器監督)。這表明,軍官們預計人工智能增強型軍事技術將壓縮對手的機動時間和空間,同時擴大美軍的機動時間和空間,而美軍的機動時間和空間是建立在縮短 "從傳感器到射手 "的時間線基礎上的,高級軍事領導人認為這是在未來沖突中擊敗近鄰對手的關鍵。
軍官對用于戰術層面決策和機器監督的人工智能增強型軍事技術的支持程度差異大于其信任度的變化(圖 2)。此外,結果表明,軍官在信任和支持態度上的差異在統計學上具有顯著性: 軍官對用于牛頭人戰爭的人工智能增強型軍事技術的支持程度要高于對它們的信任程度。軍官支持用于牛頭人戰爭的人工智能增強型軍事技術的平均概率變化也高于其他三種類型的人工智能增強型戰爭。
綜合來看,這些結果表明美國軍官對人工智能增強型軍事技術的支持和信任存在信念偏差。盡管軍官們支持采用此類技術來優化不同層次和不同程度的監督決策,但他們并不信任因新興的人工智能能力而導致的潛在戰爭類型。這一結果表明,美國軍官可能認為有義務接受與他們自己的偏好和態度相悖的預計戰爭形式,特別是作為美國陸軍和海軍新興作戰概念基礎的牛頭人戰爭。
圖 2. 對四類人工智能戰爭的信任和支持。注:數值代表各處理組對人工智能增強型軍事技術的支持和信任的平均水平。(數據:Paul Lushenko;可視化:Fran?ois Diaz-Maurin)
其他因素進一步解釋了軍官對人工智能增強型軍事技術信任度的差異。在作者的調查中,當控制了決策水平和監督類型的差異后,發現軍官對這些技術的態度也可能受到潛在的道德、工具和教育因素的影響。
認為美國有道義上的義務在國外使用人工智能增強型軍事技術的軍官,反映出他們對這些新戰場能力的信任程度較高,這與支持的態度也是一致的。這表明,軍官對在國外使用人工智能增強型軍事技術(如在人道主義援助和救災行動中)的潛在益處的道德信念,可能有助于克服他們對采用這些能力的固有不信任。
此外,重視人工智能增強型軍事技術的工具價值并對其抱有 "害怕錯過 "態度的軍官--即他們認為其他國家采用這些技術會迫使美國也采用這些技術,以免在潛在的人工智能軍備競賽中處于不利地位--也傾向于對這些新興能力抱有更大的信任。在考慮教育時,也觀察到了類似的信任態度。結果顯示,高等教育降低了軍官對人工智能增強型軍事技術的信任度,這意味著更多或更專業的知識會讓人對未來戰爭中人工智能的優點和局限性產生疑問。最后,在這些規范性和工具性考慮的交叉點上,作者發現那些認為軍事力量對于維護全球秩序是必要的軍官也更支持使用人工智能增強型軍事技術。這些結果共同加強了早先的研究,即軍官的世界觀決定了他們對戰場技術的態度,軍官在評估他們對在國外使用武力的信任和支持時可以整合不同的邏輯。
有關美國軍官對人工智能態度的第一手證據,描繪了一幅新興技術帶來的戰爭特征演變的復雜圖景,這比一些分析家所認為的要復雜得多。然而,這些態度對作戰現代化和政策以及軍官的專業軍事教育(包括核武器管理)都有影響。
首先,盡管一些美國軍事領導人聲稱 "我們正在目睹戰爭性質的巨大變化,而這主要又是由技術驅動的",但在沖突中出現的人工智能增強型軍事技術可能更多的是一種演變,而不是一場革命。雖然加沙戰爭和烏克蘭戰爭表明軍隊作戰方式發生了重要變化,但它們也反映了關鍵的連續性。軍隊傳統上一直尋求利用新技術來提高情報能力、保護部隊、擴大戰術和作戰火力范圍,這一切在戰場上產生了 "根本的不對稱"。最近,各國使用和限制無人機方式的變化也被證明影響了公眾對合法或非法使用武力的看法,這一結果與新興的完全自主軍事技術是一致的。
然而,這些能力和其他能力對戰爭中戰略結果的影響充其量只是個疑問。戰爭中的戰略成功仍然取決于各國是否愿意犧牲士兵的生命和納稅人的錢財來實現支持國家重大利益的政治和軍事目標。事實上,在研究中,軍官們可能最支持用于牛頭人戰爭的人工智能增強型軍事技術。但是,考慮到圍繞軍事創新的炒作--如果不是夸張和恐懼--,研究參與者對新戰場技術的總體信任和支持程度仍然遠遠低于預期。這些結果表明,對于人工智能對未來沖突的范式性影響,軍事領導人應該降低他們的預期。換句話說,應該 "做好被人工智能失望的準備"。美國陸軍中校邁克爾-弗格森(Michael Ferguson)認為,由于缺乏這種清晰的視角,"時髦的理論將戰爭變成了委婉語的歌舞伎",掩蓋了殘酷的戰斗現實。戰爭是意志的碰撞,充滿人性,并受政治目標的制約。
其次,軍官對人工智能增強型軍事技術的信任態度比本研究顯示的更為復雜。事實上,正如一位前美國空軍上校、現任聯合參謀部J-8局分析師所指出的,"操作人員很難高概率地預測系統在面對適應性對手時的實際表現,這可能會削弱對系統的信任"。在另一項正在進行的研究中,發現軍官對人工智能增強型軍事技術的信任會受到一系列復雜因素的影響。這些因素包括技術規格,即其非致命目的、更高的精確度和人類監督;在平民保護、部隊保護和任務完成方面的感知有效性;以及監督,包括國內監管,尤其是國際監管。事實上,本研究中的一名軍官指出,對人工智能增強型軍事技術的信任是建立在 "遵守國際法而非美國國內法 "的基礎上的。
這些結果表明,需要對新型能力進行更多的測試和實驗,使其使用符合軍人的期望。政策制定者和軍事領導人還必須明確應鼓勵開發人工智能增強型軍事技術的作戰概念;指導其在不同領域、不同層級和不同目的中整合的條令;以及規范其使用的政策。對于后一項任務,官員們必須解釋美國的政策如何與國際法律相吻合或背道而馳,以及哪些規范是使用人工智能增強型軍事技術的條件,至少要考慮到戰地級別的軍官期望如何使用這些能力。為了填補這一空白,白宮最近宣布了美國關于負責任地在軍事上使用人工智能和自主功能與系統的政策,國防部通過了一項指令,規范美軍自主武器的開發和使用,五角大樓還設立了首席數字與人工智能辦公室,以幫助執行這一指令,不過據報道,該辦公室受到預算和人事方面的挑戰。
最后,軍事領導人還應改革專業軍事教育,讓軍官了解人工智能的優點和局限性。他們應該探索人工智能在其他戰略環境中的應用,包括核指揮與控制。美國軍方的許多舉措已經反映了這一需求,尤其是考慮到軍官們在與人工智能能力合作時猶豫不決。
在作戰方面,由美國陸軍第 18 空降軍領導的 "里奇韋項目 "旨在將人工智能整合到瞄準過程中。與之相匹配的是 "阿米莉亞 "和 "忠誠僚機",它們是海軍和空軍旨在優化人員流程和作戰的項目。在體制上,除了預先存在的認證課程外,一些分析師鼓勵將數據素養評估納入基于人才的評估計劃,如美國陸軍的指揮官評估計劃。在教育方面,軍事院校和戰爭學院都有專門研究人工智能對未來戰爭影響的教師、研究中心和選修課。美國陸軍戰爭學院最近聘請了一名數據科學教授,美國海軍學院設有 "武器、機器人和控制工程 "研究集群,美國海軍戰爭學院開設了 "戰略領導人人工智能 "選修課。
圖:MQ-9 "死神 "發射了一枚空對地導彈-114 "地獄火 "導彈,它是一種無遙控駕駛飛機,可用于情報、偵察和打擊。(圖片:美國空軍。 設計:Fran?ois Diaz-Maurin)
與此同時,在美國海軍戰爭學院和其他地方進行的兵棋推演表明,網絡能力可以鼓勵自動化和將核指揮與控制權預先下放給戰術指揮層,并激勵積極的反擊戰略。但研究結果表明,一個令人費解的結果值得更多的檢驗。從表面上看,盡管結果可能與戰爭中使用核武器的結果相同,但這些結果提出了一個令人不安的問題: 正如研究結果所表明的那樣,即使軍官們不信任人工智能,不信任或不支持使用人工智能來管理反制戰略,他們是否真的愿意支持潛在的自動化以及將核指揮與控制權預先下放給戰術級人工智能?
俄羅斯威脅在烏克蘭使用核武器,這促使美國軍方重新審視在大國戰爭中有限使用核武器的可能性。盡管這種 "回到未來 "的情景令人恐懼,而且與冷戰期間戰術核武器的擴散不謀而合,但美國戰爭學院還是重振了教育工作,為參與大規模沖突的國家之間的戰術核交換做好作戰準備。
然而,這些舉措和其他舉措在多大程度上有效地對軍官進行了人工智能教育尚不清楚。問題的部分原因在于,這些舉措將相互競爭的教學方法對立起來。一些計劃以 "一英里寬、一英寸深 "的方式調查數據掃盲和人工智能,將一門課納入更廣泛課程的一門課程中。其他計劃則提供更多的發展機會,并采用 "更窄更深 "的方法,讓少數官員自愿選擇選修課,將其放在更廣泛的課程之上。還有一些項目,如美國陸軍戰爭學院的項目,嘗試采用 "金線 "方法,將數據素養和人工智能貫穿于課程中,從而構建出更廣泛的教學計劃。然而,后一種方法迫使管理者在內容和時間上做出重要權衡,并要求教師具備深入的專業知識。
展望未來,負責協調整個美國聯合部隊培訓和教育工作的聯合參謀部 J-7 應將專業軍事教育概念化,使其成為數據素養和人工智能教學方面長期持續、不斷豐富的連續體。服役院校的預備役學生或參加后備軍官培訓團的學生應接觸有關人工智能的基本概念。初級和中級軍官應在培訓、部署和參加中級教育(如美國陸軍指揮與總參謀學院)期間將這些見解融會貫通。在被選入戰爭學院后,軍官們應與有關在戰斗中使用人工智能的概念性、規范性和工具性考量因素進行斗爭,研究表明,這些考量因素可以塑造軍隊對新技術的態度。
當然,采用這種端對端的教育方法需要時間和資金。它還容易受到不同利益相關者的特權、軍種文化和軍種間競爭的影響。然而,通過將培訓和教育與明確可行的學習成果相結合,這種整體教學模式充分利用了現有的機會,確保美軍做好準備,愿意在和平時期和未來戰爭中采用人工智能增強型軍事技術,并使其使用方式符合國際法律和規范。
參考來源:Bulletin of the Atomic Scientists,Paul Lushenko
盡管人工智能作為宣傳工具的使用一直備受關注,但烏克蘭和以色列的熱點沖突正被證明是加速人工智能和其他信息技術工具在戰場上使用的活實驗室。特別是在烏克蘭,有報道稱,人工智能甚至被用于自主瞄準打擊目標。以色列國防軍(IDF)對人工智能的使用則更為隱秘,但它肯定被用作瞄準輔助工具,以擊敗來自加沙哈馬斯的鋪天蓋地的導彈攻擊。
烏克蘭在拒絕了其他 10 個國家的人工智能項目后,開發出了自己的人工智能,因為烏克蘭確信本國開發的人工智能會更有益處,而且可以規避向商業公司報告的任何要求。烏克蘭的人工智能主要集中在龐大的攝像頭和無人機網絡提供的計算機視覺數據上。例如,名稱和目標字符識別(OCR)可以快速識別伊朗制造的 "沙赫德 "神風無人機,而不是標準導彈。 人工智能還有助于烏克蘭自己的導彈瞄準。這些人工智能工作大多由烏克蘭的 IT 陸軍完成,據說他們有 25 萬人,其中許多人在創新的 "蝸牛車庫 "里工作,而他們的預算只有西方 IT 公司的一小部分。人工智能還被用于分析俄羅斯的無線電通信和清除地雷。與此同時,俄羅斯在軍事領域的人工智能應用似乎陷入了雄心壯志與實際用途之間的脫節,尤其是自主無人機,據說供不應求。
一些通訊社報道稱,無人化嚴重的烏克蘭已經更進一步,允許配備人工智能的無人機在某些情況下不受人類控制地識別和攻擊目標,從而引發了戰場上 "機器人殺手 "的幽靈。美國軍方已經啟動了一項為期兩年的 "復制者 "計劃,準備投入數千套價格相對低廉的自主系統,主要是為了應對大國在海軍艦艇等領域的數量優勢。澳大利亞一家名為 "Anduril "的公司(以《指環王》傳奇中的一把劍命名)正在向烏克蘭提供可發射彈藥、由人工智能驅動的 "幽靈鯊 "海上無人機。
雖然烏克蘭似乎正在使用自主人工智能來攻擊坦克等大型物體,但它幾乎可以指名道姓地攻擊單個士兵。據《時代》雜志報道,備受爭議的 Clearview 公司免費提供的面部識別系統已經識別出 23 萬多名參與烏克蘭戰爭的俄羅斯士兵和官員。Clearview 系統被用于偵測滲透者、識別親俄民兵和合作者,甚至烏克蘭稱被越過俄羅斯邊境綁架的兒童。Clearview 技術標志著 "戰斗識別系統 "的首次使用,該系統有可能被用于鎖定敵方關鍵人員。例如,一架攜帶彈藥的人工智能無人機可以在原地徘徊,直到發現一名反對派將軍。
與此同時,在立志成為 "人工智能超級大國 "的以色列,人工智能技術正在協助對加沙的哈馬斯目標進行快速定位空襲--該系統被稱為 "火力工廠",但其針對軍事目標的準確性目前尚不得而知。人工智能還幫助抵御來襲的導彈襲擊,這些導彈試圖以數量優勢壓倒以色列引以為傲的 "鐵穹 "導彈防御系統。以色列國防軍(IDF)越來越多地使用人工智能,并將其應用于移動平臺,如新型 "巴拉克 "超級坦克。巴拉克 "坦克的一個主要特點是配備了 "鐵視角 "頭盔,通過一系列外部傳感器和攝像頭,坦克乘員只需按下按鈕,就能 "看穿車輛的裝甲"。
主要得益于人工智能,坦克能夠在戰場上獨立學習、適應、導航和瞄準。以色列國防軍表示,一對 "巴拉克 "坦克將能夠執行以前需要一個坦克排才能完成的任務。
大多數分析家都認為,烏克蘭和以色列正被證明是在戰斗中加速使用人工智能的前所未有的試驗基地,而這一發展在和平時期通常需要更長的時間。現在,人工智能系統正在接受來自真實戰爭的真實數據的訓練,這意味著人工智能將在下一場武裝沖突中發揮更大的作用和效力,而下一場武裝沖突很可能包括人工智能自主作戰。
參考來源:techstrong.ai
由于涉及人類對人工智能的信任、正確性、審計、知識轉移和監管等原因,可解釋人工智能目前是該領域的前沿課題。利用強化學習(RL)開發的人工智能尤其引人關注,因為從環境中學到的東西并不透明。強化學習人工智能系統已被證明是 "脆性"的,無法在安全的條件下運行,因此,無論輸入值如何,顯示正確性的方法都是人們關注的焦點。顯示正確性的一種方法是使用形式化方法(即形式化驗證)驗證系統。這些方法很有價值,但成本高昂且難以實現,因此大多數人傾向于采用其他方法進行驗證,這些方法可能不那么嚴格,但更容易實現。在這項工作中,我們展示了針對戰略戰斗游戲《星際爭霸 2》的各方面開發 RL 人工智能系統的方法,該系統性能良好、可解釋并可進行形式驗證。該系統在示例場景中表現出色,同時還能向人類操作員或設計者解釋其行為。此外,該系統還符合有關其行為的正式安全規范。
近年來,強化學習(RL)中的人工智能(AI)應用因其對以往棘手問題的廣泛適用性而備受關注[1,2]。其中,DeepMind 的 AlphaGo 系統[3] 的成功點燃了該領域研究和關注的熱情,特別是引入了將 RL 與深度神經網絡 (DNN) 相結合的新技術,即深度強化學習 (DRL)。然而,盡管在 RL 和 DRL 的總體領域內取得的進步不斷提高了這些方法的可擴展性和性能,但驗證和可解釋性工作卻沒有得到同等的關注。人們一直在努力采用性能卓越的 DRL 解決方案,并在事后提高可解釋性和可信度。這方面的一個例子是 DARPA 的 XAI 計劃,該計劃旨在研究和確定人工智能中可解釋性的重要性和使用情況[4]。他們得出的結論是,許多 DRL 解決方案都很脆弱、無法驗證,而且對人類設計者/操作者來說也不透明,而人類設計者/操作者可能想要審核、驗證或從智能體學到的知識中提取知識。
模糊推理系統(FIS)是一種利用模糊邏輯和推理規則將輸入映射到輸出的函數近似器[5],它具有一些適合 XAI 的特性,但與 DNN 相比還有其他潛在的缺點,即可擴展性。基于模糊邏輯的系統因其近似能力[6]、易于利用專家知識實現[7]、對輸入噪聲的魯棒性[8]、對人類的可解釋性和透明度[9]以及可正式驗證的能力[10],長期以來一直被用于控制系統開發。然而,與輸入數量相關的可擴展性問題限制了其潛在應用。為了緩解可擴展性問題,同時保留可解釋性和近似能力,2015 年提出了模糊樹[11],將多個 FIS 組合成網絡或樹狀結構。
遺傳算法是一類無梯度搜索算法,它通過變異和重組在若干代內進化解決方案,并根據適應度函數中的一個或多個指標評估其適應度。長期以來,GA 在許多領域都發揮了巨大作用,在與 FIS 參數優化相關的大量工作中也是如此[12]。將模糊樹與遺傳算法相結合,產生了遺傳模糊樹(GFTs)[11],這是一種強大的組合,使用了一種可解釋、可正式驗證的函數近似器和無梯度優化器,并已應用于監督[13]和強化學習領域[14]的多個復雜案例。Thales 的 GFT 軟件工具包包括一個模糊邏輯引擎 Psion 和一個最先進的基于遺傳算法的優化工具 EVE[15] 。它的優勢在于易于使用,可以找到壁時間較短的解決方案,而且由于無梯度優化的特性,適用范圍很廣。阿爾法系統[14]可能是之前最著名的應用案例,它是一種超人類人工智能,可在高保真模擬中與人類飛行員專家進行超視距空對空交戰[14]。
GFT 的另一個優點是可以使用形式化方法進行驗證。形式化方法通常被定義為 "用于系統開發、規范和驗證的數學上嚴格的技術"。許多方法和技術都屬于形式方法的范疇,包括布爾可滿足性問題(SAT)[16]、可滿足性模態理論(SMT)、模型檢查、定理證明、可達性分析等。形式化驗證是利用形式化方法來驗證系統的正確性。一般來說,驗證涉及對系統正確性的信心,而形式驗證則將傳統驗證方法(如蒙特卡洛評估)擴展到正確性的最終證明。在人工智能和人工智能領域,形式驗證的應用一直進展緩慢,這主要是由于隨著 DNN 規模的不斷擴大,證明 DNN 屬性的難度也在不斷增加。
在這項工作中,我們創建了一個使用 GFT 結構的智能體,然后使用強化學習對其進行訓練,使其能夠游玩《星際爭霸 2》中的特定場景。請注意,本研究并不分析整場標準的《星際爭霸 2》比賽。相反,本研究的重點將放在具體的控制應用上,同時關注可解釋性和形式可驗證性,當然也可以通過使用 GFT 方法來研究整個標準的《星際爭霸 2》游戲。這項研究的目的并不是要證明基于模糊邏輯的人工智能方法與其他任何方法之間的性能差距,而是要證明如何以保持可解釋性和形式可驗證性的方式創建這些系統。這些能力是任務/安全關鍵型應用非常需要的,而且往往是必需的。之所以使用星際爭霸 2,是因為它是現代 RL 研究中常用的環境,允許創建可公開共享的任務/安全關鍵用例,并允許擴展這項工作,以便與其他高性能 RL 方法進行比較。
GFT 采用結構初始化,在適當情況下給定初始參數值,然后通過游戲中的互動在訓練集中進行訓練。GFT 的結構可以通過提取激活的規則和成員函數來解釋輸出動作。然后創建系統行為規范,并使用形式化方法[17] 對系統進行驗證。在違反規范的情況下,會返回反例,顯示違反規范的地方,然后進行修正。然后對修正后的系統進行驗證,以確保其不違反規范,從而顯示出所制定的行為規范的明確正確性。
本研究開發了四種規范,這絕不是一個詳盡的潛在集合。這項工作將展示學習能力,以解決一類特別困難的問題,展示潛在的可解釋性可能性,并證明遵守了一系列相關規范。本研究的主要目的是展示一個基于模糊邏輯的人工智能系統實例,該系統可以在任務/安全關鍵場景中正式驗證是否符合安全規范。
本文其余部分的結構如下。第 2 節詳細介紹了針對 SC2 中的特定場景創建、訓練和驗證 GFT 的方法。第 3 節展示了結果,包括 RL 訓練、根據規范(和生成的反例)進行的驗證,以及為確保符合規范而進行修改后的結果。第 4 節深入討論了這些結果,并就擴展和未來工作提出了想法。最后,第 5 節簡要總結了本研究的工作、結果和影響。
圖 3. 研究模型中使用的三個獨立的模糊推理系統(FIS),分別用于 Marine Movement Control、Marine Firing Control 和 Medivac Healing Control。藍色為標準化輸入,紅色為 FIS,綠色為標準化輸出。
在不到一年的時間里,Chat-GPT 已成為一個家喻戶曉的名字,反映了人工智能驅動的軟件工具,特別是生成式人工智能模型的驚人進步。伴隨著這些發展,人們頻頻預測人工智能將徹底改變戰爭。在人工智能發展的現階段,人們仍在探索可能的參數,但軍方對人工智能技術的反應是不可否認的。美國網絡安全和基礎設施安全局局長詹-伊斯特里警告說,人工智能可能是 "我們這個時代最強大的武器"。雖然自主武器系統在有關人工智能軍事應用的討論中往往占據主導地位,但人們較少關注在武裝沖突中支持人類決策的系統中使用人工智能的問題。
在這篇文章中,紅十字國際委員會軍事顧問魯本-斯圖爾特(Ruben Stewart)和法律顧問喬治婭-海因茲(Georgia Hinds)試圖批判性地審視人工智能用于支持戰爭中武裝人員決策時被吹噓的一些益處。其中特別討論了減輕對平民的傷害和節奏問題,尤其關注武裝沖突中對平民的影響。
即使在最近的炒作之前,人們可能已經以各種形式使用過人工智能,事實上,人們可能正在使用主要由人工智能驅動的設備閱讀這篇文章。如果您使用指紋或人臉打開過手機,參與過社交媒體,使用手機應用程序規劃過旅程,或者在網上購買過披薩和書籍等任何物品,那么這些都可能與人工智能有關。在很多方面,我們對人工智能已經習以為常,常常在不知不覺中將其應用到我們的日常生活中。
但如果人臉識別軟件被用來識別要攻擊的人呢?如果類似的軟件不是尋找最便宜的航班將你送往目的地,而是尋找飛機對目標實施空襲呢?或者,機器推薦的不是最好的披薩店或最近的出租車,而是攻擊計劃?這顯然是開發基于人工智能的國防決策平臺的公司 "即將到來 "的現實。
這類人工智能決策支持系統(AI-DSS)是一種計算機化工具,使用人工智能軟件顯示、綜合和/或分析數據,并在某些情況下提出建議,甚至預測,以幫助人類在戰爭中做出決策。
AI-DSS 的優勢往往體現在提高態勢感知能力和加快決策周期上。下文將根據人工智能系統和人類的局限性,并結合現代沖突的規劃過程,對這些說法進行解讀。
新技術在戰爭中的出現往往伴隨著這樣的說法,即新技術的整合將減少對平民的傷害(盡管在實踐中并不總是如此)。就 AI-DSS 而言,有人聲稱這種工具在某些情況下有助于更好地保護沖突中的平民。當然,國際人道主義法(IHL)規定,軍事指揮官和其他負責攻擊的人員有義務根據他們在相關時間所掌握的所有來源的信息做出決定。特別是在城市戰爭的背景下,紅十字國際委員會建議,有關平民和民用物體存在等因素的信息應包括互聯網等公開來源資料庫。此外,具體到人工智能和機器學習,紅十字國際委員會認為,只要人工智能-DSS工具能夠促進更快、更廣泛地收集和分析這類信息,就能使人類在沖突中做出更好的決策,從而最大限度地減少對平民的風險。
與此同時,任何 AI-DSS 的輸出都應在多個來源之間進行交叉核對,以防止信息有偏差或不準確。雖然這對沖突中的任何信息來源都是如此,但對AI-DSS 尤為重要;正如紅十字國際委員會先前所概述的那樣,由于系統的功能以及人類用戶與機器的交互方式,要核實輸出信息的準確性可能極其困難,有時甚至是不可能的。下文將進一步闡述這些方面。
最近關于人工智能發展的報道經常包括人工智能失敗的例子,有時是致命的。例如,軟件無法識別或錯誤識別膚色較深的人,推薦的旅行路線沒有考慮最新的路況,以及自動駕駛汽車造成死亡的例子。其中一些失誤是可以解釋的,但不可原諒,例如,因為其輸出所依據的數據有偏差、被破壞、中毒或根本不正確。這些系統仍然很容易被 "欺騙";可以使用一些技術來欺騙系統,使其對數據進行錯誤分類。例如,可以想象在沖突中使用對抗性技術來影響瞄準輔助系統的源代碼,使其將校車識別為敵方車輛,從而造成毀滅性后果。
隨著人工智能被用于執行更復雜的任務,特別是當多層分析(可能還有決策和判斷)不斷累積時,驗證最終輸出以及導致最終輸出的任何錯誤的來源就變得幾乎不可能。隨著系統越來越復雜,出現復合錯誤的可能性也越來越大--第一個算法建議中的一個微小不足會被反饋到第二個算法過程中并造成偏差,而第二個算法過程又會反饋到第三個算法過程中,依此類推。
因此,人工智能系統經常表現出用戶或開發者無法解釋的行為,即使經過大量的事后分析也是如此。一項針對備受矚目的大型語言模型 GPT-4 的研究發現,三個月后,該模型解決數學問題的能力從 83.6% 銳減至 35.2%,令人費解。不可預測的行為也可以通過強化學習產生,在強化學習中,機器已被證明能夠非常有效地采用和隱藏不可預見的行為,有時甚至是負面行為,從而戰勝或超越人類:無論是通過撒謊贏得談判,還是通過走捷徑擊敗電腦游戲。
AI-DSS 不會 "做出 "決定。不過,它們確實會直接影響人類的決策,而且往往影響很大,其中包括人類在與機器交互時的認知局限性和傾向性。
例如,"自動化偏差 "指的是人類傾向于不批判性地質疑系統的輸出,或搜索矛盾的信息--尤其是在時間緊迫的情況下。在醫療保健等其他領域已經觀察到了這種情況,經驗豐富的放射科醫生的診斷準確性受到了人工智能錯誤輸出的不利影響。
在醫療領域,不準確的診斷可能是致命的。同樣,在武裝沖突中,過度信任也會帶來致命后果。2003 年,美國的 "愛國者 "防御系統兩次向友軍聯軍飛機開火,原因是這些飛機被誤認為是攻擊導彈。在隨后的調查中,發現的主要缺陷之一是 "操作員接受了信任系統軟件的培訓"。
這些運作方式,再加上人機互動的這些特點,有可能增加結果偏離人類決策者意圖的可能性。在戰爭中,這可能導致意外升級,無論如何都會增加平民和受保護人員的風險。
人工智能在軍事上被吹捧的一個優勢是,它能讓用戶的決策節奏快于對手。節奏的加快往往會給平民帶來額外的風險,這就是為什么要采用 "戰術忍耐 "等降低節奏的技術來減少平民傷亡。放慢決策節奏,包括為決策提供信息的過程和評估,可以讓系統和用戶有額外的時間:
2021 年 8 月 29 日,在喀布爾大撤退期間,無人機對喀布爾進行了臭名昭著的空襲,造成 10 名平民死亡,中央司令部指揮官將這次空襲歸咎于 "我們沒有多余的時間來分析生活模式和做其他一些事情"。
"生活模式"分析是一些軍隊對平民和戰斗人員的存在和密度、他們的時間表、在考慮攻擊的地區內和周圍的移動模式等進行評估的描述。這是減少平民傷害的重要方法。然而,對生活模式的評估只能實時進行--平民創造這種模式需要時間--無法加快。
試圖根據歷史趨勢預測未來行為的做法無法顧及當前情況。在這個例子中,回顧舊的情報資料,特別是喀布爾的全動態視頻,并不能反映出由于塔利班接管和正在進行的疏散工作而發生的形勢和行為變化。
正如預防平民傷亡指南所解釋的那樣,"等待和觀察的時間越長,你就會對發生的事情了解得越多,也就能更好地做出使用致命或非致命手段的決定",或者正如拿破侖所說的那樣 "慢慢給我穿衣服,我趕時間"--有時,刻意為之才能達到最佳效果。
放慢決策速度的另一個原因是,人的理解能力,尤其是對復雜和混亂情況的理解能力,需要時間來培養,也需要時間來斟酌適當的應對措施。時間越少,人理解局勢的能力就越弱。軍事規劃流程旨在讓指揮官和參謀人員有時間考慮作戰環境、對手、友軍和平民,以及所考慮的行動方案的利弊。正如德懷特-D-艾森豪威爾將軍所解釋的,"在準備戰斗的過程中,我總是發現計劃是無用的,但規劃是不可或缺的"。
當人類決策者考慮由 AI-DSS 生成或 "推薦 "的行動方案時,這一點就會產生影響,因為相對于對手而言,AI-DSS 加快行動節奏的能力可能是被利用的最主要原因。如果人類計劃人員沒有經歷或甚至完全不了解 AI-DSS 提出的計劃的制定過程,那么他對局勢、各種影響因素和相關人員的了解可能就會很有限。 事實上,人們已經注意到,使用自動輔助工具會降低人類用戶的警覺性,損害他們保持態勢感知的能力。這一點應從如何影響遵守國際人道主義法義務的角度加以考慮;盡一切可能核查目標的義務表明,需要最大限度地利用現有情報、監視和偵察資產,以獲得在當時情況下盡可能全面的態勢感知。
除了能讓指揮官看到和了解更多情況外,額外的時間還能讓指揮官制定戰術備選方案,包括決定不使用武力或緩和局勢。額外的時間可以讓其他單元和平臺脫離接觸、重新定位、重新補給、計劃和準備協助即將到來的行動。這為指揮官提供了更多選擇,包括可更好地減少平民傷害的替代計劃。額外的時間可能允許采取額外的緩解措施,如發布警告,從平民的角度來看,這也允許他們實施應對機制,如躲避、重新補給食物和水或撤離。
正如軍事規劃理論中的一個例子所解釋的那樣,"如果時間充裕,而且更快采取行動也沒有好處,那么就沒有什么借口不花時間進行充分規劃"。正如北約的《保護平民手冊》所回顧的那樣,"如果有時間按照國際人道主義法的原則對部隊或目標進行蓄意規劃、區分和精確瞄準,那么CIVCAS[平民傷亡]的可能性就會大大降低"。
"戰爭是混亂的、致命的,從根本上說是人類的努力。它是人與人之間的意志沖突。所有戰爭本質上都是為了改變人類的行為,每一方都試圖通過武力改變另一方的行為"。"戰爭源于人類的分歧,在人類群體之間展開,由人類控制,由人類結束,而在戰爭結束后,人類又必須共存。最重要的是,沖突中的苦難由人類承擔。
這一現實,乃至國際人道主義法本身,都要求在武裝沖突中開發和使用人工智能時采取 "以人為本 "的方法--努力在本已不人道的活動中維護人性。這種方法至少有兩個關鍵方面:(1) 關注可能受影響的人;(2) 關注使用或下令使用人工智能的人的義務和責任。
在研究可能受影響的人時,不僅要考慮在使用 AI-DSS 獲取軍事優勢時減少對平民的風險,還要考慮專門為保護平民的目標設計和使用這類工具的可能性。在這方面已經提出的可能性包括識別、跟蹤和提醒部隊注意平民人口存在的工具,或識別在武裝沖突中表明受保護地位的特殊標志的工具(見這里和這里)。
確保人類能夠履行其在國際人道主義法下的義務意味著 AI-DSS 應為人類決策提供信息,但不能取代人類對武裝沖突中人們的生命和尊嚴構成風險的判斷。在自主武器系統方面,各國已廣泛認識到這一點(例如,見此處、此處和此處)。遵守國際人道主義法的責任在于個人及其指揮官,而非計算機。正如美國國防部《戰爭法手冊》所述:"戰爭法并不要求武器做出法律決定......相反,必須遵守戰爭法的是人。中國在《新一代人工智能倫理規范》中更普遍地強調了這一點,堅持 "人是最終的責任主體"。
關于 AI-DSS 必然會加強平民保護和遵守國際人道主義法的說法必須受到嚴格質疑,并根據這些考慮因素進行衡量,同時考慮到我們對系統局限性、人機互動以及行動節奏加快的影響的了解。
參考來源:International Committee of the Red Cross
人工智能(AI)究竟是什么?它與電子戰(EW)的未來有什么關系?人工智能正在改變我們所做的一切嗎?如果忽視人工智能,那將是一個錯誤。眾所周知,特斯拉采用了人工智能算法,特別是卷積神經網絡、遞歸神經網絡和強化學習。從根本上說,這些算法可以匯編來自多個傳感器的數據,分析這些數據,然后做出決策或向最終用戶提供信息,從而以驚人的速度做出決策。這一過程以指數級的速度發生,超過了人腦的處理速度。因此,從根本上說,人工智能是機器像人類一樣執行認知功能的能力。
人工智能可以駕駛汽車、撰寫學期論文、以適當的語氣幫你創建電子郵件,因此,它在軍事領域的潛在應用也是理所當然的。具體來說,就是整合人工智能電子戰及其提供的潛在能力轉變。雖然 "電子戰 "一詞已經使用了相當長的一段時間,但將人工智能注入這一領域為提高速度和殺傷力和/或保護開辟了新的途徑。
電子戰包含一系列與控制電磁頻譜有關的活動,傳統上一直依賴人類的專業知識來探測、利用和防御電子信號。然而,現代戰爭的速度和復雜性已經超出了人類操作員的能力。這正是人工智能的優勢所在,它帶來的一系列優勢將徹底改變電子戰的格局。
將人工智能融入電子戰的首要好處之一是增強了實時處理和分析海量數據的能力。在數字時代,戰場上充斥著來自通信網絡、雷達系統和電子設備等各種來源的大量信息。人工智能算法可以迅速篩選這些數據,識別出人類操作員可能無法識別的模式、異常情況和潛在威脅。這種能力不僅能提高威脅檢測的準確性,還能大大縮短響應時間,使友軍在快速演變的局勢中獲得關鍵優勢。
在這種情況下,人工智能賦能的兵力倍增器就出現了,它能在面對復雜多變的局勢時做出更高效、更有效的決策。現代戰場會產生大量電子信號,需要快速準確地識別。人工智能驅動的算法擅長篩選這些數據、辨別模式,并識別在以往場景中可能被忽視的信息。這使兵力能夠迅速做出反應,以更快的速度做出關鍵決策。
此外,人工智能還具有適應和學習新信息的能力,這一特性在電子戰領域尤為有利。電子威脅和反制措施處于不斷演變的狀態,需要反應迅速和靈活的策略。人工智能驅動的系統可以根據不斷變化的情況迅速調整戰術,持續優化性能,而無需人工干預。這種適應性對于對抗復雜的電子攻擊和領先對手一步至關重要。
人工智能與電子戰的融合還為指揮官提供了更先進的決策工具,比歷史標準更詳細、更快速。人工智能算法可以分析各種場景,考慮地形、天氣以及友軍和敵軍兵力等因素。這種分析為指揮官提供了全面的戰場情況,使他們能夠在充分了解情況的基礎上做出決策,最大限度地提高任務成功的概率,最大限度地降低潛在風險。此外,人工智能驅動的模擬可以演繹不同的場景,使軍事規劃人員能夠完善戰略,評估不同行動方案的潛在結果。美國今年早些時候進行了一次以印度洋-太平洋地區為重點的演習,將大語言模型(LLM)作為規劃和決策過程的一部分。一位演習成員稱贊了系統 "學習 "的成功和速度,以及系統成為戰場上可行資源的速度。另一個例子是,利用已輸入人工智能系統的數據對目標清單進行優先排序,人工智能系統能夠考慮瞄準行動、網絡,從而比操作人員更快、更全面地了解戰區情況。
不過,必須承認,要完成人工智能整合,還存在一些潛在的障礙。首先,美國防部大多數實體無法直接獲得人工智能技術。大多數從事前沿人工智能工作的組織都是商業公司,它們必須與軍事系統合作或集成。這可能會受到美國現行預算和研發流程的阻礙。此外,美國的這些流程進展緩慢,人工智能技術很有可能無法融入美國兵力。還有潛在的道德和安全考慮。隨著人工智能系統在探測和應對威脅方面承擔更多責任,人類的監督和控制水平也會出現問題。為了與戰爭法則保持一致,需要有人工參與,而不是完全依賴人工智能來做出攻擊決策。任何時候,只要有可能造成人員傷亡、附帶損害或其他問題,就需要人類做出有意識的知情決策,而不能任由人工智能自生自滅。在人工智能自主決策和人工干預之間取得適當的平衡至關重要,以防止意外后果或機器在沒有適當問責的情況下做出生死攸關的選擇。
最后,人工智能的整合引發了對潛在網絡漏洞的擔憂。雖然人工智能可以提高電子戰的速度和準確性,但它也為試圖操縱或破壞人工智能系統的惡意行為者帶來了新的攻擊途徑。要保護這些系統免受網絡威脅,就必須采取強有力的整體網絡安全方法,同時考慮到人工智能驅動的電子戰的硬件和軟件層。
最后,不可否認,將人工智能融入戰爭預警的潛在戰略利益是巨大的。人工智能處理海量數據、適應不斷變化的條件和支持決策過程的能力有可能重塑現代戰爭的格局。隨著兵力越來越依賴技術來保持在數字化作戰空間中的優勢,負責任地開發和部署人工智能驅動的預警系統將是必要的。 如何在技術創新、人工監督和安全措施之間取得適當平衡,將決定能在多大程度上實現這些優勢,同時又不損害戰略目標或道德考量。美國采購系統面臨的挑戰也將在人工智能集成中發揮關鍵作用。人工智能在電子戰中的變革力量有可能改變游戲規則。問題是:它會嗎?人工智能將如何融入新型 EC-37B Compass Call 和 NexGen 干擾機等未來平臺?陸軍是否會將人工智能納入其推動營級決策的努力中?這些都是值得探討的問題,但有一點是肯定的:電磁作戰界必須繼續接受創新思維,因為我們知道未來的戰斗將在電磁頻譜中開始和結束。人工智能將在現代戰爭的新時代發揮關鍵作用。
美國陸軍近年來提出了 "信息優勢 "的概念,即士兵有能力比對手更快地做出決策和采取行動。陸軍現在認為,人工智能是實現這一戰略的關鍵。
人工智能的普及程度和能力都有了爆炸式的增長,ChatGPT 等大型語言模型和其他人工智能系統也越來越容易為大眾所使用。在工業界和美國防部,許多人都在探索將該技術用于軍事應用的可能性,陸軍也不例外。
陸軍賽博司令部司令瑪麗亞-巴雷特(Maria Barrett)中將說,人工智能具有 "真正、真正推動變革的最大潛力......但它也給我們帶來了非常、非常現實的挑戰,以及整個信息維度的挑戰"。
負責政策的國防部副部長辦公室副首席信息作戰顧問、陸軍少將馬修-伊斯利(Matthew Easley)說,軍方正在經歷 "從傳統的信息作戰,即我們如何將不同的信息效果結合起來,為我們的行動創造我們想要的協同效應 "到新的信息優勢概念的轉變。
伊斯利在 6 月份美國陸軍協會的一次活動中說,這一概念的目標是確保陸軍在信息環境中掌握 "主動權","能夠看清自己、了解自己并更快地采取行動"。他說,信息優勢包括五大功能:輔助決策;保護士兵和軍隊信息;教育和告知國內受眾;告知和影響國外受眾;以及開展信息戰。
他補充說:"所有這五個領域都可以利用人工智能和機器學習取得一定效果"。
伊斯利在 2019 年幫助建立了陸軍人工智能兵力工作組。但他說,在他任職期間,該小組在全軍范圍內采用人工智能時遇到了兩個挑戰:遷移到混合云環境和移動設備。
陸軍將 "繼續擁有大量的傳統數據中心,但隨著我們需要激增,我們需要在全球范圍內移動--云環境使我們更容易開展全球業務,"他說。根據陸軍預算文件,陸軍正在為2024財年申請4.69億美元,用于向云過渡和數據環境投資。
巴雷特在 AUSA 會議上說: "沒有數據存儲庫,就無法實現人工智能和機器學習"。陸軍賽博司令部對其大數據平臺進行了大量投資,將 "進入我們平臺的數據流數量翻了一番,解析器翻了一番,我們現在存儲的數據存儲量也翻了一番,"她說。她說:"我們將繼續沿著這條軌跡前進,這意味著我們已經準備好開始利用 "人工智能能力"。
她說,對于指揮部來說,人工智能主要用于網絡防御,但在 "信息層面 "也有應用。"引入各種不同的信息源......并真正了解特定環境的信息基線,這意味著什么?所有這些都對我們大有幫助,而且我認為這只會不斷擴大"。
伊斯利說,移動設備的普及大大增加了潛在的饋送量,但也會擴大對手的潛在目標。這些設備 "有很多功能,也有很多漏洞。我們必須考慮并使用人工智能......既能保護我們自己,又能管理我們擁有的大量數據"。
陸軍參謀長詹姆斯-麥康維爾(James McConville)將軍在6月的一次媒體吹風會上說,在潛在沖突中,人工智能可以幫助士兵整理所有數據,并將正確的信息 "送到箭筒中"。
根據陸軍預算文件,陸軍正在為2024財年的人工智能和機器學習申請2.83億美元,其中包括用于增強自主實驗的研發資金,以及為集成視覺增強系統、可選載人戰車(最近被重新命名為XM30機械化步兵戰車)、遠程戰車、TITAN地面站和 "具有邊緣處理功能的更智能傳感器 "等系統的人工智能/機器學習項目活動提供資金。
"陸軍部長克里斯蒂娜-沃穆斯(Christine Wormuth)在簡報會上說:"我們當然在尋找如何利用人工智能使我們的能力(包括新能力和正在開發的能力)更加有效。她說,陸軍尤其在 "融合項目"(Project Convergence)演習中使用了人工智能目標定位程序。
融合項目是陸軍對國防部聯合全域指揮與控制概念的貢獻,該概念旨在通過網絡將傳感器和射手聯系起來。陸軍發布的一份新聞稿稱,在2022年底的上一次演習中,參演人員使用了陸軍的 "火風暴 "系統--"一種人工智能驅動的網絡,將傳感器與射手配對",向參加實驗的澳大利亞兵力發送情報。
麥康維爾說,軍方還將人工智能用于預測性后勤工作。他說:"我們正在使用人工智能來幫助我們預測所需的零部件,這對龐大的軍隊來說意義重大"。
除了簡單的維護之外,預測性后勤還涉及陸軍的不同供應類別,如燃料和彈藥,"以及我們如何看待消耗,如何預測在哪里可以將正確的供應品送到需要的地方",負責維持的陸軍副助理部長蒂莫西-戈德特(Timothy Goddette)說。
戈德特在國防工業協會戰術輪式車輛會議上說:"我們的目標是提前計劃這些物資需要運往何處或何時需要進行維護,而不是作出反應。
他說:"如果計劃的維護是正確的,但條件是錯誤的--如果你處于低[操作]節奏,我們如何改變計劃的維護?如果你處于炎熱、寒冷或腐蝕性環境中,你該如何改變維護計劃?這可能正是我們需要思考的地方。"
他補充說,在數字化世界中,陸軍必須 "學會如何使用數據和以不同的方式使用數據"。"我承認,我們還沒有完全弄懂[預測性后勤]。我們確實需要大家的幫助來思考這個問題。
McConville 和 Wormuth 說,人工智能未來的其他應用還包括人才管理和招聘。"Wormuth 說:"人工智能可能有辦法幫助我們以人類不擅長的方式識別優質線索或潛在客戶。
不過,McConville 強調,在使用人工智能時,"人在回路中 "非常重要。
他說:"實際做所有工作的可能不是人,但我們會看到人工智能幫助我們更好地完成工作。"但與此同時,我們也希望有人能說'發射這個武器系統',或者至少能考慮到這一點。"
巴雷特贊同麥康維爾的說法:"每個人都會把[人工智能]當成一臺機器。但是......你猜怎么著:每個玩過 ChatGPT 的人--是的,是人在喂養那臺機器。"
伊斯利說,隨著陸軍引入人工智能系統,士兵們可以做四件事來幫助技術正常成熟:收集和注釋數據;使用這些數據訓練人工智能模型;使用這些模型來檢驗它們是否有效;以及幫助改進模型。
他說,軍方在收集數據方面做得 "很好","但軍隊中仍有很多數據我們沒有完全捕捉到......我們可以利用這些數據來訓練我們自己的大型語言模型。"要使這些模型對我們的領域有效,我們必須在我們的數據上進行訓練。因此,我們必須研究:我們的人力資源數據是什么?我們的人力資源數據是什么?我們的醫療數據是什么?我們的業務數據是什么?我們的情報數據是什么?我們如何在受控環境下利用這些數據來建立更好的模型?
他說,這些模型必須根據軍隊的數據進行快速訓練和再訓練,以便不斷改進。他以自己手機上的餐廳推薦算法為例,"它之所以這么好,是因為它有10年的時間,我只告訴它我喜歡世界上哪些餐廳"。
伊斯利說,雖然他們將來可能會收到人工智能的推薦,但武器系統將始終由人類來管理,但 "其他系統,如果不是那么關鍵的話......[機器]可以做出決定"。不過,他補充說,人類將對人工智能進行培訓,使其在執行陸軍任務時可以信賴。"他說:"你不會質疑你的地圖算法告訴你在城市中往哪里走--你知道該算法比你掌握更好的信息。但是,"我們如何獲得數據背后的真實性,讓我們能夠相信模型的內容、模型是如何訓練的,以及我們是如何使用它的?我認為這都是......人類的努力"。
參考來源:NDIA網站;作者:Josh Luckenbaugh
雷達和電子戰(EW)等軍事應用測試和測量系統的設計人員正在加緊使用人工智能(AI)解決方案,以便更好地測試認知功能。同時,現代數字架構的采用也推動了軍事測試需求的增長。
人工智能(AI)和機器學習(ML)工具正在進入國防系統的幾乎每一個領域,從制造、雷達系統開發、航空電子設備到軟件開發和測試測量系統。
NI 公司(德克薩斯州奧斯汀)航空航天、國防與政府研究與原型開發解決方案營銷經理 Jeremy Twaits 說:"人工智能不僅影響測試系統本身的能力,還影響我們的測試方式。"人工智能使系統更具適應性,其行為會根據訓練數據集發生變化。有了人工智能,工程師必須了解系統性能的界限,并使用測試方法來滿足系統部署時可能遇到的最關鍵和最可能的情況。
人工智能工具還能在電子戰系統中實現認知功能。羅德與施瓦茨公司(Rohde & Schwarz,馬里蘭州哥倫比亞市)航空航天與國防市場部雷達與 EW(電子戰)全球市場部門經理 Tim Fountain 說:"通過為客戶配備工具,提供高帶寬、長時間射頻記錄和回放系統,用于在操作相關的射頻環境中訓練認知系統,從而幫助客戶交付支持 AI/ML 的系統"。
他繼續說:"此外,認知系統還可用于提取和分類 ELINT(電子情報)接收器捕獲的寬帶數據中的新型發射器。我們的客戶一再告訴我們,他們面臨的一個挑戰是,他們并不缺少來自采集活動的數據,但對這些信號進行標記、分類、排序和地理定位仍然是一項人工任務,由于時間和預算壓力,分析人員往往會忽略這項任務"。
軍事用戶對數據量的要求只增不減,這給系統設計人員和系統測試人員帶來了更大的壓力。
Keysight 航空航天/國防和政府解決方案集團(加利福尼亞州圣克拉拉市)總經理 Greg Patschke 說:"隨著高速捕獲技術的發展,我們能夠收集的數據量正以指數級速度增長。這些大型數據集帶來了分析信息和得出結果的挑戰。目前,我們正在使用無監督機器學習工具來加快洞察之路。我們可以使用智能算法來識別感興趣的信號,對信息進行分類,并識別數據中的模式和異常。利用這項技術為我們打開了一扇通往全新數據分析世界的大門,而這在以前是不可行的"。
由于系統的復雜性,在定義測試場景的同時,通過人工智能系統實現適應性將至關重要。
Twaits指出:"幾乎不可能在每一種可能的情況下進行測試,但業界必須定義關鍵的測試場景和模型。"由于真正測試和信任人工智能系統的動態性和挑戰性,測試平臺必須具備適應性,以應對未來的測試場景和要求。例如,NI 的 COTS(現成商用)硬件可以與 MathWorks 的軟件工具(如深度學習工具箱)相連接。NI 和 MathWorks 合作展示了如何利用軟件定義無線電 (SDR) 對訓練有素的神經網絡進行空中測試和評估,以對雷達和 5G 新無線電信號進行分類。
人工智能在測試解決方案中的應用得益于在軟件中植入測試和測量系統功能的能力。
Patschke 說:"在測試和測量行業,不斷需要改進測量軟件的功能。EW 測試的專業性往往要求軟件具有一定程度的創新性和靈活性,而這在其他行業通常是看不到的。例如,與雷達/預警機有關的到達角(AOA)測試需要軟件和硬件的無縫配對,以適當應用實時運動學并準確計算 AOA 結果"。
他繼續說:"幾年前,[測試]軟件還不具備這種功能,但隨著客戶要求和需求的變化,像 Keysight 這樣的公司已經進行了調整,以滿足這些需求。客戶要求系統具有靈活性,以便在新的挑戰出現時滿足他們的需求。滿足這些需求的唯一方法就是不斷升級我們的軟件,盡可能增加新的功能,這樣就可以不斷地將硬件重新用于多種用途"。
對標準化和快速周轉的需求也需要更多的軟件功能。
Fountain 說:"客戶告訴 R&S 最緊迫的問題是,他們需要快速、可驗證和可重復的測量,而且通常是基于標準的測量。"客戶通常沒有時間或內部專業知識來開發特定的測量功能,因此可能會依賴供應商將該測量功能作為附加功能提供,或者在某些情況下使用事實上的行業工具集(如 Matlab 和/或 Simlink)來支持快速軟件/硬件功能,特別是隨著 FPGA(現場可編程門陣列)和 GPU(圖形處理器)在測量數據流中變得越來越普遍。(圖 1)。
[圖1 ? 羅德與施瓦茨公司提供集成記錄、分析和回放系統(IRAPS)。IRAPS可用于需要寬帶寬、長時間射頻記錄和回放的實驗室和靶場射頻記錄和回放應用,如雷達測試和靶場電子戰(EW)效果評估。]
NI 雷達/EW 業務開發經理 Haydn Nelson 說:"在軟件中定義測試系統是整個航空航天工業趨勢的體現,通常被稱為基于模型的系統工程。"推動系統級模型和要求的標準化使軟件成為定義自動測試系統不可或缺的一部分。
Nelson 繼續說:"對于雷達和電子戰來說,由于雷達的多任務性質和電子戰的保密性質,這具有挑戰性。定義、開發、評估和部署新方法和技術是一個復雜的過程。隨著威脅的不斷發展,用戶需要更快地獲得新系統,而測試和評估流程不能阻礙這一進程。軟件定義的測試系統對于在保持系統能力和性能敏感性的同時滿足速度要求至關重要。
對更多實驗室測試的需求也在推動軟件定義測試系統的發展。Nelson 說:"我們看到的一個具體要求是,能夠在實驗室中以現實的方式進行更多測試,而無需面對固定和鎖定測試系統的挑戰。在公開范圍測試之前,測試的次數越多,新方法或新技術獲得最終用戶信任的信心就越大。共享數據和證明能力與開發能力本身同樣重要。"
跨越多個領域的復雜對抗性威脅對雷達和預警系統的性能提出了更高的要求,從而給測試系統設計人員帶來了更大的壓力,要求他們提供準確、高效的解決方案。
"總體而言,趨勢是不斷提高測量精度和降低相位噪聲,"Fountain 說。"精度和相位噪聲直接關系到描述雷達性能的能力。在電子戰方面,我們看到,在擁擠和有爭議的作戰環境的推動下,高度復雜的電磁場景正朝著更高保真模擬的方向發展。"
雷達和預警系統的數字架構要求和現代化努力也要求測試系統具有多功能性。
NI 的 Twaits 說:"從高層次上講,測試和評估的要求是由采用現代數字架構驅動的,這些架構要求在單個系統中進行功能、參數和系統級測試,以及分割數字和射頻系統以進行獨立測試的方法。"此外,許多傳統雷達和預警系統正在進行現代化改造,而傳統的測試平臺靈活性太差,無法滿足新系統功能的測試要求。現代化不會帶來無限的測試預算。新系統和升級要不斷平衡預算和時間交付壓力所帶來的限制,而適應不斷變化的要求本身就是一種要求"。
帶寬需求也對測試系統提出了更高的要求。"從技術上講,在電磁頻譜戰(EMSO)領域,實戰系統正朝著更寬的帶寬、更高的頻率、更大的頻率靈活性和更強的抗威脅能力方向發展。因此,[測試和測量]設備必須能夠生成和分析具有適當規格的波形,快速調整,并創建逼真的場景,在接近真實的運行條件下對被測設備施加壓力。"
測試系統還能在系統部署前的設計過程中盡早發現缺陷,從而降低長期生命周期成本。
Twaits說:"按時、按預算交付的一個關鍵方面是制定測試策略,以便在設計過程中及早發現缺陷。露天靶場測試成本高昂,對于測試早期設計既不可行也不實際。例如,在雷達測試中,客戶正在尋找硬件在環系統,該系統可將真實目標注入到正在測試的雷達系統中。這使他們能夠盡早、頻繁地測試系統,盡早消除問題,并針對各種情況對雷達進行評估"。
NI 提供的雷達目標生成 (RTG) 軟件使客戶能夠將 PXI 射頻矢量信號收發器 (VST) 作為閉環實時雷達目標生成器來操作。它為工程師提供了一個單一模塊,既可作為標準雷達參數測量設備,也可作為 RTG,具有很強的能力和靈活性,適合最終用戶的調整。通過完全開放的列表模式,用戶可以定義多達 1000 萬個測試目標,以硬件速度進行排序,從而以在露天靶場上無法實現的方式刺激雷達。
電子戰系統的作用是對抗和探測復雜的敵對威脅,而測試系統的作用則是使作戰人員不僅能高效而且能安全地利用這些系統。
Patschke 指出:"EW 測試的核心是確保人員和設備都做好應對各種電磁威脅的準備,從而保證部隊的安全。隨著 EW 測試環境越來越先進,客戶需要生成盡可能逼真的模擬。要做到這一點,就必須生成能模擬現實條件的高保真動態場景。過去,這需要大量的設備,而這些設備在使用中往往缺乏通用性。現在,客戶不僅希望他們的設備具有更高水平的能力,如更寬的帶寬和更多的輸出端口,而且還希望它能以更緊湊的尺寸提供更大的靈活性。Keysight 推出了包括最新 M9484C 矢量信號發生器在內的可擴展、開放式架構 EW 測試和評估產品組合,滿足了客戶的這些期望。"(圖 2)
[圖2 ? Keysight 的 M9484C 矢量信號發生器是一個四端口信號源,還能產生脈沖對脈沖輸出。這種單一信號發生器能夠取代四個老式信號源]。
Fountain 對發展趨勢的最后評論是:"人們希望從露天靶場測試轉向封閉實驗室,這主要是由于露天測試的復雜性、成本以及測試產生的射頻輻射可能被不受歡迎的聽眾截獲"。
Fountain 說,在測試和測量層面,他并沒有看到這些計劃有多少活動。"測量系統在操作層面有一些利基應用,模塊化架構(如 MOSA[模塊化開放系統方法]和 SOSA[傳感器開放系統架構])的優勢和附加成本將適用于這些應用,但在大多數情況下,測試和測量設備是在實驗室中,需要一個可控的環境來提供高度的測量精度。"
Nelson說:"從許多方面來看,SOSA等標準架構在嵌入式設計中采用的理念與NI在模塊化PXI平臺測試和測量設計中采用的理念非常相似:制造模塊化、靈活和可互操作的系統。模塊化開放式架構的這三個目標是未來軍用嵌入式系統取得成功的關鍵,使系統能夠在今天設計,并在明天進行低成本升級。NI 的測試和測量方法與這一目標不謀而合。擁有模塊化、可擴展、靈活和可升級的嵌入式系統意味著測試系統也必須是模塊化、可擴展、靈活和可升級的,以適應不斷變化的要求、能力和接口。我們相信,與開放式架構計劃的模塊化方向一致的模塊化測試系統將有助于實現這一新嵌入式系統理念的承諾。"
Keysight 的 Patschke 說:"投資新產品的客戶希望確保其傳統設備和系統能夠與升級后的平臺協同運行。"這不僅是一項節約成本的措施,而且還能通過延長舊產品的使用壽命來減少浪費,同時使整個系統保持最新狀態。開放式架構平臺將可持續發展作為優先事項,同時又不犧牲升級能力。Keysight 在設計下一代系統時非常重視開放式架構的實施。"
人工智能和軟件定義的測試系統正在為現在以及未來的雷達和 EW 測試系統的更多能力鋪平道路,例如軟件定義雷達、頻譜共享、數字孿生等領域。
Patschke說:"未來美國國防部(DoD)客戶的系統測試可能發展的一個途徑就是數字孿生技術的進步。"這些系統利用基于模型的系統工程(MBSE)方法生成數字化的真實測試場景,這些場景通常會考慮到外部變量,而以前的虛擬測試方法無法做到這一點。理論上,'數字孿生'概念可以將大多數(如果不是全部)物理系統工程活動轉換為虛擬活動。在進行物理測試不切實際、真實世界的效果難以再現的情況下,"數字孿生 "有可能增加廣泛的價值。隨著客戶尋求更可靠、更具成本效益的測試手段,數字孿生選擇可能會變得更具吸引力。
Fountain 說,未來幾年有四個關鍵領域將推動測試和測量技術的發展:
雷達和預警系統對靈活性和多功能性的需求也成為測試和測量需求的一個特點。
"納爾遜說:"我們已經看到許多要求測試系統像瑞士軍刀一樣的需求:客戶希望測試設備能在單一系統中完成所有功能。
"我們經常收到這樣的請求:要求配置的系統在進行雷達目標生成等系統級測試的同時,還能進行參數測試,并能進行射頻記錄和回放。這些要求結合在一起,就很難在保持可接受的尺寸、重量和功率的同時,以具有成本效益的方式完成測試。只有采用模塊化系統,在封閉的特定功能與使用開放軟件擴展功能之間取得平衡,才能做到這一點。我們看到的趨勢是,現代測試系統必須像它們所測試的系統一樣具有多功能。
由于長期以來對 "黑盒"模型的擔憂,許多臨床醫生對機器學習仍然保持警惕。"黑盒"是模型的簡稱,它足夠復雜,人類無法直接解釋。預測模型缺乏可解釋性會破壞對這些模型的信任,特別是在醫療保健領域,因為許多決定都是生死攸關的。最近,可解釋機器學習領域的研究激增,旨在解決這些問題。可解釋機器學習的前景非常可觀,但對于可能在臨床決策支持工具或新的研究論文中遇到這些技術的心臟病專家來說,重要的是要對它們的優勢和局限性有一個重要的了解。本文回顧了可解釋機器學習領域的關鍵概念和技術,因為它們適用于心臟病學。回顧的關鍵概念包括可解釋性與可解釋性以及全局與局部解釋。所展示的技術包括排列組合重要性、智能體決策樹、局部可解釋的模型-診斷性解釋和部分依賴圖。我們討論了可解釋性技術的幾個局限性,重點是解釋作為近似的性質如何可能忽略了關于黑盒模型如何工作以及它們為什么做出某些預測的重要信息。最后,我們提出了一條經驗法則,即何時使用帶有解釋的黑盒模型。
盡管大多數食品和藥物管理局和加拿大衛生部批準的ML算法都集中在大腦、肺部或乳房,但截至本文撰寫時,至少有12種批準的算法應用于心臟病學。 然而,盡管如此,許多臨床醫生仍然對ML保持警惕,因為他們擔心許多ML模型的 "黑盒"性質,這可以追溯到20世紀90年代人工神經網絡在醫學上的一些早期應用。對黑盒算法的擔憂在著名醫學期刊的評論中經常被強調,現在許多ML科學家承認這是醫學中采用ML的主要障礙之一。
術語 "黑盒"是指那些足夠復雜的模型,它們不能被人類直接解釋。這與醫學研究中經常使用的模型形成對比,如線性和邏輯回歸,人類可以參考模型系數來解釋模型及其預測。雖然不是所有的ML算法都是不可解釋的(后面會有更多的介紹),但大多數產生最先進結果的ML算法(包括深度學習和集合模型)都有這個限制。
預測模型缺乏可解釋性會破壞對這些模型的信任,特別是在醫療保健領域,許多決定實際上是生與死的問題。沒有一個模型是完美的,所以臨床醫生對盲目相信一個無法提供任何關于其決定原因的模型的預測感到厭倦是完全合理的。隨著經驗性證據的積累,這些擔憂只會增加,因為ML可以對觀察性醫療數據集中發現的現有種族偏見進行編碼,從而通過黑盒自動化使系統性種族主義永久化。
黑盒也限制了模型預測的臨床可操作性,這進一步削弱了它們對臨床醫生的作用。ML在醫療保健中的一個常見應用是用于預測臨床惡化的早期預警系統。但如果這種系統只警告臨床醫生有惡化的風險,而不說明原因,不進一步評估就可能不清楚警報的原因,這在時間敏感的情況下會延誤治療,在假陽性的情況下會浪費臨床醫生的寶貴時間。
為了應對黑盒模型帶來的重大挑戰,近年來在可解釋ML領域的研究激增。這些研究的重點不是使黑盒模型具有內在的可解釋性,而是對模型如何工作以及它為什么做出特定的個別預測做出可理解的解釋(關于可解釋性與可解釋性之間的區別,下文有更多介紹)。這些解釋中的許多都集中在確定最能推動模型預測的變量,或將模型的工作原理轉化為更接近基于證據的臨床推理的透明設計(如決策樹)。這兩種方法都被證明對提高臨床醫生對ML模型的信心很重要。可解釋ML的承諾是相當大的:有機會從深度學習等技術的最先進的預測能力中獲益,而沒有黑盒子的缺點。然而,這種承諾也帶來了一些重要的限制。
本文回顧了可解釋ML領域的關鍵概念和技術,因為它們適用于心臟病學。我們的目標是為心臟病專家和心血管研究人員提供對可解釋ML技術的好處和局限性的重要理解,以便他們在遇到這些技術嵌入臨床決策支持工具或新的心臟病學研究結果時,可以成為知情的消費者。
近年來,機器學習技術飛速發展,并在自然語言處理、圖像識別、搜索推薦等領域得到了廣泛的應用。然而,現有大量開放部署的機器學習模型在模型安全與數據隱私方面面臨著嚴峻的挑戰。本文重點研究黑盒機器學習模型面臨的成員推斷攻擊問題,即給定一條數據記錄以及某個機器學習模型的黑盒預測接口,判斷此條數據記錄是否屬于給定模型的訓練數據集。為此,本文設計并實現了一種基于變分自編碼器的數據合成算法,用于生成與給定模型的原始訓練數據分布相近的合成數據;并在此基礎上提出了基于生成對抗網絡的模擬模型構建算法,利用合成數據訓練得到與給定模型具有相似預測能力的機器學習模型。相較于現有的成員推斷攻擊工作,本文所提出的推斷攻擊無需目標模型及其訓練數據的先驗知識,在僅有目標模型黑盒預測接口的條件下,可獲得更加準確的攻擊結果。通過本地模型和線上機器學習即服務平臺BigML的實驗結果證明,所提的數據合成算法可以得到高質量的合成數據,模擬模型構建算法可以在更加嚴苛的條件下模擬給定模型的預測能力。在沒有目標模型及其訓練數據的先驗知識條件下,本文所提的成員推斷攻擊在針對多種目標模型進行攻擊時,推斷準確率最高可達74%,推斷精確率可達86%;與現有最佳攻擊方法相比,將推斷準確率與精確率分別提升10.7%及11.2%。