亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

人類飛行員和無人駕駛飛行器在有人-無人團隊合作(MUM-T)中共同實現軍事目標。在飛機駕駛艙內,飛行員與無人系統之間的互動究竟是怎樣的,這仍然是一個未決問題。在大多數方法中,無人平臺由飛行員授權,飛行員負責監控衍生行動(Miller 等人,2005 年;Uhrmann 和 Schulte,2012 年;Doherty、Heintz 和 Kvarnstr?m,2013 年)。在現代空戰中,戰術形勢可能在幾分鐘甚至幾秒鐘內發生變化,需要飛行員調整計劃。當飛行員除了自己的飛機外,還要負責引導多架無人駕駛飛機時,計劃修正的時間壓力將非常大。當技術進步(如通過決策支持系統和自動任務執行)提高決策時間時,這種壓力將進一步加劇。

為了加快決策速度,可能會賦予自動化更多的權力,或者采用數據驅動的方法。然而,當權力轉移到自動化和決策轉移到無法解讀的算法中時,飛行員是否仍能進行有意義的控制尚不清楚(Lepri, Staiano, Sangokoya, Letouzé, & Oliver, 2017; Parasuraman, Sheridan, & Wickens, 2000)。

因此,本文討論在高度動態的軍事環境中對無人飛行器進行有意義控制的要求。將討論任務的制定作為人類與自動化之間達成共識的一種手段,以及對任務委托、無人飛行器處理方法和無人飛行器反饋的要求。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

最近在烏克蘭、納戈爾諾-卡拉巴赫、敘利亞和利比亞發生的沖突展示了無人機系統(UAS)的多功能性,參與沖突的各方都大量使用了無人機系統。無人機系統提供了精確的情報、電子戰(EW)能力、通信、精確目標捕獲(TA)、近距離空中支援(CAS)、空中攔截以及精確的打擊后戰損評估(BDA)。無人機系統的擴散正在不斷增加。如今,這項技術已不再是富裕國家的專利,因為 "許多發展中國家因財政負擔過重而無法配備航空人員,只能依靠無人機系統作為現成的空軍力量"(Jovanov 2022, 5)。與技術先進的現代飛機相比,無人機系統的采購和運營成本低、續航時間長、操作人員培訓成本低。本文旨在概述采用多功能的無人機系統,可如何促進指揮官執行行動和完成指定任務,從而通過所有作戰功能提高單元的能力。

付費5元查看完整內容

隨著空對空導彈有效射程的增加,人類操作員越來越難以保持保證無人機安全所需的態勢感知能力。在這項工作中,提出了一種決策支持工具,幫助無人機操作員在超視距(BVR)空戰場景中評估不同選項的風險,并據此做出決策。早期的工作側重于單枚導彈造成的威脅,而在這項工作中,我們將思路擴展到了多枚導彈的威脅。所提出的方法使用深度神經網絡(DNN)從高保真模擬中學習,為操作員提供一組不同策略的結果估計。我們的研究結果表明,所提出的系統可以管理多枚來襲導彈,評估一系列選項,并推薦風險最小的行動方案。

圖 1:無人機面臨三枚來襲導彈的情況符號表示。導彈當前的確切位置未知,但可以估計發射的時間和位置。在圖 3-6 中,飛機圖標周圍的彩色區域用于顯示在該方向進行規避機動的預測未擊中距離 (MD)。據此,操作員在決定選擇何種航線時,可以在任務目標和風險之間做出權衡。

自第一次世界大戰以來,空戰發生了翻天覆地的變化。傳感器、武器和通信技術的進步使飛行員能夠在越來越遠的距離上與敵機交戰。這些進步推動了從 "視距內 "空戰向 "視距外 "空戰的過渡[1]。在 BVR 中,來襲導彈的飛行時間可能長達數分鐘,這使得無人機操作員很難評估所有來襲數據并選擇最佳行動方案。事實上,操作員往往會失去對某些來襲威脅的跟蹤[1]。因此,需要一種能夠同時處理多個威脅并提供整體分析的支持工具。這種工具應支持操作員平衡風險與任務目標之間的關系,因為風險最低的選擇往往是完全忽略任務,而另一方面,忽略風險最終可能導致巨大損失。

由于雷達制導導彈的飛行時間可能很長,因此 BVR 空中格斗包含了一種可與星際爭霸等即時戰略游戲相媲美的元素[2]。重大挑戰包括高度非線性動態、信息不確定性以及對手的未知戰略和目標。機載傳感器可以根據敵機類型、電子戰反制設備和天氣情況輸出對手位置的估計值。不過,雖然在面對敵方時并不總能獲得精確信息,但操作員通常知道敵方飛機和武器系統的能力,因此建議的方法將利用這些信息。

在我們之前的工作[3]中,我們研究了無人機面對一枚來襲導彈的情況。利用強化學習(RL),我們計算出了最佳規避機動和執行機動時的失誤距離(MD)。然而,這種方法無法用于同時面對多架敵機的情況。當考慮從不同角度射來的多枚導彈時,相對于一枚導彈的最佳規避機動與另一枚導彈不同,顯然不能同時執行兩種不同的機動。此外,針對一對來襲導彈威脅的最有效規避行動,可以通過離線解決特定問題并存儲結果來確定,但由于可能的威脅組合數量龐大,這種方法變得不切實際。

在本文中,我們首先指出,對于人類操作員來說,MD 估計值是一種直觀的風險估計值。因此,我們希望為操作員提供一組選項,如圖 1 所示。圖中的黃色區域將根據風險程度進行著色。如果向南執行規避機動,MD 值為 2 千米,則會被染成綠色,而向西執行機動,MD 值為 0.05 千米,因此會被染成紅色。

在面臨上述多種威脅的情況下,要估算特定方向上特定機動的 MD,我們的步驟如下。首先,我們學習一組預定義的規避機動在不同羅盤方向上的單個威脅的 MD。然后,由于我們需要擔心的是最小的 MD,因此我們只需遍歷所有威脅,并保存每次機動的最小失誤距離。

通過這種方法,我們可以提供一種決策支持工具,為一系列選項提供風險估計,而不會丟失任何已檢測到的威脅。我們的方法還能讓操作員意識到在沒有安全撤離方案的情況下,例如在受到來自相反方向的近距離威脅時。為更絕望的措施提供決策支持,如發射所有剩余武器然后失去無人機,或依賴模型無法捕捉的方法,如電子戰或箔條/照明彈系統。

因此,這項工作的主要貢獻是提供了一種方法,使無人機操作員能夠評估和處理任意數量的來襲威脅,從而擴展了先前考慮單一敵對導彈的工作[3]。工作概述如下: 第二節回顧了相關工作。第三節介紹 ML 和導彈制導的背景,第四節正式定義問題。第五節介紹了建議的解決方案,第六節展示了仿真結果。最后,第八節將進行討論并得出結論。

付費5元查看完整內容

在需要做出重大決策的關鍵系統中,通常無法實現或不希望實現完全自動化。相反,人類-人工智能團隊可以取得更好的效果。為了研究、開發、評估和驗證適合這種團隊合作的算法,有必要建立輕量級實驗平臺,實現人類與多個智能體之間的互動。然而,此類平臺在國防環境中的應用實例非常有限。為了填補這一空白,我們提出了 Cogment 人機協同實驗平臺,該平臺實現了以異構多智能體系統為特征的人機協同(HMT)用例,可涉及學習型人工智能智能體、靜態人工智能智能體和人類。它建立在 Cogment 平臺上,已被用于學術研究,包括在今年的 AAMAS 的 ALA 研討會上展示的工作。希望通過這個平臺,進一步促進關鍵系統和國防環境中的人機協作研究。

圖 1:該圖顯示了 Cogment HMT 實驗平臺的主用戶界面。左側帶帽的圓圈是由五個藍色智能體組成的團隊防守的禁區。右側的單個紅點是無人機攻擊者。

嵌入式人工智能體,如無人駕駛飛行器(UAV,或無人機),有可能徹底改變各行各業,包括交通、農業和安防。然而,這些智能體在物理世界中發展,因此可能會產生危險影響,尤其是在無人監管的情況下。例如,無人機可能會出現故障或無法識別潛在危險,從而造成財產損失甚至人員傷亡。此外,智能體可以根據算法做出決策,而算法可能不會考慮倫理、道德或法律方面的影響。因此,人類必須有能力對這些智能體進行有意義的控制[2]和監督,以確保它們的安全和負責任的使用。人類操作員可以監控和干預系統故障,評估潛在風險,并在需要其判斷的復雜情況下做出道德或法律決定。

除了監督,人類還可以通過協作在幫助智能體實現任務方面發揮關鍵作用。例如,對于無人機,控制中心的人類操作員可以提供實時指導和支持,確保無人機準確、高效地執行所需的功能。此外,人類還可以在現場充當隊友,與具身的人工智能體并肩作戰,實現既需要人類判斷又需要機器精確度的復雜目標。

此外,必須認識到,人機協作(HMT),即人類與具身智能體建立雙向協作的能力,是安全有效使用人工智能的一個關鍵方面。這類人工智能體的設計、訓練、驗證和操作不能孤立地進行,必須考慮它們如何融入包括它們在內的更大系統中。人類,尤其是作為操作員或隊友的人類,從一開始就應被視為該系統不可分割的一部分。

除了這種雙向協作之外,具身人工智能系統在運行過程中往往沒有考慮到 “道德責任 ”和 “社會技術 ”因素[2]。有意義人類控制(MHC)的概念是由 Santoni de Sio 和 van den Hoven 提出的,目的是讓人類能夠影響具身人工智能體的行為[3]。然而,MHC 的原始定義并不一致,因為人類可能缺乏專業技能或知識,無法完全有效地控制人工智能系統。Cavalcante Siebert 等人[2]提出了四個附加屬性來改進 MHC 的原始定義:“明確的道德操作設計領域”、“適當且相互兼容的表征”、“控制能力和權限 ”以及 “人工智能與人類行動之間的明確聯系”。因此,至關重要的是設計一個協調平臺,將有意義的人類控制和人類在環相結合,以確保人工智能系統的訓練和操作方式符合人類價值觀、社會規范和道德行為。

Cogment HMT 提供了一個設計和實驗人機團隊的平臺,尤其是涉及無人機的人機團隊。它以我們的 Cogment [4] 平臺為基礎,解決了協調自動決策系統(包括人工智能體)、人類之間的協作及其對數據的訪問和對環境的影響等難題。Cogment HMT 實驗平臺目前使用一個模擬環境,可以很容易地進行調整,以適應更真實的模擬和現實世界的部署。我們將在第三節介紹該平臺及其特性。

利用 Cogment HMT 實驗平臺,人工智能從業者可以開發出能夠與人類協同工作的智能體,并從人類的知識和期望中學習,同時考慮有意義的人類控制、信任和認知負荷管理等因素,實現有效的雙向人機協作。我們將在第四部分介紹早期成果。

付費5元查看完整內容

水下監視技術出現于冷戰時期。該技術解密后,學術界對其進行了深入研究,并取得了諸多進展。無人潛航器(UUV)的開發就是海洋領域的進步之一,它能夠增強作戰能力,同時降低人類生命危險。雖然這項技術已經商業化,但在海軍中的應用卻很有限。其有限的發展主要是由開發商和資助他們的政府推動的。然而,由于這項技術能為軍隊帶來諸多好處,因此需要盡快將其納入海軍。這實質上意味著,要想在海軍使用/應用中獲得更多認可,就必須將該技術融入海軍。反過來,這就需要回答許多問題,了解事實,以增強對該技術及其潛力的信心。因此,本文討論了其中一些有助于彌補知識差距的問題,以促進未來海軍對 UUV 技術的接受和應用。雖然本文試圖提供全面的答案,但這些答案并不完整,只能作為討論的起點。就目前而言,技術是存在的,但缺乏想象力卻阻礙了其使用。

圖 2 已詳細說明了 UUV 在軍事領域可發揮的廣泛作用,在此,將討論每種作用的可能任務概況。迄今為止,已知美國、俄羅斯和中國等國家運營著大量不同大小和形狀的軍用 UUV。圖 3 顯示了美國部分軍用 UUV 的范圍,圖 4 顯示了其他國家部分軍用 LDUUV 的范圍。

(a) 情報、監視和偵察。從海洋中收集關鍵的電磁和光電數據將有助于擴大被拒地區的信息范圍,特別是常規平臺無法進入的淺水區。UUV 可以輕松進入這些區域,提供所需的信息。

(b) 海洋學。為了在極端的海洋環境中實現更高的可操作性,必須收集實時情報數據并提供給操作人員,以便在進攻時更好地制定計劃。出于 "用戶舒適度和安全性 "的考慮,載人平臺收集此類數據的能力有限,因此無人平臺和固定平臺被認為是未來的一種可能(Agarwala,2020 年)。

(c) 通信/導航網絡節點(CN3)。通過在有人和無人平臺之間提供一個閉環網絡,CN3 系統有助于為水下平臺提供更強的連接性和控制性,否則這些平臺就必須浮出水面以刷新其全球定位系統進行導航。這樣的通信網絡可提高無人潛航器的安全性和控制能力,同時幫助它們在不被探測到的情況下輕松、長時間地開展 ISR 活動(Munafò 和 Ferri,2017 年)。

(d) 反水雷措施。為確保港口和航道可供軍艦安全作業,并確保敵方類似港口和航道無法使用,最簡單的進攻方式就是布設 "水雷"。為了在不危及人命的情況下做到這一點,UUV 得到了有效利用。在任何平臺上使用無人潛航器,都能提高在敵方水域布設水雷和在己方水域清除水雷的效率,從而無需依賴專門的掃雷艇。

(e) 反潛戰。為了 "遏制 "在狹窄水域、咽喉地帶或艦隊附近活動的潛艇,UUV 可以發揮巨大作用。在此過程中,UUV 可以為載人平臺提供必要的安全保障,同時限制敵方潛艇的行動。

(f) 檢查/識別。為了對船體、碼頭和停泊區及其周圍的密閉空間進行快速搜索,以排除反恐方面的顧慮,并確保在必要時進行爆炸物處理,UUV 可以得到廣泛而有效的使用。這些努力將確保港口、航道和泊位的安全。

(g) 有效載荷交付。由于無人潛航器難以被探測到,而且可以在淺水區輕松作業,因此可用于秘密投放有效載荷。這種有效載荷可以是敵后補給品,也可以是摧毀敵方資產的彈藥。

(h) 信息作戰。由于 UUV 體型小,在淺水區也能輕松運作,因此是收集信息的有力平臺。此外,它們還可用作誘餌和通信網絡干擾器。

(j) 關鍵時刻打擊。能夠及時精確地投放彈藥并最大限度地減少敵方的反應時間是一項關鍵活動。用無人潛航器投放彈藥時,可將其投放到離海岸較近的地方,確保縮短敵方的反應時間。這種行為還有助于避免暴露大型有人駕駛平臺的位置,以免遭報復性打擊。

付費5元查看完整內容

無人飛行器(UAV)的雷達自動目標識別(RATR)涉及發射電磁波(EMW)并對接收到的雷達回波進行目標類型識別,這在國防和航空航天領域有著重要應用。以往的工作表明,與單靜態雷達配置相比,在 RATR 中采用多靜態雷達配置具有優勢。然而,多靜態雷達配置通常使用融合方法,從概率角度來看,這種方法將多個單獨雷達的分類向量進行了次優組合。

為解決這一問題,本研究利用貝葉斯分析法為無人機類型分類提供了一個完全貝葉斯的 RATR 框架。具體來說,我們采用了一種最優貝葉斯融合(OBF)方法,從預期 0-1 損失的貝葉斯視角出發,制定了一種后驗分布,將給定時間步長內多個單個雷達觀測數據的分類概率向量匯總在一起。這種 OBF 方法用于更新關于目標無人機類型的單獨遞歸貝葉斯分類(RBC)后驗分布。RBC 后驗分布以多個雷達在多個時間步長內的所有歷史觀測數據為條件。

為了評估所提出的方法,我們模擬了七架無人機的隨機行走軌跡,并將目標的縱橫角與在消聲室中獲取的雷達截面(RCS)測量值相對應。然后,我們比較了單雷達自動目標識別 (ATR) 系統和次優融合方法與 OBF 方法的性能。經驗表明,與 RBC 相結合的 OBF 方法在分類準確性方面明顯優于其他融合方法和單一雷達配置。

付費5元查看完整內容

由于近年來無人駕駛飛行器技術的蓬勃發展,這些飛行器正被用于許多涉及復雜任務的領域。其中一些任務對車輛駕駛員來說具有很高的風險,例如火災監控和救援任務,這使得無人機成為避免人類風險的最佳選擇。無人飛行器的任務規劃是對飛行器的位置和行動(裝載/投放載荷、拍攝視頻/照片、獲取信息)進行規劃的過程,通常在一段時間內進行。這些飛行器由地面控制站(GCS)控制,人類操作員在地面控制站使用最基本的系統。本文介紹了一種新的多目標遺傳算法,用于解決涉及一組無人飛行器和一組地面控制站的復雜任務規劃問題(MPP)。我們設計了一種混合擬合函數,使用約束滿足問題(CSP)來檢查解決方案是否有效,并使用基于帕累托的方法來尋找最佳解決方案。該算法已在多個數據集上進行了測試,優化了任務的不同變量,如時間跨度、燃料消耗、距離等。實驗結果表明,新算法能夠獲得良好的解決方案,但隨著問題變得越來越復雜,最佳解決方案也變得越來越難找到。

付費5元查看完整內容

無人機技術的最新發展導致了無人駕駛飛行器(UAV)的廣泛使用。特別是,無人飛行器經常用于偵察,以探測大面積區域內的失蹤人員等物體。然而,傳統系統僅使用一架無人飛行器在大面積區域內搜尋失蹤人員。此外,由于探測需要較高的計算能力,因此需要在飛行后或手動進行物體探測。本文提出了一種使用多架無人機的無人機偵察系統。所提議的多無人機偵察系統在每個無人機上執行實時目標檢測。地面控制系統(GCS)接收每架無人機的實時目標檢測結果,并對圖像進行拼接。為了實現單個無人機的實時目標檢測,YOLOv5 模型采用了濾波器剪枝方法,與現有的基線模型相比,該模型使用的參數減少了 40%。輕量級 YOLOv5 模型在使用任務計算機的 Jetson Xaiver NX 上實現了約 11.73 FPS 的速度。此外,所提出的圖像拼接方法可利用無人機生成的附加信息有效匹配特征,從而實現圖像拼接。無人機飛行測試表明,擬議的偵察系統可以在大面積區域內實時監控和檢測目標。

隨著近年來無人機技術的發展,無人機現已被廣泛應用于各種領域,例如人類難以直接搜索和分析的大型危險區域的偵察系統。人工智能的進步極大地提高了物體探測技術,可以發現人或汽車。然而,由于大多數任務都是由單架無人機執行,因此作業范圍和時間都受到限制。此外,由于無人駕駛飛行器(UAV)的性能限制,很難實時探測物體,因此無法立即做出反應。這些限制激發了對使用多架無人機進行蜂群飛行的研究,通過劃分大面積區域來執行任務,并通過為無人機分配不同的任務來實現合作。

蜂群偵察系統需要一個能同時控制和管理多架無人機的蜂群操作系統。在該系統的基礎上,還需要一種圖像拼接算法,將無人機接收到的圖像進行同步處理,并合并成一張匹配的圖像。整合后的圖像可幫助用戶有效了解整體情況并做出決策。然后,需要一種實時物體檢測算法來檢測失蹤人員或入侵者。在物體檢測方面,已經使用了深度學習算法。然而,由于其計算成本較高,處理過程需要在無人機外部進行或作為后處理。

本文提出了一種基于數據分布服務的蜂群偵察無人機系統,如圖 1 所示,該系統使用安全的集成指令同時控制和操作多架無人機。所提出的系統接收來自每架無人機的獨立圖像,并對圖像進行拼接,同時實時檢測無人機內的物體。因此,地面控制系統(GCS)可實時提供全面的態勢感知。通過基于無人機獲取的拼接圖像的目標檢測測試,對所提出的系統進行了驗證。

本文的主要貢獻可歸納如下:

  1. 提出了一種基于無人機圖像的實時目標檢測方法。以每秒處理 10 幀(fps)為目標,設計了一個擬議的蜂群偵察無人機系統,用于執行實時目標檢測。為了在無人機使用的 Jetson Xavier NX 系統中達到 10 幀/秒的要求,提出了針對輕量級網絡的濾波器剪枝方法,以實現物體檢測性能。

  2. 為蜂群無人機系統提出了實時圖像拼接方法。提出的圖像拼接方法利用無人機產生的附加信息有效地匹配特征。

  3. 對無人機進行飛行實驗,以驗證所提方法的可行性。

本文其余部分的結構如下。第二節介紹了無人機群系統和無人機圖像目標檢測的相關研究。第三節介紹了擬議的具有空中圖像拼接和實時目標檢測功能的蜂群偵察無人機系統的總體結構。第四節簡要介紹了實驗裝置和結果。第五節討論本文的結論。

付費5元查看完整內容

近年來,未經授權的無人駕駛飛行器(UAV)所造成的危險已大大增加,因此,至少需要采取適當的探測、跟蹤和反制措施來消除這種威脅。除了射頻干擾器、全球定位系統欺騙、高壓激光、電磁脈沖和射彈槍之外,反無人駕駛航空系統(cUAS)也是對付未經授權的小型無人駕駛飛行器的一種非常高效和有效的對策。

本文介紹的 cUAS 是一種全自動、多功能、可移動部署的系統,能夠利用氣壓驅動的網狀發射器攔截市場上幾乎所有的小型無人機。與上述替代方案相比,所開發的 cUAS 不受未經授權的小型無人機操作模式的影響,即手動或自動控制,甚至不受全球導航衛星系統或射頻的影響。我們的多傳感器方法(照相機、激光雷達和雷達傳感器)以及所實施的算法使 cUAS 能夠在各種環境下運行,如開放式機場、軍用場地和城市空間,在這些環境下,許多雷達反射通常會阻礙對小型物體的探測和跟蹤。cUAS 可獨立接近、跟蹤和/或攔截速度高達 20 米/秒的已識別無人機,成功率超過 90%。

本文對 cUAS 原型機的性能進行了演示和評估。對小型無人機的攔截能力和狗斗性能進行了測試和研究。此外,我們還概述了該系統的具體攻擊和防御策略,以及從最初的探測和分類到最終攔截和清除未授權無人機的過程階段特征,并說明了所開發的多傳感器平臺相對于現有單傳感器系統的優勢。

圖 1:地面探測與控制站(左)和攔截無人機系統(右)的硬件組件[產品圖片來自相關制造商]。

圖 3:攔截過程的各個階段及其條件。

付費5元查看完整內容

對使用無人駕駛飛行器(UAV),即無人機,在不同的應用中,如包裹遞送、交通監測、搜索和救援行動以及軍事戰斗交戰,有越來越多的需求。在所有這些應用中,無人機被用來自主導航環境--沒有人的互動,執行特定的任務和避免障礙。自主的無人機導航通常是通過強化學習(RL)完成的,智能體作為一個領域的專家,在避開障礙物的同時導航環境。了解導航環境和算法限制在選擇適當的RL算法以有效解決導航問題中起著至關重要的作用。因此,本研究首先確定了主要的無人機導航任務并討論了導航框架和仿真軟件。接下來,根據環境、算法特點、能力和在不同無人機導航問題中的應用,對RL算法進行了分類和討論,這將有助于從業人員和研究人員為他們的無人機導航用例選擇合適的RL算法。此外,確定的差距和機會將推動無人機導航研究。

引言

自主系統(AS)是能夠在沒有人類干擾的情況下執行所需任務的系統,如機器人在沒有人類參與的情況下執行任務、自動駕駛汽車和無人機送貨。自主系統正在侵入不同的領域,以使操作更加有效,并減少人為因素產生的成本和風險。

無人駕駛航空器(UAV)是一種沒有人類飛行員的飛機,主要被稱為無人機。自主無人機由于其多樣化的應用而受到越來越多的關注,如向客戶交付包裹、應對交通事故以滿足傷員的醫療需求、追蹤軍事目標、協助搜索和救援行動,以及許多其他應用。

通常情況下,無人機配備有攝像頭和其他傳感器,可以收集周圍環境的信息,使無人機能夠自主地導航該環境。無人機導航訓練通常是在虛擬的三維環境中進行的,因為無人機的計算資源和電源有限,而且由于墜毀而更換無人機部件可能很昂貴。

不同的強化學習(RL)算法被用來訓練無人機自主導航的環境。強化學習可以解決各種問題,在這些問題中,代理人就像該領域的人類專家一樣。代理人通過處理環境的狀態與環境互動,用行動作出回應,并獲得獎勵。無人機相機和傳感器從環境中捕捉信息,用于表示狀態。代理人處理捕捉到的狀態并輸出一個行動,決定無人機的運動方向或控制螺旋槳的推力,如圖1所示。

圖1:使用深度強化智能體的無人機訓練

研究界對不同的無人機導航問題進行了回顧,如視覺無人機導航[1, 2]、無人機植群[3]和路徑規劃[4]。然而,據作者所知,目前還沒有與RL在無人機導航中的應用有關的調查。因此,本文旨在對各種RL算法在不同無人機自主導航問題上的應用進行全面系統的回顧。這項調查有以下貢獻:

  • 幫助從業人員和研究人員根據應用領域和環境類型,選擇正確的算法來解決手頭的問題。
  • 解釋各種RL算法的主要原理和特點,確定它們之間的關系,并根據環境類型對它們進行分類。
  • 根據問題領域,討論和分類不同的RL無人機導航框架。
  • 認識用于解決不同無人機自主導航問題的各種技術和用于執行無人機導航任務的不同仿真工具。

本文的其余部分組織如下: 第2節介紹了系統回顧過程,第3節介紹了RL,第4節全面回顧了各種RL算法和技術在無人機自主導航中的應用,第5節討論了無人機導航框架和仿真軟件,第6節對RL算法進行分類并討論了最突出的算法,第7節解釋了RL算法的選擇過程,第8節指出了挑戰和研究機會。最后,第9節對本文進行了總結。

付費5元查看完整內容

無人機系統(UAS)和其他相關技術(人工智能或AI、無線數據網絡、擊敗敵方電子戰的電子支援措施)已經發展到一個新的地步,無人機系統被認為原則上能夠執行目前由有人駕駛飛機執行的幾乎任何任務。

因此,許多武裝部隊正在積極試驗有人-無人編隊協作(不同的縮寫為MUM-T或MUMT)。通過將有人和無人資產作為一個單位而不是單獨部署,無人機最大限度地發揮了其作為力量倍增器的價值,提高了在高度競爭性空域的殺傷力和生存能力。無人機系統的直接控制權可由飛行中的有人單位或單獨的空中、地面或海上指揮中心掌握。隨著時間的推移,人工智能的進步將允許無機組人員的編隊元素自主地執行大部分任務。這最終可以將人類干預減少到最低,只保留任務目標的輸入、交戰規則的定義和武器釋放的授權。事實上,這種自主能力對于MUM-T概念來說是至關重要的,以防止人類飛行員被控制無人機的額外任務所淹沒。 無人機系統的主要應用包括:

  • 目標偵查;
  • 為有人駕駛飛機進行戰損評估;
  • 電子戰;
  • 各種有人或無人平臺之間的數據和通信中繼/接口;
  • 武裝護衛。

在“武裝護衛”角色中,無人機系統可以在有人平臺執行任務之前壓制敵人的防空設施(SEAD角色),或者作為一個外部武器庫,使單一的有人駕駛飛機在每次任務中能夠攻擊大量的目標。

  • 1 美國陸軍MUM-T
    • 旋翼系統
    • 推進能力建設
    • 下一代有人-無人編隊步驟
    • 韓國
  • 2 美國空軍MUM-T
    • 美國空軍SKYBORG
    • SKYBORG 路線圖
    • 朝記錄項目發展
    • ATS/忠誠僚機
    • 英國皇家空軍“蚊子(MOSQUITO)”
    • FCAS - 未來戰斗航空系統
    • FCAS - 法國PANG
  • 3 美國海軍MUM-T
    • 美國海軍MQ-25 STINGRAY加油機
    • 無人駕駛型F/A-18測試
    • 美國海軍的下一代空中優勢
  • 4 其他國家發展狀況
付費5元查看完整內容
北京阿比特科技有限公司