亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文件提出了一個分類和影響分析方案,以幫助支持無人機自動操作的討論和監管發展。還引入了 “操作設計域”(ODD)概念,作為一種機制來確定自動化功能的范圍,以幫助管理復雜的多維操作環境。這允許對自動化進行功能評估,因為它涉及到人機互動,認識到在特定操作中,不同飛機功能的自動化程度可能不同。

目前,本文件的范圍僅限于無人機系統飛行操作,同時承認飛行操作將在更廣泛的空域環境范圍內進行。空域環境的自動化將在未來的 JARUS 文件中討論。該文件還討論了隨著自動化水平的不斷提高,責任和權限如何發生變化。所提出的分類方法借鑒了其他航空團體開展的類似工作,包括廣為人知的汽車行業 SAE 國際分類和飛機自動化方面的 ASTM 國際考慮因素(見下文參考文獻)。分類方法概述如下:

0 級 - 手動操作: 人完全負責功能執行,沒有機器支持。

1 級 - 輔助操作: 機器在執行功能的過程中為人類提供環外支持,例如提供相關信息。

2 級--減少任務: 機器以環內管理角色運行,減少人類完成任務的工作量,例如,根據預測的飛行路徑提供沖突警報和解決建議。

3 級 - 監督自動化: 機器在人的監督下執行功能,而人則應根據需要進行監控和干預,例如,與自動駕駛儀綁定的自動交通碰撞和規避(TCAS)系統可在收到解決建議警報時自動執行機動操作。

4 級 - 例外管理: 機器執行功能,在出現問題時向人類發出警報。人類無需對功能進行實時監控,可在機器發出問題警報后隨時進行干預。

5 級 - 完全自動化: 機器完全負責功能的執行。由于實際限制或 ODD 的故意排除,人類無法進行實時干預。

自動化功能對操作的影響一般分為三個級別:安全獨立功能、部分安全依賴功能和安全依賴功能。通過評估自動化功能的安全關鍵性(通過了解其與其他系統的獨立性)和了解功能的自動化程度,可以評估自動化功能對特定操作的影響。

最后,為了在整個空域全面采用自動化功能,需要建立對自動化系統的信任。在自主技術開發和人類操作員培訓中應用信任框架,是實現完全自主系統操作的核心環節。在運行環境中,這將在自動化機器和人類操作員之間建立一種雙向關系,以確保最安全地應用自動化操作,實現可信賴的自主。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

隨著空對空導彈有效射程的增加,人類操作員越來越難以保持保證無人機安全所需的態勢感知能力。在這項工作中,提出了一種決策支持工具,幫助無人機操作員在超視距(BVR)空戰場景中評估不同選項的風險,并據此做出決策。早期的工作側重于單枚導彈造成的威脅,而在這項工作中,我們將思路擴展到了多枚導彈的威脅。所提出的方法使用深度神經網絡(DNN)從高保真模擬中學習,為操作員提供一組不同策略的結果估計。我們的研究結果表明,所提出的系統可以管理多枚來襲導彈,評估一系列選項,并推薦風險最小的行動方案。

圖 1:無人機面臨三枚來襲導彈的情況符號表示。導彈當前的確切位置未知,但可以估計發射的時間和位置。在圖 3-6 中,飛機圖標周圍的彩色區域用于顯示在該方向進行規避機動的預測未擊中距離 (MD)。據此,操作員在決定選擇何種航線時,可以在任務目標和風險之間做出權衡。

自第一次世界大戰以來,空戰發生了翻天覆地的變化。傳感器、武器和通信技術的進步使飛行員能夠在越來越遠的距離上與敵機交戰。這些進步推動了從 "視距內 "空戰向 "視距外 "空戰的過渡[1]。在 BVR 中,來襲導彈的飛行時間可能長達數分鐘,這使得無人機操作員很難評估所有來襲數據并選擇最佳行動方案。事實上,操作員往往會失去對某些來襲威脅的跟蹤[1]。因此,需要一種能夠同時處理多個威脅并提供整體分析的支持工具。這種工具應支持操作員平衡風險與任務目標之間的關系,因為風險最低的選擇往往是完全忽略任務,而另一方面,忽略風險最終可能導致巨大損失。

由于雷達制導導彈的飛行時間可能很長,因此 BVR 空中格斗包含了一種可與星際爭霸等即時戰略游戲相媲美的元素[2]。重大挑戰包括高度非線性動態、信息不確定性以及對手的未知戰略和目標。機載傳感器可以根據敵機類型、電子戰反制設備和天氣情況輸出對手位置的估計值。不過,雖然在面對敵方時并不總能獲得精確信息,但操作員通常知道敵方飛機和武器系統的能力,因此建議的方法將利用這些信息。

在我們之前的工作[3]中,我們研究了無人機面對一枚來襲導彈的情況。利用強化學習(RL),我們計算出了最佳規避機動和執行機動時的失誤距離(MD)。然而,這種方法無法用于同時面對多架敵機的情況。當考慮從不同角度射來的多枚導彈時,相對于一枚導彈的最佳規避機動與另一枚導彈不同,顯然不能同時執行兩種不同的機動。此外,針對一對來襲導彈威脅的最有效規避行動,可以通過離線解決特定問題并存儲結果來確定,但由于可能的威脅組合數量龐大,這種方法變得不切實際。

在本文中,我們首先指出,對于人類操作員來說,MD 估計值是一種直觀的風險估計值。因此,我們希望為操作員提供一組選項,如圖 1 所示。圖中的黃色區域將根據風險程度進行著色。如果向南執行規避機動,MD 值為 2 千米,則會被染成綠色,而向西執行機動,MD 值為 0.05 千米,因此會被染成紅色。

在面臨上述多種威脅的情況下,要估算特定方向上特定機動的 MD,我們的步驟如下。首先,我們學習一組預定義的規避機動在不同羅盤方向上的單個威脅的 MD。然后,由于我們需要擔心的是最小的 MD,因此我們只需遍歷所有威脅,并保存每次機動的最小失誤距離。

通過這種方法,我們可以提供一種決策支持工具,為一系列選項提供風險估計,而不會丟失任何已檢測到的威脅。我們的方法還能讓操作員意識到在沒有安全撤離方案的情況下,例如在受到來自相反方向的近距離威脅時。為更絕望的措施提供決策支持,如發射所有剩余武器然后失去無人機,或依賴模型無法捕捉的方法,如電子戰或箔條/照明彈系統。

因此,這項工作的主要貢獻是提供了一種方法,使無人機操作員能夠評估和處理任意數量的來襲威脅,從而擴展了先前考慮單一敵對導彈的工作[3]。工作概述如下: 第二節回顧了相關工作。第三節介紹 ML 和導彈制導的背景,第四節正式定義問題。第五節介紹了建議的解決方案,第六節展示了仿真結果。最后,第八節將進行討論并得出結論。

付費5元查看完整內容

本研究為基于人工智能的復雜作戰系統的運行和開發建立了 MUM-T 概念和分類系統。分析了該系統的核心方面:自主性、互操作性和程序級別。人工智能 MUM-T 可提高有人駕駛系統的生存能力、擴大其作戰范圍并提高戰斗力。利用美國和英國正在建造的人工智能 MUM-T 綜合作戰系統的數據,分析了技術挑戰和項目水平。目前,MUM-T 處于有人駕駛平臺和無人駕駛飛行器平臺復合運行的水平。從中長期來看,無人地面飛行器、無人水面飛行器和無人水下飛行器等異構平臺之間的互操作通信是可能的。根據人工智能 MUM-T 系統之間互操作性的通用架構和標準協議的發展水平,MUM-T 可以從 "1 到 N "的概念發展到從 "N 到 N "的各種操作概念組合。本研究與現有研究的不同之處在于,MUM-T 系統中體現了第四次工業革命的核心技術,如人工智能、自動駕駛和數據互操作性。此外,通過在現有的無人系統分類法中體現人工智能和自主性,建立了人工智能支持的自主 MUM-T 操作和設施分類系統,并在此基礎上對級別和程序進行了分析。

本研究確立了有人無人協同作戰(MUM-T)的概念,目的是操作、開發和利用智能聯合作戰系統。此外,它還分析了互操作性、自主性、挑戰和計劃水平。人工智能支持的自主無人 MUM-T 提高了有人系統的生存能力,擴大了作戰范圍,并顯著提高了作戰效率。與以往不同的是,MUM-T 的概念正隨著人工智能的發展而不斷擴展,互操作性和自主性也在相應提高。美國和北大西洋公約組織(NATO)國家提出了未來防御領域的挑戰,并在無人系統(UMS)和 MUMT 層面開展了解決這些挑戰的計劃。本研究分析了自主 MUM-T 聯合作戰系統的運行和使用所面臨的技術挑戰和計劃水平,并介紹了基本要素技術。研究方法基于現有定義和第四次工業革命建立了 MUM-T 概念。并利用北約、美國和英國的數據分析了互操作性、自主性、挑戰以及技術和利用方面的計劃水平。

圖 2 基于 NIST 和北約分類標準的人工智能自主 MUM-T 系統分析

美國防部(DoD)對 MUM-T 的定義各不相同。美國 陸軍無人機系統卓越中心(UAUCE)將有人駕駛平臺和無人機視為單一系統。有人系統和無人系統(如機器人、傳感器、無人飛行器和作戰人員)的集成增強了態勢感知、殺傷力和生存能力[1]。國防部將這種關系視為執行共同任務的綜合團隊,美國陸軍航空卓越中心(UAACE)將其定義為同時操作士兵、無人機和無人地面飛行器(UGV),以提高對態勢的了解和生存能力[2]。它采用了標準化的系統架構和通信協議,使來自傳感器的精確圖像數據能夠在整個部隊中共享。目前,它在國防領域的應用最為廣泛。陸軍航空動力局(AFDD 2015)將其定義為:為每個系統提供特殊功能,使現有有人平臺和無人資產能夠合作完成同一任務。這是一種規避風險的方法,通過從空中、陸地和海上無人系統向有人資產傳輸實時信息,提高單兵作戰人員的態勢感知能力[3]。圖 1 是戰場上 MUM-T 系統的層次示意圖。

在世界經濟論壇(WEF)議程的第四次工業革命(Fourth IR)之后,數字化(I2D2)作為一項核心技術被提出。這些技術在未來科學中具有自主、分析、通信和邊緣計算的特點。該技術的特征組合構成了自主系統和智能體(智能+分布式)、擴展領域(互聯+分布式)、作戰網絡(互聯+數字化)、精確作戰領域(智能+數字化)。智能人工智能將改變戰爭的格局,而數字數據的可用性將使分布式和互聯(自主)系統能夠進行分析、適應和響應。這些變化反過來又可能通過預測分析支持更好的決策。

北約(2020 年)以第四次工業革命的核心技術特征及其組合為導向,構建復雜的作戰系統[4-6]。美國國防發展機構(ADD 2018)認為,MUM-T 復雜系統是一種無人作戰系統,可以補充或替代作戰人員的能力,以最大限度地提高作戰效率,最大限度地減少戰場情況下的人員傷亡。它被定義為以一種復雜的方式操作包括戰斗人員在內的有人作戰系統的作戰系統[7]。考慮到美國國防部(2010)、北約(2020)和 ADD(2018)的定義,人工智能支持的自主 MUM-T 復雜作戰系統(以下簡稱 "自主 MUM-T")和 OODA 循環如表 1 所示[1,5,7]。本研究所指的 MUM-T 復合作戰系統通過聯合指揮與控制,在空中、地面、海上、太空、網絡和戰爭等所有領域提供觀察、分析和控制,可通過整合/連接所有軍事力量的有人和無人系統進行操作。它被定義為 "根據決策和行動執行聯合行動的作戰系統"。

圖 3 北約 STANAG LOI 5 和自主邊緣計算 MUM-T 互操作水平設計

付費5元查看完整內容

這項工作研究了在任務式指揮設備中嵌入模擬器的實用性和有效性。其目標是僅使用戰區作戰計劃作為模擬輸入,向操作員隱藏所有模擬器細節,使其無需學習新工具。本文討論了一種原型功能,該功能可根據 SitaWare 中生成的作戰計劃以及嵌入式無頭 MTWS 和 OneSAF 模擬器的模擬結果,生成行動方案(COA)分析。在輸入作戰計劃后,指揮官選擇要執行的模擬運行次數,并按下按鈕啟動模擬,模擬在后臺的運行速度比實時運行更快。模擬運行完成后,指揮官可通過圖形和圖表查看結果,對多次運行進行比較。預計未來的能力將允許指揮官模擬任何梯隊和命令,用于訓練和兵棋推演。

付費5元查看完整內容

由于近年來無人駕駛飛行器技術的蓬勃發展,這些飛行器正被用于許多涉及復雜任務的領域。其中一些任務對車輛駕駛員來說具有很高的風險,例如火災監控和救援任務,這使得無人機成為避免人類風險的最佳選擇。無人飛行器的任務規劃是對飛行器的位置和行動(裝載/投放載荷、拍攝視頻/照片、獲取信息)進行規劃的過程,通常在一段時間內進行。這些飛行器由地面控制站(GCS)控制,人類操作員在地面控制站使用最基本的系統。本文介紹了一種新的多目標遺傳算法,用于解決涉及一組無人飛行器和一組地面控制站的復雜任務規劃問題(MPP)。我們設計了一種混合擬合函數,使用約束滿足問題(CSP)來檢查解決方案是否有效,并使用基于帕累托的方法來尋找最佳解決方案。該算法已在多個數據集上進行了測試,優化了任務的不同變量,如時間跨度、燃料消耗、距離等。實驗結果表明,新算法能夠獲得良好的解決方案,但隨著問題變得越來越復雜,最佳解決方案也變得越來越難找到。

付費5元查看完整內容

美國國防部和合作組織正在開發先進的機器系統,這些系統將與人類合作完成任務。鑒于這些人機團隊(HMT)從未經歷過測試與評估(T&E),本簡報有助于指導評估人員應對 HMT 帶來的新挑戰。它定義了人機協作,描述了評估 HMT 所面臨的挑戰,并提供了對 HMT 的測試與評估非常重要的指標分類框架。

人機協作比個體系統完成任務的簡單行為更為廣泛。它涉及人與系統之間的廣泛互動,因為他們要共同努力實現一個集體目標。鑒于人機協作的高度協作性,僅僅衡量機器和人是不夠的。我們還需要衡量團隊本身,而且這些衡量標準必須與任務相關、定量且客觀。

在評估 HMT 時會遇到一些獨特的挑戰,包括如何處理不透明的心智模式,以及機器指揮通信、自我任務或人類任務的情況。例如,考慮一個人機搜救小組,在這個小組中,一架自主無人機在空中飛行,尋找倒塌建筑中的幸存者,當發現幸存者時,它會向地面上的機器人發出警報。然后,機器人將幸存者從廢墟中拉出,送到人類醫護人員那里接受治療。如何評估無人機決定搜索地點的過程?或者如何與機器人溝通?機器人對這些通信的反應又如何?醫護人員決定如何治療幸存者以及治療順序如何?無人機、機器人和醫護人員如何合作并優先救治傷勢最嚴重的幸存者?它們如何協調其他工作?他們如何應對不斷變化的環境所固有的困難?顯而易見,團隊成員之間的互動是關鍵。

該框架概述了 HMT 評估的主要類別,包括能力(團隊具備哪些能力?)、互動(團隊如何合作和協調行動以實現目標?它強調團隊的衡量標準以及人與機器之間衡量標準的協調。因此,如果要評估人類的認知能力(即注意力和判斷力),就需要同時評估機器的認知能力(即信息處理架構和決策算法)。

該框架還提供了一種結構,用于確定和選擇評估團隊效率的適當指標。所有這些衡量標準都來自于先前的科學研究。

首先,考察人和機器的能力,因為其中任何一項能力都可能是團隊合作失敗的原因。對人的培訓和經驗、心理特征、體能、態度、認知資源、腦力勞動負荷或疲勞等進行評估。考慮與機器的認知結構和硬件組件相關的因素,如程序化任務知識、操作系統和其他軟件,以及物理傳感器和平臺。

其次,檢查可能導致交互失敗的關鍵領域。其中包括機器的態勢感知、資源分配和不同情況下的資源使用。例如,機器在使用傳感器尋找新的幸存者時需要多少電力,會影響到機器是否可以協助滿足團隊的其他需求。這些關鍵領域還包括人類的視角和決策過程。例如,人類對情況的理解會影響他們在這種情況下的行為,以及他們是否信任與之合作的機器。

最后,考慮潛在的漏洞。哪些威脅可能會阻礙團隊完成目標?如果團隊失敗會有什么后果?失敗可能會引發哪些其他問題?重要的是要找出任何問題,以便在今后的工作中加以緩解或解決。

最后,本簡報為 T&E 界提供了兩個重要啟示:

  • 評估 HMT 所面臨的挑戰與評估使用工具或系統的人類所面臨的挑戰不同。團隊中的人類和機器(稱為智能體)必須追求相同的目標,影響當前的問題狀態,并相互協調行動;這些互動因素使團隊面臨新的漏洞和更多的故障點。
  • 不能僅憑任務結果來識別潛在的系統漏洞。智能體之間的互動增加了評估的問題空間。

付費5元查看完整內容

強化學習(RL)方法的主要關注點之一是如何將在模擬環境中學到的策略轉移到現實環境中,同時獲得相似的行為和性能(即模擬到現實的可轉移性),這一點在機器人控制器中尤為重要[1]。在過去的幾年里,為了縮小模擬世界與現實世界之間的差距,實現更有效的策略轉移,人們已經跟蹤了多個研究方向。領域隨機化是學習遷移中應用最廣泛的方法之一,它將模型暴露在各種條件下,使模型對這些方面的建模誤差具有魯棒性。隨機化被認為是實現從模擬到真實轉移和一般穩健策略的關鍵[2]。另一種常用的方法是系統識別,它使用具有精確物理和動態系統數學模型的高保真環境。不過,系統識別的缺點是計算量大,因此需要更多時間進行訓練。其他相關方法有零點轉移法和域適應法 [3]。

大多數關于 RL 的研究都集中在使用端到端方法的低級控制器上,其中 RL 網絡將機載傳感器提供的原始信息作為輸入,并將應用于執行器的連續控制動作作為輸出 [4]。然而,這種方法有兩個主要局限性:(i) 它對平臺的配置有很強的依賴性,例如,與傳感器提供的信息及其質量有關,或與推進器等執行器的數量及其配置有關;(ii) 模擬到現實的傳輸差距更難縮小,因為經過訓練的策略會受到機器人平臺動態的強烈影響。例如,在文獻[5]中,作者在真實飛行器中使用了第二個訓練過程,學習過程繼續在線進行。在文獻[6]中,控制器需要進行額外的調整,以彌補模擬與真實世界之間的差異,但即便如此,現場結果仍顯示出較低的性能。

在本研究中,我們介紹了一種平臺便攜式深度強化學習方法,該方法已被用作自主車輛定位水下物體的路徑規劃系統,如圖 1 所示。我們設計了一個高級控制系統,以減少上述問題,并具有強大的模擬到實際的傳輸能力。此外,我們的方法易于配置,可在不同平臺和不同條件下部署。例如,訓練有素的智能體已成功部署在兩種不同的飛行器上: (i) 液體機器人公司(Liquid Robotics,美國)的自主水面飛行器(ASV)"波浪滑翔機";以及 (ii) IQUA 機器人公司(IQUA Robotics,西班牙)的自主水下飛行器(AUV)"Sparus II"。測試在加利福尼亞州蒙特雷灣和西班牙加泰羅尼亞 Sant Feliu de Gu?xols 港口進行。在這兩種情況下,飛行器都使用了僅測距的目標跟蹤方法來定位錨定的應答器[7]。

圖 1:制導、導航和控制系統,以及與制導相關的一些主要研究方向。用粗體字表示詳細描述的方面。

付費5元查看完整內容

本研究提出了一個基于 MOOS-IvP 中間件的自主水下航行器控制算法構建框架。側掃聲納傳感器(SSS)通常用于生成聲納圖像,在圖像中可以識別類似地雷的物體。這里實施的基站社區可維護 SSS 的覆蓋置信度地圖,并為用戶提供二維和三維模擬以及實施高級控制方案的能力。開發可分三個階段進行: 1) 最簡配置,僅使用必要的應用程序來開發和測試外環控制;2) 包含模擬硬件的配置;3) 包含實際硬件的配置,該配置應從第 2 階段平滑、輕松地擴展而來。這樣做的好處是使用方便、開發速度更快、減少硬件測試和成本。

圖 1. 自動潛航器路徑及其側視聲納覆蓋的相應區域示例。

多智能體框架

在擬議的 MAS 框架中,每個 AUV 和基站分別有一個獨立的社區。每個群落上都運行著幾個應用程序,其中一些包含在 MOOS-IvP 發行版中,另一些則由作者自行開發。

在擬議框架中,有三種可能的配置:1) 加速開發高級控制和規劃策略的簡約配置;2) 在最底層用變量替代實際傳感器和執行器數據的模擬配置[12];3) 實際硬件實施。

圖 6. 配置 1:2 個自動潛航器群落和 1 個基站群落,應用極少。

圖 8. 配置 2:硬件模擬包括所有傳感器和致動器應用。

付費5元查看完整內容

這項工作旨在利用無線音頻傳感器網絡為無人駕駛航空器系統(UAS)提出一種探測、識別和跟蹤解決方案。根據適用于無人機系統的技術趨勢(更小、更便宜、更合作),我們提出了一種采用與 "攻擊者 "相同技術方法的分布式監控解決方案。特別是,由于無人機會引起周圍聲學環境的變化,我們研究了音頻傳感器網絡的使用。更確切地說,我們采用了一種三階段算法來檢測監控環境中音頻能量的存在,識別特定的音頻特征,然后與多節點方法合作跟蹤無人機。通過實驗獲取的音頻信號,我們展示了所提方法的初步性能。我們還討論了改進實際實施的未來工作。

參考場景

微型和小型無人機(1 千歐元及以下)成本低,易于采購,使恐怖分子使用這種技術的障礙降至零。此外,開放源碼技術通常用于設計無人機系統的某些組件,這就為設計專用有效載荷的人填補了一個很小的知識空白。如此易于采購和個性化的飛行平臺最終可以接近合理的目標。根據這一趨勢,協調無人機中隊很快就會成為任何人都可以利用的資源。應對這種威脅的措施不可能是集中式的。目前,我們看到的非對稱解決方案適用于前沿作戰基地或安裝了大型無人機探測器的沙漠場景。然而,這種威脅在城市場景中可能無處不在,因此建議采用對稱的對策,即分布式、小型和廉價的對策。

特別是近年來無線傳感器網絡的不斷發展,以及節點的小型化和低成本化,可以為城市環境或復雜場景提供最合適的解決方案,因為在城市環境或復雜場景中,可能會有平民存在,而固定的軍事設施可能并不合適。

如圖 2-1 所示,這項工作將以大量廉價音頻傳感器為參考場景,每個傳感器都能夠識別無人機的音頻特征,并在發現匹配時,通過與其他節點協作定位惡意來源。研究的重點是在空曠場地場景中,利用音頻陣列檢測、識別和跟蹤單架無人機或小型無人機群,即可與單個大型單元同化。

方法

由于所提方法的目標具有三重性(即檢測、識別和跟蹤惡意無人機),因此我們的方法采用了三層算法疊加的方式。圖 3-1 給出了所追求的研究方法的總體描述。我們依靠獲取音頻信號來準確描述無人機系統的存在。第一層用于檢測無人機系統的存在。在這一階段,音頻傳感器從環境中采集少量樣本,例如每秒一次,以揭示從環境中感知到的音頻能量異常。

當這一層檢測到匹配時,第二層就會在短時間內(如約 240 毫秒[3])通過連續采樣進行識別。識別階段的目標是區分異常聲音是否與飛越音頻傳感器網絡的無人機有關,并最終確定其類型。我們將研究兩種主要方法:一些作者在 [1] 中提出的方法和循環神經網絡 (RNN) [6]。第二識別層中的正匹配將啟用第三階段的跟蹤算法。在這一階段,發出警報的節點(在識別階段匹配成功的節點)會喚醒鄰居節點,以執行波束形成跟蹤。這是耗電量最大的階段,因為需要維護音頻傳感器網絡與其遠程控制中心之間的通信鏈路,以及音頻傳感器的連續采樣階段。

所采用的分層策略應能優化計算能力和電池需求。事實上,始終處于活動狀態的第一層執行的是低復雜度、低消耗的數學計算。另一方面,只有在出現異常音頻時,才會執行更強大的計算,即細粒度簽名識別和音頻跟蹤。

付費5元查看完整內容

這項工作提出了一個在歐盟項目FOLDOUT中開發的融合和跟蹤系統,旨在通過融合不同的傳感器信息和提出對監視區域內檢測到的目標自動跟蹤來促進邊防工作。FOLDOUT的重點是歐盟內部和外部地區的穿透式樹葉檢測。融合多個傳感器信號可以提高檢測的有效性,特別是在森林和其他被樹葉遮擋的地區。我們使用加權地圖(也稱為熱圖)來結合多傳感器信息;對所產生的融合目標進行跟蹤;根據對融合檢測的時間關聯的成本計算來創建或更新跟蹤。我們比較了來自單個傳感器的跟蹤結果和來自融合目標的跟蹤結果,這些數據是在模擬邊界收集的,代表了保加利亞的實際歐盟邊界。結果表明,如果根據融合后的數據而不是單個傳感器的信息進行追蹤,追蹤效果會得到加強。

檢測與跟蹤方法

邊防軍的主要興趣是在全球地圖上對監視區域內檢測到的人員進行定位和跟蹤。為了實現這一目標,首先要將不同傳感器系統觀察到的單個人的探測結果進行融合。當檢測結果相互關聯并保持一致時,就可以在一個共同的地圖上對單獨的目標進行跟蹤。

圖2:指導動作(紅線),扮演一個非法越境的場景:1.一個人通過步行越過邊境。2.該人沿著邊境小路向大路走去。3.此人停下腳步,在路上停留很長時間(可能是在等待汽車中的走私者)。4.在某一時刻離開道路,躲進樹叢中。5. 在樹葉中,該人再次回到路上(可能再次尋找汽車)

A.單傳感器檢測

RGB和熱像儀中的人員檢測

基于深度學習的綜合物體檢測被應用于相機圖像上。深度學習方法已被證明優于以前的最先進的機器學習技術。深度神經網絡(DNNs)模仿了大腦感知和處理信息的方式。與以前的方法相比,DNNs學習了諸如人物檢測等任務所需的特征。近年來,DNN在物體檢測和分類任務上表現出突出的性能[9, 10]。在這項工作中,物體檢測是基于一個著名的DNN實現,即YOLO檢測器[11]。

PIR傳感器中的人員檢測

探測器經過調整,使被動紅外傳感器在PIR周圍7.5米的半徑內觸發人的存在。

B.異質傳感器融合

在這項工作中,我們使用加權地圖來提供傳感器數據的層次(也稱為HeatMaps),并以邏輯和數學的方式組合它們。它的動態是完全使用不同傳感器模式的傳感器檢測假設的事件驅動。這些傳感器假設包括位置(WGS84基準)、時間戳(Unix時間戳)和權重(例如,從傳感器檢測中獲取的信心)。為了實現這一點,有兩個組件是必不可少的:加權分布圖(HeatMaps);線性意見庫。圖3顯示了這種方法的基本概念。

圖3:融合方法的基本概念(左),作為使用兩個加權分布圖(熱力圖)的例子。應用不同的衰減函數(右)來建立加權分布圖的時間動態行為。

加權分布圖(熱圖)

加權分布圖是我們數據融合方法的兩個基本組成部分中的第一個。加權地圖的基本思想是,保持和更新關于不同傳感器探測假設的時空信息。加權地圖來自于概率占用網格,但以加權的形式解釋傳入的數據。此外,還采用了時間上的衰減來模擬傳感器數據的及時行為。權重被存儲在一個可選擇分辨率的數組中,代表WGS84坐標中感興趣的矩形區域。圖3展示了用于模擬加權分布圖動態行為的可能衰減函數。

通常,加權分布圖對應于任何一種傳感器數據或傳感器模式(例如,從攝像機圖像中檢測人的邊界框)的時空。傳感器數據被攝取到一個專門的加權圖中,這導致加權圖的值根據傳入的傳感器假設的權重而增加(替換)。相對而言,衰減將及時應用到加權分布圖的值矩陣中。每次傳感器假設被攝入分布圖,它將通過重新計算加權分布圖的權重和衰減以前狀態的值來更新。

最后,線性意見庫允許我們結合多個加權分布圖,從而結合多傳感器模式,目的是減少傳感器系統的整體錯誤發現率。

線性意見庫(LOP)

我們融合方法的第二個重要組成部分是線性意見庫[8]。

每當一個加權分布圖的狀態由于新的傳感器檢測假設而被更新時,就會應用LOP。在評估了LOP之后,閾值處理使我們能夠產生警報。為了確定警報的位置,在組合值矩陣中超過閾值的區域使用分割算法(blob檢測)。這些警報是由多個傳感器假設產生的,用于為跟蹤提供必要的輸入數據,這將在下一節中描述。

C.多目標跟蹤

為了跟蹤越境進入禁區或敏感區域的入侵者的行動,我們開發了一種基于空間和時間上關聯目標檢測的成本計算的定制算法。該跟蹤系統的工作原理是完全基于目標的位置和時間戳建立一個模型。

在第一次檢測目標時,該模型以該檢測的位置和時間戳進行初始化。軌跡模型是用以下元組定義的:???? = (????,????,????)。

如果幾個目標檢測同時發生,那么創建的模型模板數量與同時收到的檢測數量相同。后續的檢測被添加到一個給定的軌道模型中,這取決于將檢測添加到軌道中的成本。該成本被定義為傳入的檢測和軌跡候選者之間的距離。

在有多個傳入的檢測和多個軌跡候選者的情況下,已經實施了匈牙利算法[12],使檢測和軌跡之間的關聯產生最小的成本。

付費5元查看完整內容

在有環境因素的城市區域內安全有效地使用四旋翼飛行器,對美國軍事和民用部門具有巨大的重要性。本技術報告探討了一個高度適應性的模擬設置,其中有一個包含學習元素的非線性控制器。其他模型因素--如無人機的幾何形狀、權重和風的力量--在所提出的框架內很容易被修改。用虛幻引擎進行的模擬,可以結合現實世界的城市數據、現實的風和現有的開源軟件。

引言及與美國陸軍的相關性

無人系統和無人駕駛航空系統(UAS)的使用在全世界的軍隊中激增,在通信、監視、偵察和戰斗中都有應用(Nacouzi等人,2018)。在敵對地區,無人機系統將受到多種威脅,包括網絡和物理威脅,以及環境危害。生存和任務的成功往往取決于以最小的通信或依賴全球導航衛星系統(GNSS)的能力,如GPS(Guvenc等人,2018;Sathyamoorthy等人,2020;Fan等人,2022)。例如,無人機系統的通信可用于檢測和獲得無人機系統的位置,而基于衛星的導航很容易被欺騙或干擾,因為信號非常弱。其他傳感器也經常被用來增強GNSS的位置分析,并可以用來取代它,如光學系統--包括照相機、雷達、光探測和測距(LiDAR)系統和慣性測量單元(IMU)(Angelino等人,2012)。這些都提出了自己的挑戰。慣性測量單元是標準設備,但只能檢測線性和角加速度,同時通過檢測地球的局部磁場來確定方向(共9個自由度)。因此,位置誤差,即測量的加速度的第二個時間積分,會隨著時間的推移而累積。在使用IMU進行UAS導航時,其他令人擔憂的來源包括環境影響(即風或降水)。 UAS結構的物理變化,如增加一個傳感器或武器包,包括武器發射后的變化,使工作進一步復雜化。這種質量和質量分布的變化改變了UAS的質量中心和慣性張量。光學傳感器、雷達和LiDAR系統增加了重量,并經常發射射頻或光,使它們更容易被探測到和/或需要處理資源。增加的重量和/或處理可能對電池壽命產生不利影響,從而影響運行時間和整體可靠性。

為了解決這些問題,我們正在研究在大風環境中使用控制算法,以了解IMU信號如何在控制中被用來考慮(和/或改變)UAS的位置計算。再加上不確定性措施,這些最終可用于檢測UAS飛行性能的變化,或對GNSS信號的欺騙。

城市環境是安全和可靠的無人機系統運行的第二個關注領域(Watkins 2020)。它們被認為是國防部行動的一個挑戰領域,也是政府和商業服務的一個巨大的技術增長領域。在這份報告中,我們展示了一個模擬空間,我們正在建立專門用于模擬城市環境中的無人機系統,以解決自主和半自主控制的問題,重點是環境的相互作用,包括風和靜態碰撞威脅。物理學和控制的關鍵部分直接用C++實現。除此之外,在可能的情況下,我們正在利用當前的免費和開源資源(即軟件、軟件框架和數據),但要注意的是,我們包括使用一些在產品商業化成功后需要付費的工具。我們采取了一種模塊化的方法,隨著其他軟件框架和系統的成熟,將能夠靈活地過渡到其他軟件框架和系統。我們目前的系統已經基于用于小型無人機系統的PX4控制器庫和實時發布-訂閱(RTPS)數據傳輸協議。RTPS應能使我們的發展在其他工具成熟時過渡到其他工具,并使用通用的應用編程接口(即API)過渡到其他工具和數據,如計算的風數據。對于圖形和用戶界面,我們使用虛幻引擎(UE)(Matej 2016),這是一個游戲引擎,提供最先進的圖形功能和我們的模型中使用的一些物理學--最重要的是無人機系統和其環境之間的碰撞檢測。

第2-4節詳細介紹了整個模擬的主要計算部分:納入現實世界的城市數據,生成現實的風模型,無人機的幾何和物理建模,以及線性和非線性控制。我們對整體模擬的這些主要部分中的每一個都依賴開源軟件,如UE、OpenStreetMap(OSM)(Anderson等人,2019年)、Mapbox和AirSim(Shah等人,2017年),并根據需要詳細說明(見圖1;例如,真實城市的模型導入游戲引擎中)。第5節和第6節提供了樣本結果和結語。

圖1 將城市數據納入UE進行大規模模擬的兩個例子。伊利諾伊州的芝加哥(上);弗吉尼亞州的水晶城(下)。這兩張圖片都是使用開源工具創建的,將開源的Mapbox城市數據導入UE中。

付費5元查看完整內容
北京阿比特科技有限公司