隨著無人機與社會越來越緊密地聯系在一起,更多未經培訓的用戶需要具備操作無人機的能力。要實現這一目標,就必須開發人工智能能力,協助人類操作員控制無人機系統和處理傳感器數據,從而減少對操作員進行大量培訓的需要。本文介紹了 HADRON 項目,該項目旨在開發和測試多種新型技術,以實現對無人機群的人性化控制。該項目分為三個主要部分。第一部分是整合各種技術,實現對無人機的直觀控制,重點關注新手或缺乏經驗的飛行員和操作員。第二部分的重點是開發一個多無人機系統,該系統將由一個指揮和控制站控制,其中一名專家飛行員可以監督多架無人機的操作。項目的第三部分將側重于減少人類操作員的認知負荷,無論他們是新手還是專家飛行員。為此,將開發人工智能工具,協助無人機操作員進行半自動實時數據處理。
HADRON 項目考慮了三個級別的自主性。第一級側重于新手用戶,即使是相當簡單的操作也需要高度輔助,例如通過使用直觀的無人機控制技術。下一個層次涉及專業飛行員,旨在使他們能夠從中央站控制多架無人機系統。最后一個層次旨在通過引入人工智能工具來自動處理實時數據,從而大幅降低操作員的認知負荷。本文介紹了 HADRON 項目的定義,該項目將開發和測試不同的新型技術,以明確哪些技術對未來的無人機駕駛有用。本文介紹了系統架構,并討論了所使用的不同技術的選擇。
圖 1. 描繪了一名下馬士兵使用語音命令操作無人機的情景。無人機探測到目標后會通過語音通知操作員,以便操作員當場做出決定。
鑒于確定的能力差距,確定了三個主題:第一個主題將為未經培訓的用戶開發人性化的無人機控制;第二個主題將為專家用戶開發無人機的多智能體控制;最后,第三個主題將通過開發半自動數據解讀算法來輔助前兩個主題。
在軍事行動中,將新興技術融入指揮與控制系統(C2 系統)是一個亟待解決的問題。人工智能、機器學習和無人系統等潛在顛覆性技術的引入有可能顯著提高作戰效率。然而,在將這些技術整合到包含傳統條令和組織結構的 C2 能力中時,也會遇到倫理難題和挑戰。本文是按照設計科學研究(DSR)流程開展的研究項目的一部分。該研究項目的主要目標是開發一個概念框架,并提供模型和方法,幫助設計人員和指揮官從社會技術角度評估和理解 C2系統。該項目還旨在深入探討單個子系統如何影響整個“系統簇”(SoS)。在之前的文章中,作者討論了將新技術集成到軍用 C2系統中的相關挑戰。本文進一步闡述了研究結果,這些結果表明有必要將重點從優化單個組件或子系統轉移到考慮整個大型復雜系統(又稱“系統簇”)。這種轉變強調了一種綜合全面的方法,對于確保 C2 系統的有效性、精確性以及適應不斷變化的條件和要求至關重要。然而,在解釋和預測 SoS 中信息系統、方法、流程和組織發展之間的動態關系方面,現有的研究和方法還存在差距。為了彌補這一差距,有必要調整現有的能力開發框架,使其范圍更廣、適應性更強、更詳盡。此外,系統開發中的社會技術重點將有助于更深入地理解組織、流程和技術系統演進之間的相互依存關系。之前對利益相關者進行的訪談調查,確定了對特定領域(如運行和開發)內所遇挑戰的細化看法。對利益相關者的需求進行了分析,并將其作為設想框架的目標。利益相關者交流了調整后的方法框架應如何發揮作用,以應對新興技術帶來的挑戰。通過采用 DSR 和企業建模,本文提出了(1)一個概念模型,概述了 C2系統的原則和總體結構。該概念模型為目標建模提供了基礎,確保了不同模型之間的一致性和互操作性。本文了還提出了(2)C2 系統的目標模型,代表了設想框架需要實現的目標。研究結果表明,該框架有助于系統地識別和調整人工制品的目標,使其與總體目標相一致,即有助于設計軍用 C2 系統和理解技術的集成。本研究項目為正在進行的軍事創新研究做出了貢獻,為新技術在復雜軍事行動生態系統中帶來的系統性挑戰和機遇提供了見解。
毋庸置疑,人工智能(AI)在軍事情報方面的潛在優勢是巨大的。然而,人工智能如何才能準確地加強對軍事數據的分析,這一點仍不確定。本研究旨在解決這一問題。為此,與新創公司 Aleph Alpha 合作開發了人工智能演示器 deepCOM。
人工智能功能包括文本搜索、自動文本摘要和命名實體識別(NER)。對這些功能在軍事分析中的附加值進行了評估。結果表明,在時間壓力下,使用人工智能功能的評估結果明顯優于對照組。然而,盡管實驗組的分析結果明顯優于對照組,但他們對自己分析結果準確性的信心卻沒有增加。最后,本文指出了在軍事情報中使用人工智能的局限性,尤其是在分析模棱兩可和相互矛盾的信息時。
圖 3:上圖: NER 可自動從文本中提取時間、地點、組織和人名。中圖: 文本中識別實體的顏色編碼。下圖: 在地圖上顯示識別出的地點。
當今可觀察到的數據量之大,使軍事情報顯然需要使用人工智能(AI)[10]。然而,使用人工智能的好處以及在軍事分析過程中的哪個環節使用人工智能仍是一個懸而未決的問題[26]。軍事情報的主要作用是收集和分析信息,為軍事領導人做出明智決策提供支持。從學術角度看,軍事情報是一個跨學科的研究領域,涉及政治學、經濟學、社會學和心理學等多個學科[1]。
因此,軍事情報涉及信息的收集和分析,以提供對局勢的全面了解。這可能需要收集有關武裝部隊的數據,研究其他國家的計劃和行動,以及收集有關影響國家安全的事態發展的信息[25]。
可以肯定的是,在分析國外與軍事相關的事態發展時,必須確保使用創新的方式方法,如人工智能(AI)。人工智能的新發展及其與分析和研究軟件的整合為提高分析人員的判斷能力提供了廣泛的支持選項[5]。
預計人工智能技術的使用將減輕分析人員的負擔,使他們能夠專注于分析、評估和展示軍事情報形勢的核心內容[12]。
需要強調的是,分析人員不應被人工智能系統取代,而應得到輔助。特別是,必須確保分析人員始終能夠理解他們進行評估所依據的信息[2]。
作為這項研究的一部分,初創公司 Aleph Alpha 開發了一款專有的人工智能演示程序。這個名為 deepCOM 的程序的功能基于大型語言模型 (LLM)。需要強調的是,deepCOM 并不是一個工作產品,而是一個演示程序。deepCOM 的核心功能是語義搜索。用戶可以直接提問,系統會給出答案,并標明使用的資料來源。此外,deepCOM 還能自動總結數據庫中的每份報告,使分析人員能夠從幾句話的總結中識別相關來源。
系統中還采用了命名實體識別(NER)技術,對所有報告進行全自動標注:如果文本中出現時間、地點、組織和人物,則會從提及的時間、地點、組織和人物中提取標簽,用戶在識別相關來源和閱讀時都會突出顯示這些標簽[8]。
本研究的目標是展示在軍事分析過程中使用人工智能的附加值。以往的研究主要關注人工智能在數據收集中的應用[13],而本研究則側重于人工智能為人類分析和評估提供的支持。如果新技術不能為分析人員及其分析績效帶來直接的附加值,那么為使用新技術而使用新技術是不可取的。
僅從概念上考慮不足以評估價值。為了能夠做出經驗驗證,本研究進行了一次實驗。據我們所知,這是第一項對人工智能在智能方面的附加值進行實證分析的研究。
本研究將采用以下方法來解決這一問題。第 2 節概述了基于情報周期的軍事分析流程。然后,第 3 節介紹了所研究的人工智能功能及其如何為軍事分析人員提供支持。第 4 節解釋了實驗設計,第 5 節介紹了實驗結果。第 6 節討論了實驗結果。最后,第 7 節是結束語。
deepCOM 演示程序是一款集成了人工智能功能的分析工具,旨在為軍事分析人員的工作提供支持。下文介紹了實驗分析的人工智能功能。在 deepCOM 中測試的三項人工智能功能中,有兩項是基于大型語言模型(LLM)的,即人工智能搜索和自動摘要。測試的第三個人工智能功能是命名實體識別。盡管由于北約、聯合國和歐盟等國際結構的原因,德國的情報界使用英語工作,但其自身的產品卻是用德語創建的。因此,deepCOM 的用戶界面和輸出均為德語。
人工智能(AI)技術,尤其是機器學習技術,正在通過增強人類決策能力迅速改變戰術行動。本文探討了人工智能驅動的人類自主組隊(HAT)這一變革方法,重點關注它如何增強人類在復雜環境中的決策能力。雖然信任和可解釋性仍是重大挑戰,但我們的探討重點是人工智能驅動的 HAT 在改變戰術行動方面的潛力。通過改善態勢感知和支持更明智的決策,人工智能驅動的 HAT 可以提高此類行動的有效性和安全性。為此,本文了提出了一個綜合框架,該框架涉及人工智能驅動的 HAT 的關鍵組成部分,包括信任和透明度、人類與人工智能之間的最佳功能分配、態勢感知和道德考量。所提出的框架可作為該領域未來研究與開發的基礎。通過識別和討論該框架中的關鍵研究挑戰和知識差距,我們的工作旨在指導人工智能驅動的 HAT 的發展,以優化戰術行動。我們強調開發可擴展且符合道德規范的人工智能驅動的 HAT 系統的重要性,該系統可確保無縫的人機協作、優先考慮道德因素、通過可解釋的人工智能(XAI)技術提高模型的透明度,并有效管理人類操作員的認知負荷。
人工智能和自主技術的融合給包括國防和戰術行動在內的各行各業帶來了革命性的變化。HAT 的興起可歸因于幾個因素,包括自主技術和人工智能的快速進步、任務和環境的日益復雜、能力更強的自主系統的發展,以及數據和計算能力的不斷提高。隨著這些技術變得越來越復雜和強大,人們越來越認識到,將人類的認知能力與自主系統的計算能力和效率相結合,可以實現潛在的合作。現代 HAT 系統的興起也是由于需要應對快速發展和動態環境的復雜性和挑戰。隨著任務變得越來越復雜、對時間越來越敏感、數據越來越密集,人類與智能體之間的協作對于有效駕馭和應對這些挑戰變得至關重要。
HAT 是一個新興領域,探索人類與自主系統之間的協作伙伴關系,以執行任務或實現共同目標。這涉及一種協作安排,其中至少有一名人類工作者與一個或多個智能體協作。這種協作方式有可能徹底改變各行各業完成任務的方式,并為人類與智能自主系統攜手解決復雜問題和實現共同目標的未來鋪平道路。HAT 系統旨在允許人類將任務委托給智能自主體,同時保持對整體任務的控制。這里所說的智能體是指在決策、適應和通信方面具有不同程度自治能力的計算機實體。這一定義得到了先前研究成果的支持。在 HAT 中,人類的認知能力與自主系統的計算能力和效率相結合,可以提高性能、決策和系統的整體能力。
在此,將定義和澄清一些關鍵概念,這些概念對于理解本研究的范圍和背景至關重要。這些概念包括人工智能、自主、自主系統和戰術自主。通過提供明確的定義并區分這些術語,我們希望讀者能夠達成共識。
自主性。HAT背景下的自主性是指智能自主系統或智能體在團隊環境中獨立運行和決策的能力,具有不同程度的自我管理能力。這涉及到自主系統在學習、適應和推理基礎上更高程度的決策能力。它是系統的一種屬性,而非技術本身。自主實體可以感知、推理、規劃和行動,以實現特定的目標或目的,而無需人類的不斷干預。值得注意的是,自主的程度可能各不相同,有的系統可以完全自主地做出所有決定,有的系統則是半自主的,在某些情況下需要人的干預。在戰術自主方面,HAT 涉及將自主能力整合到戰術行動中。這種整合可包括各種應用,如利用自主系統收集情報、執行監視和其他關鍵活動。自主性使系統能夠在復雜和不確定的環境中運行,從經驗中學習,并在任何情況下都無需明確的人工干預即可做出決策。然而,必須將其與傳統自動化區分開來,傳統自動化通常遵循預先編程的規則、決策樹或基于邏輯的算法來執行任務或做出決策。傳統自動化的適應性和靈活性有限,無法在沒有明確編程的情況下處理動態或不可預見的情況。本文討論了人工智能驅動的自主性如何通過強調學習、適應和決策能力來區別于傳統自動化。這些能力最終會提高戰術行動中人類-自動駕駛團隊合作的整體有效性和敏捷性。
自主系統。自主系統可以在沒有人類持續控制的情況下執行任務或操作。它們利用人工智能算法和傳感器感知和導航環境,實現高度自主。
戰術自主。在本研究中,戰術自主是指自主系統在動態和復雜的作戰環境中做出實時決策和采取行動的能力。這涉及人類與自主系統之間的無縫協調和互動,使它們能夠作為一個優勢互補的統一團隊發揮作用。HAT 的重點是通過人類操作員與智能自主系統之間的無縫協調與協作,實現共同的任務目標。本文介紹了一種人工智能驅動的 HAT,它將人工智能集成到 HAT 框架中。這種方法結合了人類專業技能和人工智能能力的優勢,從而提高了決策、態勢感知和作戰效率。戰術自主性將人類的認知能力(如適應能力、直覺和創造力)與自主系統的計算能力、精確性和動態執行能力相結合,有可能給包括國防、應急響應、執法和危險環境在內的各個領域帶來革命性的變化。必須區分戰術自主和戰略自主,以明確人工智能驅動的人類-自主團隊如何在軍事和作戰環境中促進這兩個層次的自主。戰略自主是指一個國家或組織就廣泛的安全目標做出自主選擇的能力,而戰術自主與戰略自主相反,側重于單個單位或團隊在特定任務中的獨立行動。戰略自主涉及更高層次的決策和規劃,要考慮長期目標、總體任務目標和更廣泛的態勢感知。它涉及指導整體任務或戰役的協調、資源分配和戰略決策過程。
戰術行動。戰術行動涉及在特定區域或環境中的協調活動,通常是在軍事、執法或戰略背景下,重點是通過快速決策、適應動態形勢以及在局部區域和時間范圍內應用軍事技能和資源來實現短期目標。
近年來,人工智能、機器學習(ML)、機器人和傳感器技術的進步為實現戰術自主的潛力鋪平了道路。這些技術進步使自主系統能夠執行復雜任務,實時處理大量數據,做出明智決策,并與人類團隊成員無縫協作。這為增強人類能力、優化資源配置和提高整體作戰效率提供了新的可能性。然而,有效的戰術自主需要全面了解人類與自主系統之間的動態關系。包括信任、溝通、共享態勢感知和決策在內的人為因素在確保 HAT 取得成功方面發揮著至關重要的作用。必須認真應對各種挑戰,如建立適當的信任度、解決潛在的認知偏差、管理工作量分配和保持有效的溝通渠道,以確保無縫協作,最大限度地發揮戰術自主的潛在優勢。戰術自主的 HAT 是一種使用人類和自主系統來操作和控制武器及其他軍事系統的協作方法。在 HAT 中,人類操作員和自主系統共同努力實現共同目標。人類操作員負責總體任務并做出高層決策。自主系統負責執行指定任務。
正如第四節詳細解釋的那樣,人類操作員根據自己的經驗和對任務目標的理解,貢獻戰略洞察力、背景和高層決策能力。交互和通信代表著界面和通信渠道,各組成部分可通過這些渠道交換信息、開展協作并做出共同決策。在共享決策過程的背景下,人類操作員和自主系統參與協作決策過程,共享見解、數據和建議,以制定有效的戰略。自主系統負責實時數據處理、分析和特定任務的執行,為人類操作員提供及時、相關的信息支持。隨后,一旦做出決策,自主系統就會根據共同決策過程的指令執行具體任務,包括偵察、導航或數據收集。
本文全面探討了 HAT 的歷史發展和現狀,并深入探討了利用人工智能實現戰術自主的機遇、挑戰和潛在的未來方向。它強調了人工智能對戰術自主性的變革性影響,并提出了改進決策、態勢感知和資源優化的機遇。通過認識和應對與采用人工智能相關的挑戰,并規劃未來的研究方向,可以為人類與自主系統無縫協作的未來鋪平道路,最終實現戰術環境中更安全、更高效、更成功的任務。
圖1:HAT的應用。
本文介紹了一種為戰場環境量身定制的動態三維場景感知創新系統,該系統利用配備雙目視覺和慣性測量單元(IMU)的無人智能體。該系統處理雙目視頻流和 IMU 數據,部署先進的深度學習技術,包括實例分割和密集光流預測,并通過專門策劃的目標數據集加以輔助。通過集成 ResNet101+FPN 骨干進行模型訓練,作戰單元類型識別準確率達到 91.8%,平均交叉比聯合(mIoU)為 0.808,平均精度(mAP)為 0.6064。動態場景定位和感知模塊利用這些深度學習輸出來完善姿態估計,并通過克服通常與 SLAM 方法相關的環境復雜性和運動引起的誤差來提高定位精度。
在模擬戰場元環境中進行的應用測試表明,與傳統的 ORB-SLAM2 立體方法相比,自定位精度提高了 44.2%。該系統能有效地跟蹤和注釋動態和靜態戰場元素,并利用智能體姿勢和目標移動的精確數據不斷更新全局地圖。這項工作不僅解決了戰場場景中的動態復雜性和潛在信息丟失問題,還為未來增強網絡能力和環境重建方法奠定了基礎框架。未來的發展將側重于作戰單元模型的精確識別、多代理協作以及三維場景感知的應用,以推進聯合作戰場景中的實時決策和戰術規劃。這種方法在豐富戰場元宇宙、促進深度人機交互和指導實際軍事應用方面具有巨大潛力。
無人機已成為現代戰爭中不可或缺的一部分,其向更大自主性的演進是不可避免的。本研究探討了軍用無人機向智能化、最小程度依賴人類方向發展的軌跡,并詳細介紹了必要的技術進步。我們模擬了無人機偵察行動,以確定和分析新出現的挑戰。本研究深入探討了對提高無人機智能至關重要的各種技術,重點是基于物體檢測的強化學習,并提供了實際實施案例來說明這些進步。我們的研究結果證實了增強軍用無人機智能的巨大潛力,為更自主、更有效的作戰解決方案鋪平了道路。
圖 3 智能無人機偵察場景和應用技術。
在最近的沖突中,如俄羅斯入侵烏克蘭和亞美尼亞-阿塞拜疆戰爭,無人機被認為是不可或缺的力量。目前,大多數可用于作戰的無人機都是遙控的。雖然無人機在一定程度上實現了自動化,但由于技術和道德問題,仍需要操作人員。從戰術角度看,無人機的最大優勢是 "低成本 "和 "大規模部署"。然而,這兩個優勢只有在無人機無需操作人員即可控制時,也就是無人機智能化時才能發揮作用。
自主無人機本身并不是一個新概念,因為人們已經進行了廣泛的研究。例如,我們生活在一個無人機用于送貨和搜救任務的時代 [1]、[2]、[3]。然而,民用智能無人機技術能否直接用于軍事目的呢?我們的答案是'不能',因為軍用無人機的操作在以下情況下與民用無人機有明顯區別。首先,軍用環境比民用環境更加復雜。想想特斯拉在未鋪設路面的道路上自動駕駛時,駕駛員必須干預的頻率有多高。軍事行動并不發生在 "鋪設良好的道路上"。此外,軍事行動涉及在任意地點分配任務。其次,伴隨軍事行動而來的是敵人無數次的反擊。這些反作用包括主動和被動拒絕,主動拒絕包括試圖攔截,被動拒絕包括隱藏和欺騙。這些敵方活動增加了問題的復雜性。第三,由于軍事的特殊性和安全性,缺乏與軍事行動相關的數據。例如,缺乏坦克和運輸機發射器(TEL)的鳥瞰數據,而這些都是物體探測的常用目標。第四,軍用智能無人機執行任務時需要考慮安全和道德問題。智能無人機在執行任務時如果缺乏穩定性,就會產生不可預測的行為,導致人員濫傷和任務失敗。從倫理角度考慮,即使無人機的整體操作實現了智能化,也需要有最終攻擊決策由人類做出的概念。換句話說,關鍵的考慮因素不應該是無人機是否能自主做出攻擊決定,而是無人機如何提供信息,協助人類做出攻擊的最終決定。這些倫理問題與人類的責任和機器的作用有關。
鑒于這些軍事方面的考慮,對自主軍用無人機和民用無人機的研究應以不同的理念推進。有關軍用智能無人機的研究正在積極進行中,但與民用研究不同的是,大部分研究都沒有進入公共領域。因此,本研究有以下目標。
首先,考慮到軍事行動的特殊性,本研究探討了智能軍用無人機的概念。
其次,我們對該領域出現的各種問題進行案例研究,從工程師的角度看待這些問題,并討論從案例研究中得出的直覺。
圖 1. 智能無人機在民用領域的工程研究
軍用無人機根據其使用目的分為偵察、攻擊、欺騙、電子戰和作為目標等類別 [38],[39]。在本案例研究中,我們重點關注偵察無人機的智能化。案例研究中的無人機以韓國 "Poongsan "公司的無人機為模型。根據應用模塊的不同,該模型可以執行多種任務。不過,本研究使用的是配備偵察模塊的無人機。模塊包括攝像頭、LRF、GNSS 等傳感器和系統。在規范假設方面,假定無人機能夠配備物體檢測和強化學習神經網絡。
圖 4. 用于訓練 YOLOv4 微型目標檢測模型的跟蹤車輛圖像。
圖 12. 根據 Unity 中的情景驗證技術應用
本研究論文介紹了軍用無人機系統盒(The NeuronDrone-Box)中用于攻擊或防御決策的全自主人工智能:硬件、算法和一種新型專用軍用無人機或無人機。第一部分介紹了軍用無人機系統盒(The NeuronDrone-Box)中的攻擊或防御決策全自主人工智能,以適應任何無人機的主控系統。第二部分是使用混沌理論和經濟地理學的算法。第三部分介紹了被稱為 "黑色噩夢 V.7" 的開創性原型機。黑色噩夢 V.7 無人機投彈手擁有一系列與眾不同的功能和應用,本技術報告將對此進行詳細介紹。首先,主張在軍用無人機系統箱(The NeuronDrone-Box)中實施全自主人工智能攻防決策,以控制與全自主人工智能攻防決策軍用無人機系統箱(The NeuronDrone-Box)相連的多副翼系統(MAS)和多導彈系統(MM-System)。
為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。
為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。
標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。
為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。
為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。
一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。
視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。
動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。
除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。
近年來,槍支暴力事件急劇增加。目前,大多數安防系統都依賴于人工對大廳和大廳進行持續監控。隨著機器學習,特別是深度學習技術的發展,未來的閉路電視(CCTV)和安防系統應該能夠檢測威脅,并在需要時根據檢測結果采取行動。本文介紹了一種使用深度學習和圖像處理技術進行實時武器檢測的安防系統架構。該系統依靠處理視頻饋送,通過定期捕捉視頻饋送中的圖像來檢測攜帶不同類型武器的人員。這些圖像被輸入一個卷積神經網絡(CNN)。然后,CNN 會判斷圖像是否包含威脅。如果是威脅,它就會通過移動應用程序向保安人員發出警報,并向他們發送有關情況的圖像。經過測試,該系統的測試準確率達到 92.5%。此外,它還能在 1.6 秒內完成檢測。
認識到當前軍事教育體系的特殊性,并考慮到軍事工程培訓快速現代化的必要性,人機界面需要采用創新技術來加強教育過程。我們的目的是詳細分析在培訓未來軍事工程軍官時人工智能技術的實施情況,概述現有策略,并制定通過人工智能技術強化教育過程的可行策略。為實現研究目的,通過五份問卷對 154 名教官進行了開放式和封閉式調查,以解決研究問題。采用傳統的內容分析法和數據統計處理法對答案進行了研究。結果揭示了人工智能在軍事工程訓練中應用的基本方向,以及人工智能在未來軍事工程軍官專業能力培養中的可能應用。但與此同時,研究結果表明,軍事工程訓練過程正面臨著一些挑戰,使人工智能驅動的轉型實施變得更加復雜。為了克服人工智能目前面臨的挑戰,并為人工智能在人機界面的應用提出建議,概述了通過人工智能技術加強軍事工程訓練的策略。
圖 3:通過人工智能技術加強軍事工程訓練的戰略。
根據調查結果,可以考慮通過人工智能技術加強軍事工程訓練的五項策略。
首先,對未來軍事工程軍官進行有效培訓和數據隱私控制需要制定使用人工智能的法律框架。特別是對于信息獲取受限的人機交互界面而言,這一點至關重要。由于所有烏克蘭教育機構都根據《歐盟-烏克蘭聯系協議》中烏克蘭立法與歐盟(EU)法律相協調的原則運作,因此擬議的歐盟人工智能法(歐盟委員會,2021 年)成為設計人工智能法規的基礎。同時,高校的教育過程近似于北大西洋公約組織(NATO)的標準,他們有義務在北約實施人工智能政策(Stanley-Lockman & Christie, 2021)。針對特定機構的規定可以幫助教師處理具體情況,并解決人工智能應用所帶來的具體風險。此外,官方指南還包括一份不能在人機界面中使用的高風險應用程序清單,并規定了人工智能用戶(包括教員和學員)的具體義務。我們預計,制定使用人工智能的法律框架將促進教育進程,并使學員能夠從已有的幾項創新技術中受益。
其次,將人工智能納入課程涉及將人工智能的原則、道德、法規和基本功能納入人機界面教授的課程,以及創建使用人工智能工具的綜合課程。該戰略以在培養未來軍事工程軍官的過程中有效應用人工智能工具為導向,可用于培養人工智能素養和數字能力。此外,這種影響可能有助于擴大工程單元的運作可能性,提高未來軍事工程軍官專業活動的生產力。將人工智能納入課程是培養教員和學員適應人機界面創新數字教育環境的必要條件。因此,修改現有課程將為在軍事工程訓練中正確和合乎道德地使用人工智能創造一個穩定的位置。
第三,教育過程參與者的高水平人工智能數字化能力意味著他們已準備好正確使用人工智能工具,能夠處理來自不同來源的大量信息,并理解在專業軍事活動中進行數字化轉型的必要性(Ng 等人,2023 年)。培養人工智能數字化能力需要為教官和學員開設專門課程,教授如何在數字化環境中操作以及如何避免可能出現的錯誤。人工智能數字化能力對于優化教育過程、在線環境下的工作、改善學習材料的視覺感知、使用人工智能工具創建高質量內容、收集和系統化數據、開發基于人工智能的項目、積極的在線交流、改善教學實踐、高效的課堂管理等都是必不可少的。
第四,通過人工智能技術加強軍事工程訓練需要制定具體的方法,旨在選擇教學方法和活動,使教學過程高效。適當的方法論可以讓教員合理使用學習材料,在學員中形成深厚的知識和技能,培養未來軍事工程軍官的持續學習能力。目前,人機界面的教學科目正面臨著快速轉型,我們看到的是從傳統教學方法向個性化學習和互動式教學方式的轉變。一方面,行為模型、數據分析和學習管理系統等人工智能工具促進了軍事教育的現代化,形成了有效的定制學習。另一方面,人工智能工具的使用要求根據教學科目和教學目標采用特定的教學方法。
近來,物聯網(IoT)技術為農業、工業和醫學等許多學科提供了后勤服務。因此,它已成為最重要的科研領域之一。將物聯網應用于軍事領域有許多挑戰,如容錯和 QoS。本文將物聯網技術應用于軍事領域,創建軍事物聯網(IoMT)系統。本文提出了上述 IoMT 系統的架構。該架構由四個主要層組成: 通信層、信息層、應用層和決策支持層。這些層為 IoMT 物聯網提供了容錯覆蓋通信系統。此外,它還采用了過濾、壓縮、抽象和數據優先級隊列系統等數據縮減方法,以保證傳輸數據的 QoS。此外,它還采用了決策支持技術和物聯網應用統一思想。最后,為了評估 IoMT 系統,使用網絡仿真軟件包 NS3 構建了一個密集的仿真環境。仿真結果證明,所提出的 IoMT 系統在性能指標、丟包率、端到端延遲、吞吐量、能耗比和數據減少率等方面均優于傳統的軍事系統。
IoMT 系統由一組在戰場上應組織良好的軍事設備組成。無人機、作戰基地、艦艇、坦克、士兵和飛機等這些物品應在一個有凝聚力的網絡中進行通信。在 IoMT 網絡中,態勢感知、響應時間和風險評估都會得到提高。此外,IoMT 環境應涉及對普適計算、普適管理、普適傳感和普適通信的全面認識。此外,IoMT 可能會導致傳感器等網絡事物產生超大規模的數據。此外,這類網絡所需的計算量非常大,而這些計算的結果應能實時準確地實現。因此,IoMT 系統架構應考慮上述注意事項。
因此,建議的體系結構由四層組成: 通信層、信息層、應用層和決策支持層(見圖 1)。通信層關注的是事物如何在一個大網絡中相互通信。信息層涉及軍事數據的收集、管理和分析。應用層包括控制不同通信軍事系統的應用程序。最后,決策支持層負責決策支持系統,幫助戰爭管理者做出準確、實時的決策。下文將對每一層進行深入討論。
IoMT 系統可視為物聯網的一個特殊例子。因此,IoMT 環境與物聯網環境有些相似,只是在事物類型、通信方式等方面略有不同。根據這一理念,IoMT 環境可定義為一組使用互聯網相互通信的不同網絡。這些網絡應包括軍事任務中的主動和被動事物。IoMT 系統中應構建的主要網絡包括無線傳感器(WSN)、射頻識別(RFID)、移動特設(MANET)、衛星和高空平臺(HAP)網絡。由于 WSN 在許多軍事問題中的重要性,它被納入了 IoMT 系統。WSN 通過快速收集和提供危險數據來協助戰爭行動。然后,將這些數據發送給最合適的人員,以便實時做出正確決策。因此,除了協調自身的軍事活動外,WSN 的主要目標是監測和跟蹤敵方士兵和其他敵方事物的動向。傳感器可以遠距離分布,覆蓋大片區域。這些傳感器通過控制其行為的基站進行通信。由于 RFID 網絡在軍事領域的重要性,它在 IoMT 環境中得到了體現。軍隊中最重要的問題之一就是大部分物品都要貼上標簽。在戰場上使用 RFID 可以為士兵、貨物、小型武器、飛機、射彈、導彈等提供一個具有監控功能的跟蹤系統。例如,定期掃描每個人的醫療情況和效率是戰爭中一個非常重要的問題。城域網在 IoMT 系統中的表現也是一個重要問題,因為它可以用來促進士兵、武器、車輛等的通信。城域網在軍事上有許多特別的應用,如安裝在飛機和地面站之間的網絡或船舶之間的網絡。每種特設網絡的要求都取決于軍事任務的類型。此外,在軍事應用中使用的特設設備都配備了路由場景,可以利用最佳路由路徑自動轉發數據。物聯網依賴互聯網技術來促進通信,這是一個普遍的邏輯。遺憾的是,某些作戰地點可能沒有互聯網技術。因此,尋找替代通信技術非常重要。這就是在覆蓋目標中使用 HAP 網絡的原因。軍用物資分布面積大,因此必須以可靠的方式進行覆蓋,以保證通信效率。HAP 網絡可作為互聯網之外的第二種通信策略選擇。HAP 網絡的高度有限,因此容易成為敵方的攻擊目標,其故障概率可能很高。如果 HAP 網絡出現故障,通信系統將面臨很大問題,可能會影響軍事任務的執行。因此,應構建一個衛星網絡來覆蓋故障的 HAP 網絡,并覆蓋 HAP 網絡或互聯網可能無法覆蓋的軍事事物(見圖 2)。不同網絡之間的通信難題只需使用報頭恢復技術即可解決。在這種技術中,每個網絡之間都應添加一個翻譯器,用目的節點的報頭封裝每個數據包。新的報頭使數據包可以被理解;這可以通過系統路由器來實現(見圖 3)。
圖2: 通信網絡(該圖部分摘自[23])
圖3: 報頭轉換過程
這一層非常重要,因為它代表著 IoMT 系統架構的核心。射頻識別(RFID)、傳感器等軍用設備收集的信息應以安全、珍貴、實時的方式進行傳輸、存儲和分析。這一層的首要功能是在信息處理后對收集到的信息進行組織和存儲。IoMT 系統數據的處理被認為是一個具有挑戰性的問題,因為在短時間內可以收集到 TB 級的數據。因此,應在不影響質量的前提下盡量減少這些數據。此外,IoMT 的特殊要求(如實時決策)也不容忽視。在 IoMT 系統架構中,數據處理包括四個步驟: 優先化、過濾、壓縮和抽象。下面將對優先級排序過程進行說明。數據過濾、數據壓縮和數據抽象技術在第 4.1 小節中說明。
確定優先級的步驟包括處理不同優先級的數據。對于戰爭管理者(即軍隊將領)來說,收集到的每項數據都有一定的重要程度。因此,應將數據分為若干優先級,以便在 IoMT 系統饑餓的情況下優先處理和發送高優先級的數據。隊列系統就是用來實現這一優先級劃分步驟的。由于 IoMT 系統數據分類數量龐大,因此采用了六隊列系統。因此,IoMT 系統數據將被分為六個不同的類別。第一類代表最重要的 IoMT 系統數據;第二類代表不太重要的數據,依此類推。分類過程將動態完成,因此每個類別中的數據可能會根據戰爭任務的性質發生變化。為切實實現這一步,下一代路由器應具備對 IoMT 系統數據進行分類的能力。圖 4 說明了優先級排序過程。
圖4: 數據分類過程的簡單視圖
IoMT 系統架構中的應用層包括管理、監視等戰爭任務中使用的異構應用。該層應使用一個通用應用程序管理這些應用程序的功能,同時不影響其效率。這些應用程序的統一過程應基于通信數據(信息交換)來實現。在數據通信中,一個應用系統的輸出數據可能是另一個應用系統的輸入數據。因此,確定戰爭應用程序的輸入數據和輸出數據被認為是這一層最重要的目標之一。例如,飛機或發射器的火箭發射應用的輸入需要衛星監控應用的輸出數據,而衛星監控應用可能需要 WSN 應用的數據。信息層和應用層之間的通信非常重要,因為作為輸入和輸出的數據應首先在信息層處理。因此,在設計用于管理軍事應用程序的通用應用程序時,應首先確定每個應用程序的輸入和輸出數據。然后,應確定數據處理的時間(硬、實或軟)。例如,在戰斗停止期間,某個目標的坐標突然發生變化,三個應用程序應實時交互,以完成任務并擊中新位置上的目標。這些相互作用的應用程序構成了 WSN、戰爭管理以及執行任務的飛機機艙。還應確定應用特殊應用程序的優先順序。例如,在敵方多次攻擊特定目標的情況下,防御應用程序將優先啟動。
根據上述討論,一般管理應用程序應有一個專門的數據庫。該數據庫存儲有關單個軍事應用程序的動態變化數據。這些數據與以下主題有關: 輸入和輸出、單個應用程序之間的數據流方向、硬時間軍事情況、實時軍事情況、軟時間軍事情況以及每個應用程序的優先級。這些優先級應根據戰爭形勢來確定。根據綜合管理 IoMT 應用程序的性質,IoMT 系統數據庫的設計可以是分布式的,也可以是集中式的。在分布式數據庫中,應注意數據庫服務器之間交互的復雜性,特別是在需要硬時間或實時交互的事件中(見圖 6)。 、
戰爭中最重要的問題之一是決策過程。在技術戰爭中,決策應具備準確性、實時性、清晰性、安全性和快速分發等諸多規格。所有這些指標都應與信息層收集的數據相關。雖然信息與軍事決策之間關系密切,但所提出的 IoMT 系統架構在信息層和決策支持層之間還有一個中間層,即應用層。短時間內收集到的大量 TB 信息需要進行分析、過濾、優先排序和壓縮。這些過程已經在信息層中完成。但是,信息層沒有能力確定信息在應用層之間的移動方向(即信息的正常順序)。這種信息順序意味著,每個數據段都應指向一個合適的應用程序,以便實現互補和平衡。這些信息將用于決策過程。例如,假設戰爭管理者有一個目標,要求以特定的安排和特定的順序處理信息,直到軍事偵察之旅取得一定的結果。該目標的完成將通過步兵和防空來實現。因此,應用層和決策支持層之間的聯系將對高精度規格的決策產生良好的影響,這將在關鍵的戰爭事件中發揮作用。
簡單地說,本文概述的決策支持流程包括五個步驟: 事件權重、解決方案識別、選擇一種解決方案、行動和輸出評估(見圖 7)。戰爭管理者可根據自身經驗水平提取事件權重。一旦對事件有了充分了解,就該確定解決方案了。在準備決策時,有許多不同的備選方案。因此,確定可用行動的范圍非常重要。接下來,應選擇備選方案,并確定每個備選方案的風險。然后,就該采取行動了。應確定實施計劃,并提供實施所選解決方案所需的資源。應預先確定執行時間,然后開始執行。最后,應對選定解決方案的執行結果進行評估。請注意,有許多決策支持系統在經過實際測試(如 [24,25])后,可在 IoMT 中實施。
決策支持層可能面臨三大挑戰。第一個挑戰是數據過多或不足。這意味著決策支持層的輸出會延遲或不準確,這可能會造成災難,因為在大多數戰爭時期都需要實時決策。第二個挑戰是問題識別錯誤。在大多數戰爭任務中,圍繞一項決策會有許多問題。然而,有時卻無法確認這些問題的真實性。第三個挑戰是對結果過于自信。即使決策過程得到了準確執行,實際產出也可能與預期產出不完全一致。應用層將通過確定決策構建所需的準確信息、對問題的準確定義以及輸出調整來應對這些挑戰。因此,決策支持層將使用應用層的輸出。因此,在擬議的 IoMT 架構中,這些層之間的分離是一個需要考慮的重要問題。
首先,應構建一個軍事模擬環境,以測試所提議的 IoMT 架構的性能。網絡模擬器 3(NS3)是最廣泛使用的網絡模擬軟件包之一,將用于實現這一目標。軍事模擬環境由五種不同類型的網絡組成,其中包括分布在大片區域的大量節點。這五種網絡分別是 WSN、RFID、MANET、HAP 和衛星網絡。這些網絡是根據戰場需求確定的。文獻[26]中的仿真用于評估所提出的 IoMT 架構。在 WSN 仿真中,成千上萬的傳感器分布并部署在戰爭環境中。一個或多個基站將這些傳感器相互連接起來,并從中收集信息。在突發事件中,傳感器能夠向基站發送陷阱信息。然后,如果情況緊急,需要迅速做出決定,基站將直接把信息發送給執行者,如戰士、管理人員等。不過,在正常情況下,基站會將收集到的信息(詳細信息或摘要)重新發送給負責決策的管理人員。基站應該是智能的,并通過編程來實現這一目標。為了在 IoMT 中準確呈現 WSN,傳感器應具有不同的傳輸范圍。對于 RFID,美國軍方在第二次海灣戰爭中使用了最佳方案[27]。每個士兵身上都應貼有一個 RFID 標簽,以便在戰場上進行追蹤。此外,商業貨運和航空托盤等戰爭工具也應貼上 RFID 標簽,以便了解坦克和計劃等關鍵工具的最新狀態。此外,為了挽救士兵的生命,建議的模擬系統考慮了專門用于戰爭的移動醫院,并應配備 RFID 技術。此外,還利用 RFID 技術觀察軍隊的小型庫存物品,以實現更嚴格的庫存控制。對于城域網仿真,它包含戰場對象(如車輛、士兵和信息提供者)之間的臨時通信。在某些軍事情況下,很難通過數據采集中心傳遞或發送信息。因此,城域網仿真的一個考慮因素就是在數據傳輸中使用這種網絡。文獻[28]中所述的架構用于 HAP 和衛星網絡的通信。互聯網仿真使用了 [29] 中介紹的路由算法和 [30] 中介紹的物聯網混合組播架構。多媒體傳輸使用[31],但傳統軍事系統的模擬則使用[32,33]中所述的準則。
在信息層模擬中,將隨機、動態地創建 IoMT 數據。然后,這些數據將被分類并進入隊列,每個隊列將作為一個數據類別。動態數據的創建取決于存儲在特殊數據庫中的戰爭任務。本模擬場景中使用了 [34] 中所述的壓縮技術和數據過濾技術來減少數據,這是信息層的主要目標之一。應用層模擬也取決于戰爭任務,其中包括許多模擬網絡場景。每個網絡應用程序的輸入和輸出數據都在模擬文件中預先確定。網絡應用程序與綜合管理應用程序之間的通信是通過信息傳輸實現的。文獻[35]中的仿真用于決策支持層。戰爭任務的部分建模和仿真來自文獻[36],仿真中使用的武器的一般規格來自文獻[37]。圖 8 顯示了擬議的 IoMT 系統模擬環境的全貌。