亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

本文概述了一種評估和量化與集成大型語言模型(LLMs)生成海軍作戰規劃有關風險的方法。其目的是探討大型語言模型在這方面的潛在優勢和挑戰,并提出一個全面風險評估框架的方法。

大型語言模型(LLM)是一種先進的人工智能系統,它在龐大的數據集上經過訓練,可以處理和生成文本,使其能夠執行從簡單的問題解答到復雜的內容創建等各種任務。大型語言模型,如 ChatGPT 和 Bard,在理解、解釋和生成人類語言方面已顯示出非凡的能力。它們在海軍作戰中的潛在用途可提供顯著的戰略優勢,如增強決策支持、情景分析和作戰計劃效率。然而,在敏感的軍事環境中部署這些先進的人工智能技術會帶來一些關鍵的風險問題,包括潛在的偏見、作戰安全問題以及人工智能生成戰略的可靠性。

這項研究的意義在于其重點關注大型語言模型在海軍作戰計劃生成中的整合。通過研究潛在風險并制定評估這些風險的框架,本研究旨在促進在這些海軍作戰環境中安全、戰略性地使用人工智能技術,同時使技術進步與作戰安全和有效性保持一致。

對現有文獻的回顧顯示,專門針對軍事應用中大型語言模型的全面風險評估框架存在空白。有關大型語言模型的研究主要集中于其技術能力和在民用環境中的應用。然而,軍事行動的獨特挑戰,尤其是在海軍環境中,需要一種專門的風險評估方法。本研究試圖通過開發一種基于海軍作戰計劃的具體要求和復雜性的方法來彌補這一差距。

研究方法

本研究的理論框架以貝葉斯網絡為基礎,貝葉斯網絡提供了一種結構化方法,用于模擬與 LLM 部署相關的各種風險因素之間的復雜關系。由于貝葉斯網絡能夠處理不確定性和概率關系,因此特別適合用于這一目的,使其成為評估海軍行動中 LLM 集成的多方面風險的理想工具。

本研究吸收了 Lauría 和 Duchessi(2007 年)概述的方法論中的見解,采用類似的結構化方法來構建貝葉斯網絡,并以實證數據收集和分析為基礎。我們的方法首先是編制和管理一份調查問卷,其答復將作為初始數據源,用于確定與海軍作戰計劃風險相關的變量之間最有可能存在的關系。這一過程為我們的貝葉斯網絡中每個節點的條件分布設置了后續參數。通過這種方法,我們旨在建立一個穩健的貝葉斯網絡模型,以準確反映與 LLM 生成的作戰計劃相關的風險的復雜相互依存關系和概率性質,并在分析更多作戰計劃和整合更多經驗數據時進一步完善我們的模型。

本研究的方法包括以下幾個關鍵步驟

  • 問卷編制與管理

  • 數據收集與分析

  • 貝葉斯網絡建模

  • 風險分類和評估

  • 問卷編制和管理 將設計一份詳細的調查問卷,以便從海軍人員、人工智能專家和軍事戰略家等廣泛的利益相關者那里收集信息。問卷將包含各種海軍作戰計劃,其中一些由 LLM 生成,另一些則由作戰規劃人員編寫,以確定這些計劃中的潛在風險途徑。

  • 數據收集與分析 將收集和分析調查問卷的答復,以確定海軍作戰計劃的關注領域。這一分析將為確定與作戰計劃相關的關鍵風險因素以及由 LLM 生成的計劃所特有的風險因素奠定基礎。

  • 貝葉斯網絡建模 將使用貝葉斯網絡對確定的風險因素進行建模,以了解其相互依存關系和這些風險的概率性質。該模型將作為一種動態工具,用于評估和直觀顯示這些生成的業務計劃的復雜風險狀況。

  • 風險分類和評估 通過調查問卷和貝葉斯網絡模型確定的風險將根據其對海軍行動的潛在影響進行分類和評估。這一步驟包括對每個風險因素進行全面評估,同時考慮其可能性和嚴重性。

分析

研究的分析階段包括對大型語言模型生成的假設計劃和人類戰略家創建的計劃進行比較研究。這種比較旨在突出 LLM 生成的計劃的優勢、局限性和潛在風險。此外,研究還將探討降低已識別風險的策略,如納入制衡機制、提高透明度和確保持續驗證 LLM 的產出。

這項研究預計將產生幾項重要成果:

  • 從利益相關者反饋和貝葉斯網絡分析中得出的與海軍作戰規劃中使用大型語言模型相關的風險因素綜合清單。
  • 評估已確定風險的結構化框架,為決策者評估和減輕將大型語言模型納入作戰規劃的潛在挑戰提供依據。
  • 對大型語言模型生成的計劃和人工創建的計劃進行比較分析的結果,為了解大型語言模型在業務規劃方面的能力和局限性提供了寶貴的見解。
  • 降低已識別風險的建議,確保在將大型語言模型納入實際行動時,既能實現最大效益,又能將潛在弊端降至最低。

初步結果

在此,使用 ChatGPT 生成了一個基于以下指揮官意圖的虛構作戰計劃樣本: "我的意圖是支持菲律賓武裝部隊在菲律賓中部受災地區開展人道主義援助和災難響應(HA/DR)行動。我們將提供一切可用的援助,以減輕人類痛苦并恢復正常狀態"(圖 1)。

圖1:ChatGPT生成的行動計劃

LLM 為菲律賓中部地區虛構的 HA/DR 行動制定的行動計劃展示了該模型構建全面響應戰略的能力。不過,它也凸顯了與 LLM 生成的計劃相關的幾個潛在風險。

該計劃概述了在帕奈島建立一個前沿行動基地,但沒有考慮該島目前支持此類行動的能力或對當地社區的潛在影響。這種疏忽可能會使當地資源緊張或擾亂地方當局正在進行的恢復工作。

使用無人機進行即時空中勘測的假設是,可以快速、準確地確定最需要幫助的地區。然而,這種方法可能無法考慮快速變化的天氣條件或評估后出現的新緊急情況,從而可能導致資源分配不當。

如果出現不可預見的技術問題,或同時需要直升機執行多項緊急任務,那么依靠海軍直升機在公路無法到達的地區進行空投可能會出現問題。這凸顯出可能會過度依賴特定資產,而不考慮替代或后備交付方法。

恢復階段建議協助恢復關鍵基礎設施,但沒有詳細說明參與范圍或開始撤出海軍資產的標準。這種不具體的做法可能導致過早撤離或超出海軍行動能力的長期參與,影響恢復工作的整體效果。

對這個由 LLM 生成的作戰計劃的審查不僅說明了人工智能在提高作戰計劃能力方面的潛力,而且也表明了我們為 LLM 生成的海軍作戰計劃開發綜合風險模型的研究工作的必要性。識別人工智能方法中固有的特定風險因素--如對當地基礎設施能力的假設、對技術的依賴以及計劃執行和完成標準的模糊性--表明需要一個能夠有效評估這些風險的框架,以便在使用這些工具時能夠考慮到這些風險。研究旨在通過使用方法來評估、分類和管理與在復雜作戰環境中部署大型語言模型相關的風險,從而彌補這些差距。通過整合這些風險模型,我們可以更好地確保負責任地利用大型語言模型的創新能力,提高作戰計劃的有效性和可靠性。

Palantir AIP(人工智能平臺)是將人工智能系統(包括許多依賴大型語言模型的能力)整合到運營環境中的尖端方法。雖然利用這些先進的工具可以讓組織利用人工智能系統的大型能力,但在 Palantir AIP 等平臺中使用大型語言模型清楚地表明,亟需對所有潛在的相關風險因素進行全面研究。隨著這些人工智能驅動的系統被部署到運營規劃的越來越多的重要方面進行協助和自動化,人工智能生成的內容的特殊細微差別成為重要的關注領域。

展望大型語言模型在海軍行動中的部署,會暴露出另一個風險途徑,特別是在支持此類技術所需的基礎設施方面。大型語言模型需要大量的計算和數據傳輸,還需要實時數據處理和無縫通信,以執行人工智能驅動的作戰計劃,這就要求網絡基礎設施不僅要有彈性,還要有很強的適應性。這就是軟件定義網絡(SDN)的潛在整合意義所在。SDN 以其靈活性和可配置性著稱,是一種先進的網絡框架,有可能支持 LLM 部署的要求。然而,SDN 的引入也帶來了關于現有海軍網絡基礎設施是否已準備好適應此類先進技術的問題,這突出了我們在海軍行動中引入人工智能能力時需要考慮的另一個領域。

本研究的預期結果對大型語言模型的戰略整合對未來海軍行動具有重大影響。通過提供一個全面的風險評估框架,本研究旨在促進在海軍行動中明智決策和負責任地使用人工智能技術,為在更廣泛的軍事背景下負責任地使用人工智能技術奠定基礎。此外,這項研究填補了文獻中的重要空白,有助于加深對海軍行動中整合 LLM 所帶來的挑戰和機遇的理解。

本研究概述了評估將大型語言模型納入海軍作戰計劃相關風險的綜合方法。通過開發結構化風險評估框架并探索部署 LLM 的潛在益處和挑戰,本研究旨在為在軍事行動中負責任地、有效地使用人工智能技術做出貢獻。未來的研究方向包括根據實證研究結果完善風險評估框架,探索大型語言模型在更廣泛軍事環境中的其他應用,以及制定在敏感作戰環境中合乎道德地使用人工智能的指導方針。

付費5元查看完整內容

相關內容

人工智能在軍事中可用于多項任務,例如目標識別、大數據處理、作戰系統、網絡安全、后勤運輸、戰爭醫療、威脅和安全監測以及戰斗模擬和訓練。

在飛速發展的人工智能(AI)領域,大型語言模型(LLM)在理解和生成自然語言方面展現出了前所未有的能力。然而,它們在專業領域的能力,尤其是在復雜和跨學科的系統工程領域的能力,仍然較少被探索。本文介紹了 SysEngBench,這是一個新穎的基準,專門用于在系統工程概念和應用的背景下評估大型語言模型。SysEngBench 將包含一整套源自核心系統工程流程的任務,包括需求分析、系統架構設計、風險管理和利益相關者溝通。SysEngBench 利用各種真實世界和合成生成的場景,旨在評估大型語言模型解釋復雜工程問題和生成創新解決方案的能力。

利用 SysEngBench 對大型語言模型進行的評估揭示了他們在系統工程背景下的現有能力和局限性。這些發現為今后的研究和開發提出了建議,旨在提高大型語言模型在系統工程學科中的實用性。SysEngBench 有助于理解人工智能對系統工程的潛在影響。

SysEngBench框架

為 SysEngBench 選擇的框架是一個簡單的多選題基準。該基準目前涵蓋系統工程入門,但將擴展到未來工作中討論的系統工程子領域。

所使用的數據來源包括海軍研究生院 SE 3100 課程的幻燈片。該課程的教學大綱包括學習該課程后獲得的以下知識:

  • 定義系統工程,包括其目的和范圍以及系統工程師的角色。

  • 定義系統架構,包括其目的和范圍以及系統架構師的角色。

  • 在系統的整個生命周期中恰當地應用系統工程流程的基本要素。

  • 根據用戶需求和操作目標,提出、闡述和記錄系統要求;將其轉化為技術要求。

  • 創建反映利益相關者目標的系統價值層次。

  • 使用 IDEF0、FFBD 等建模工具和其他技術完成系統功能分析,以支持需求工程。

  • 開發、評估和記錄備選系統架構。整個課程中的一項補充性共同努力將是獲得對國防部(DoD)系統工程應用的共同理解。

多選題是在一些人工智能輔助下創建的,但每道題都由人類系統工程師對半合成數據集的正確性進行審查。更復雜的問題將考察大型語言模型在系統工程的 "灰色 "范圍內進行推理的能力,特別是在有多種配置可以滿足要求的高維交易空間。

付費5元查看完整內容

這項工作研究了在任務式指揮設備中嵌入模擬器的實用性和有效性。其目標是僅使用戰區作戰計劃作為模擬輸入,向操作員隱藏所有模擬器細節,使其無需學習新工具。本文討論了一種原型功能,該功能可根據 SitaWare 中生成的作戰計劃以及嵌入式無頭 MTWS 和 OneSAF 模擬器的模擬結果,生成行動方案(COA)分析。在輸入作戰計劃后,指揮官選擇要執行的模擬運行次數,并按下按鈕啟動模擬,模擬在后臺的運行速度比實時運行更快。模擬運行完成后,指揮官可通過圖形和圖表查看結果,對多次運行進行比較。預計未來的能力將允許指揮官模擬任何梯隊和命令,用于訓練和兵棋推演。

付費5元查看完整內容

為了真實地再現軍事行動,嚴肅的戰斗模擬要求建模實體具有合理的戰術行為。因此,必須定義作戰戰術、條令、交戰規則和行動概念。事實證明,強化學習可以在相關實體的行為邊界內生成廣泛的戰術行動。在多智能體地面作戰場景中,本文展示了人工智能(AI)應用如何制定戰略并向附屬單元提供命令,同時相應地執行任務。我們提出了一種將人類知識和責任與人工智能系統相結合的方法。為了在共同層面上進行交流,人工智能以自然語言下達命令和行動。這樣,人類操作員就可以扮演 "人在回路中 "的角色,對人工智能的推理進行驗證和評估。本文展示了自然語言與強化學習過程的成功整合。

RELEGS:針對復雜作戰情況的強化學習

為了獲得模型架構的靈感,我們研究了 DeepMind 的 AlphaStar 架構,因為它被認為是復雜 RL 問題領域的最先進架構。通過我們的架構(如圖 2 所示),我們提出了一種靈活、可擴展的行動空間與深度神經網絡相結合的適應性新方法。觀察空間的設計基于如何準備戰場的軍事經驗。通常使用地圖和可用部隊表。因此,模擬觀測被分為標量數據(如可用坦克數量及其彈藥)。同時,基于地圖的輸入作為視覺輸入提供給空間編碼器。

標量數據用于向人工智能提供幾乎所有場景細節的建議。其中包括有關自身部隊及其平臺的數據,以及有關敵方部隊的部分信息。輸入并非以絕對數字給出,而是采用歸一化方法來提高訓練效果。編碼器可以很容易地寫成多層感知器(MLP);不過,使用多頭注意力網絡可以大大提高訓練后智能體的質量,因此應予以采用(Vaswani 等人,2017 年)。

為了理解地理地形、距離和海拔高度的含義,人工智能會被輸入一個帶有實體編碼的地圖視覺表示。顏色方案基于三通道圖像,這使我們能夠輕松地將數據可視化。雖然使用更多通道會給人類的圖形顯示帶來問題,但人工智能能夠理解更多通道。不同的字段類型和實體會用特殊的顏色進行編碼,以便始終能夠區分。這種所謂的空間編碼器由多個卷積層組成。最初,我們嘗試使用 ResNet-50 (He 和 Zhang,2016 年)和 MobileNetV3 (Howard 等,2019 年)等著名架構,甚至使用預先訓練的權重。然而,這并沒有帶來可接受的訓練性能。因此,我們用自己的架構縮小了卷積神經網絡(CNN)的規模。

為了測試和優化這一架構,我們使用了一個自動編碼器設置,并使用了模擬中的真實樣本。我們能夠將參數數量從大約 200 萬減少到大約 47000。此外,我們還生成了一個預訓練模型,該模型已與模擬的真實觀測數據相匹配。這一步極大地幫助我們加快了 RL 進程。

一個可選元素是添加語言輸入,為人工智能定義任務。雖然一般的戰略人工智能不使用這一元素,但計劃將其用于下屬智能體。這些智能體將以自然語言接收來自戰略人工智能的任務,并使用雙向門控遞歸單元(GRU)編碼器對其進行處理。

視覺數據、任務數據和標量數據的編碼值被合并并輸入核心網絡。根據 Hochreiter 和 Schmidhuber(1997 年)的介紹,核心主要是一個擁有 768 個單元的長短期記憶(LSTM)組件。在軍事場景中,指揮官必須了解高價值資產的長期戰略規劃。在本模擬中,人工智能可以請求戰斗支援要素,這些要素在影響戰場之前需要長達 15 分鐘的時間。因此,人工智能必須了解未來任務的時間安排和規劃。在 RL 中使用 LSTM 網絡相當困難,因為它需要大量的訓練時間,而且會導致上面各層的梯度消失。因此,我們決定在 LSTM 上添加一個跳過連接,以盡量減少新增層的負面影響。

動作頭由一個自然語言處理(NLP)模型組成。這是一個非常簡化的動作頭模型,包含一個小型 LSTM 和一個額外的密集層,共有約 340000 個參數。其結果是一個尺寸為 8 x 125 的多離散動作空間。

除主模型外,還有一個單獨的價值網絡部分。價值網絡使用核心 LSTM 的輸出,并將對手信息串聯起來傳遞給 MLP。然后,MLP 可以精確預測價值函數。通過對手信息,價值網絡對模擬有了一個上帝般的地面實況視圖。由于該網絡只與訓練相關,因此可以在不干擾訓練完整性的情況下進行。

付費5元查看完整內容

近年來,槍支暴力事件急劇增加。目前,大多數安防系統都依賴于人工對大廳和大廳進行持續監控。隨著機器學習,特別是深度學習技術的發展,未來的閉路電視(CCTV)和安防系統應該能夠檢測威脅,并在需要時根據檢測結果采取行動。本文介紹了一種使用深度學習和圖像處理技術進行實時武器檢測的安防系統架構。該系統依靠處理視頻饋送,通過定期捕捉視頻饋送中的圖像來檢測攜帶不同類型武器的人員。這些圖像被輸入一個卷積神經網絡(CNN)。然后,CNN 會判斷圖像是否包含威脅。如果是威脅,它就會通過移動應用程序向保安人員發出警報,并向他們發送有關情況的圖像。經過測試,該系統的測試準確率達到 92.5%。此外,它還能在 1.6 秒內完成檢測。

付費5元查看完整內容

為計算機生成兵力(CGF)創建行為模型是一項具有挑戰性且耗時的任務,通常需要具備復雜人工智能算法編程方面的專業知識。因此,對于了解應用領域和培訓目標的主題專家來說,很難建立相關的場景并使培訓系統與培訓需求保持同步。近年來,機器學習作為一種為合成智能體建立高級決策模型的方法,已顯示出良好的前景。這類智能體已經能夠在撲克、圍棋和星際爭霸等復雜游戲中擊敗人類冠軍。我們有理由相信,軍事模擬領域也有可能取得類似的成就。然而,為了有效地應用這些技術,必須獲得正確的工具,并了解算法的能力和局限性。

本文討論了深度強化學習的高效應用,這是一種機器學習技術,可讓合成智能體學習如何通過與環境互動來實現目標。我們首先概述了現有的深度強化學習開源框架,以及最新算法的參考實現庫。然后,我們舉例說明如何利用這些資源為旨在支持戰斗機飛行員培訓的計算機生成兵力軟件構建強化學習環境。最后,基于我們在所介紹環境中進行的探索性實驗,我們討論了在空戰訓練系統領域應用強化學習技術的機遇和挑戰,目的是為計算機生成的兵力有效構建高質量的行為模型。

計算機生成兵力的學習環境

在實驗中,將強化學習環境構建為實現 OpenAI Gym 接口的 Python 模塊,因為許多現有的強化學習算法實現都支持該接口。環境的結構如圖 2 所示。環境的大部分功能都在 EnvironmentCore 類中實現。該類通過 SimulationInterface 與本地或遠程計算機上運行的仿真進程通信,在仿真中的實體和控制它們的強化學習智能體之間傳輸觀察結果和操作。SimulationInterface 還用于在計算機生成兵力軟件中加載模擬場景。

模擬與環境模塊之間的通信是通過 ZeroMQ 實現的,ZeroMQ 是一個開源、輕量級的消息傳遞中間件,可綁定多種編程語言,包括 C++ 和 Python。ZeroMQ 可以輕松實現幾種流行的消息傳遞模式,如請求-回復、發布-訂閱和推-拉。ZeroMQ使用谷歌協議緩沖區(Google protocol buffers)來指定消息,這是一種語言中立、平臺中立的結構化數據序列化機制。使用簡單的協議語言創建消息規范,然后將其編譯成各種編程語言(包括 C++ 和 Python)的源代碼。

要配置特定的環境,需要使用一些委托對象:

  • ActionDelegate: ActionDelegate 指定環境的動作空間(OpenAI Gym 中提供的空間定義之一)。在執行過程中,它將該空間中的動作作為輸入,并將其轉換為 ActionRequest 消息,然后由 EnvironmentCore 發送給模擬中的實體。 -ObservationDelegate:指定環境的觀察空間(OpenAI Gym 中提供的空間定義之一)。在執行過程中,它將來自模擬實體的狀態更新信息作為輸入,并將其轉換為來自觀察空間的狀態觀察信息,然后將其呈現給智能體。
  • RewardDelegate:將狀態觀測信息作為輸入,并計算出一個標量獎勵信號,然后將其發送給智能體。
  • ScenarioDelegate:管理要模擬的情景,包括終止標準。對于訓練過程中的每個情節,委托機構都會根據需要調整場景內容,并生成模擬請求(SimulationRequest)消息,由環境核心(EnvironmentCore)發送給模擬。
  • RenderDelegate:會渲染模擬場景當前狀態的視圖。這對調試非常有用。我們使用 Python Matplotlib 和 Basemap 庫實現了簡單的地圖渲染。

空戰仿真領域的深度強化學習

在空戰模擬領域的深度強化學習實驗中,我們發現了一些挑戰,這些挑戰通常不存在于許多強化學習的簡單基準環境中。狀態和行動空間的維度高且復雜,使得智能體難以學習重要的狀態特征和合適的決策策略。例如,在許多場景中,由于傳感器的限制或電子戰的影響,環境只能被部分觀測到。此外,在大多數場景中,智能體不會單獨行動,而是必須與盟友合作,同時與敵人競爭,以達到目標。為了處理長期和短期目標,可能需要在不同的時間尺度上進行決策。代表最重要目標的獎勵通常是延遲的、稀疏的,例如,如果智能體取得了勝利,就會在情景結束時給予獎勵,這樣就很難將功勞歸于正確的行動。此外,根據訓練需要,智能體的目標也有可能在不同的模擬運行中有所不同。例如,我們可能需要調整模擬的難度,以適應受訓者的熟練程度。最后,由于運行高保真模擬的計算成本很高,因此盡可能提高學習過程的樣本效率非常重要。在下面的章節中,我們將討論一些可以用來應對這些挑戰的技術。

付費5元查看完整內容

本文所介紹的研究得到了德國聯邦國防軍裝備、信息技術和在役支持辦公室 (BAAINBw) 的支持。

有人無人編隊是提高民用和軍事行動效率的一個關鍵方面。本文概述了一個為期四年的項目,該項目旨在開發和評估有人-無人編隊飛行的方法。編隊飛行場景是針對執行近距離編隊飛行的有人和無人駕駛旋翼機量身定制的。本文介紹了使用案例和測試方法。開發了兩種編隊飛行算法,并對照基于航點的預編程基線進行了評估。評估是在由不同飛行員參與的模擬器活動和由一名評估飛行員參與的飛行測試活動中進行的。在最后的飛行測試活動中,首次實現了有人駕駛和無人駕駛直升機之間的耦合近距離編隊飛行。最后,本文包含了飛行測試和模擬器測試的結果。

人機編隊飛行

在德國航天中心 MUM-T 研究期間,對三種一般編隊策略進行了調查。

第一種方法在評估過程中被用作基線。這種方法被稱為航點模式,假定有人駕駛直升機的機組人員通過基于航點的界面指揮無人機的移動。這種基于航點的導航是無人直升機最先進的能力。由于耗時和可能的輸入錯誤,飛行任務需要大量的準備時間。由于缺乏靈活性,無人直升機被認為是編隊的領導者。因此,載人直升機跟隨無人機的飛行模式并保持編隊,同時監控空間間隔以避免碰撞。在這種模式下,載人直升機可以隨時離開編隊,但只要編隊還在,就必須監控兩架飛機之間的距離。通過引入最小距離或半徑(稱為安全半徑)來確保飛行安全。圖 1 給出了簡要概述。

請注意,編隊的領隊是確定飛行速度或方向等飛行參數的飛機。在 DLR MUM-T 飛行測試活動中,出于安全考慮,無人機始終位于載人直升機之前。

第二種基于相對導航的方法在下文中稱為 RelNav。在這種模式下,無人機使用控制器保持與載人直升機的相對位置。有關編隊飛行控制模式的詳細介紹,請參閱參考文獻[21]。[21]. 在該模式下,無人直升機與有人駕駛直升機直接耦合,無人機跟隨有人駕駛直升機飛行,不執行任何規定任務。在 RelNav 模式下,有人駕駛直升機指揮編隊,無人機保持相對位置。此外,還在有人駕駛直升機前方劃定了一個安全區域,從駕駛艙可以目視到無人直升機,以提高飛行安全性。在圖 2 中,該區域顯示為允許區域,而最小距離則表示為安全半徑。

第三種方法旨在將 RelNav 模式中任務期間改變飛行路線的靈活性與航點模式中載人直升機不直接耦合運動相結合。這種模式被命名為 "走廊模式",因為它的主要特征是 "走廊"。走廊是一種類似航點的任務,具有規定的速度和轉彎,但使用的不是規定的航點位置,而是允許的無障礙區域。在 "走廊 "模式下,無人飛行器會沿著走廊飛行,但如果違反了規定的邊界,則會發出額外的速度指令。這些邊界可以是最大或最小距離,也可以是相對于載人直升機的某個方向。在這種模式下,無人機能夠對載人直升機的行為做出反應,但對細微的航向或速度變化不太敏感。無人機在走廊模式下的行為可分為兩種不同情況。首先,在標稱行為中,無人機完全處于走廊的邊界內。因此,無人飛行器是按照規定的走廊飛行。邊界上有預定義的緩沖區,為防止違反邊界,會對無人飛行器發出速度指令。無人機在接近允許區域的邊界或允許走廊的邊界時會改變行為。在這兩種情況下,如果同時到達兩個邊界,就會產生一個速度指令,以防止違反邊界;詳細計算可參見參考文獻[21]。[21]。 如果違反了允許走廊的邊界,無人飛行器應切換到 RelNav 模式。或者,如果走廊和載人直升機的允許區域都被侵犯,無人機應切換到航點模式。圖 3 是走廊模式的示意圖。

為確保飛行安全,該項目還開發了另一種應急模式,該模式被命名為 "脫離模式"。在任何 MUMT 編隊飛行中,該子模式始終可用。如果違反了安全關鍵邊界或出現技術缺陷,就會啟用該模式。該模式將兩架飛機分離,并觸發無人機的預定義行為。載人直升機的脫離行為被定義為 90° 轉身離開無人機并爬升約 150 英尺。

引入的 MUM-T 模式具有不同的自動化程度。不過,要實現安全的 MUM-T 編隊飛行,必須執行幾項共同任務。它們是:

領導編隊:一架飛機(稱為領隊)確定編隊參數(如速度、高度或航跡)。

避免碰撞:這項任務要求監控飛機之間的距離,并對任何違反安全規定的情況做出反應。

保持編隊:監控編隊領隊位置并保持相對位置不變是保持編隊的任務。

付費5元查看完整內容

作為分布式海上作戰(DMO)的一個關鍵原則,盡管有人和無人、水面和空中、作戰人員和傳感器在物理時空上都有分布,但它們需要整合成為一支有凝聚力的網絡化兵力。本研究項目旨在了解如何為 DMO 實現有凝聚力的作戰人員-傳感器集成,并模擬和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境,尤其側重于有人和無人飛機的情報、監視和偵察 (ISR) 任務。

在半個世紀的建模和仿真研究與實踐(例如,見 Forrester, 1961; Law & Kelton, 1991),特別是四分之一世紀的組織建模和仿真工作(例如,見 Carley & Prietula, 1994)的基礎上,獲得了代表當前技術水平的計算建模和仿真技術(即 VDT [虛擬設計團隊];見 Levitt 等人, 1999)。這種技術利用了人們熟知的組織微觀理論和通過基于代理的互動而產生的行為(例如,見 Jin & Levitt, 1996)。

通過這種技術開發的基于代理的組織模型在大約三十年的時間里也經過了數十次驗證,能夠忠實地反映對應的真實世界組織的結構、行為和績效(例如,參見 Levitt, 2004)。此外,幾年來,已將同樣的計算建模和仿真技術應用到軍事領域(例如,見 Nissen, 2007),以研究聯合特遣部隊、分布式作戰、計算機網絡行動和其他任務,這些任務反映了日益普遍的聯合和聯盟努力。

本報告中描述的研究項目旨在利用計算建模來了解如何為 DMO 實現有凝聚力的戰斗傳感器集成,并建模和概述集成實施所需的系統能力和行為類型。作為一個多年期項目,本報告所述的第一項工作重點是建立一個適用于 DMO 建模、模擬和分析的計算環境。在這第一項工作中,將對當今的海上行動進行建模、模擬和分析,重點是有人駕駛和無人駕駛飛機的情報、監視和偵察(ISR)任務。這為與執行 ISR 任務的一個或多個 DMO 組織進行比較確立了基線。這也為與其他任務(如打擊、防空、水面戰)進行比較建立了基線。第二階段接著對一個或多個備用 DMO 組織進行建模、模擬和分析。

在本技術報告的其余部分,首先概述了 POWer 計算實驗環境,并列舉了一個實例,以幫助界定 DMO 組織和現象的計算建模。依次總結了研究方法。最后,總結了沿著這些方向繼續開展研究的議程。這些成果將極大地提高理解和能力,使能夠為 DMO 實現戰斗員與傳感器的集成,并為集成實施所需的系統能力和行為建模和概述。

付費5元查看完整內容

人工智能驅動的軟件飛行員有可能實現美國空軍對負擔得起的戰術空中力量能力的追求;然而,對啟用空戰自主算法的數據的基礎性要求并沒有得到充分理解。

本文討論了空軍戰術空中力量數據管理的挑戰,承認反對數據對協同作戰飛機(CCA)實戰的重要性的論點,并確定了四個具體原因,即資助和實施一個深思熟慮的數據管理計劃對加速CCA的成功開發和實戰至關重要。這個米切爾論壇的初稿的目的是提供清晰度,并邀請大家討論訓練CCA算法的戰斗所需的數據集,因為美國空軍尋求履行其 "隨時隨地飛行、戰斗和贏得......空中力量 "的使命。

該論壇介紹了來自美國和全球各地航空航天專家的創新概念和發人深省的見解。

付費5元查看完整內容

近幾十年來,國防系統的規劃已經演變成基于能力的規劃(CBP)過程。本文試圖回答兩個問題:首先,如何表達一個復雜的、真實世界的能力需求;其次,如何評估一個具有交互元素的系統是否滿足這一需求。我們建議用一套一致的模型以可追蹤的方式來表達能力需求和滿足該需求的解決方案。這些模型將目前的能力模型,具體到規劃級別和能力觀點,與系統思維方法相結合。我們的概念模型定義了環境中的防御系統,數據模型定義并組織了CBP術語,類圖定義了CBP規劃元素。通過給出一個能力參數化的例子來說明這個方法,并將其與DODAF能力觀點和通用CBP過程進行比較。我們的數據模型描述了能力在行動中是如何退化的,并將該方法擴展到能力動態。定量能力定義的目的是支持解決現實世界中相互作用的子系統,這些子系統共同實現所需的能力。

能力規劃問題的定義

在本節中,能力被定義為執行任務的效果或功能并作為系統時,我們討論CBP;在1.2小節中進一步討論Anteroinen的分類中的第三和第五類。為了專注于軍事系統或軍事單位的結構定義和未來的數學建模,只考慮系統的物理組成部分,即人員和物資,以及他們與能力的關系。環境的影響--天氣條件、地形、周圍的基礎設施和其他軍事單位--被省略,以關注兩種力量之間的相互作用;盡管在實踐中,環境和其他更廣泛的系統問題顯然是相關的。通常情況下,CBP過程定義了環境的相關方面和軍事行動的類型,為能力需求定義、能力評估和解決方案選擇制定了可能的規劃情況集合。

一個軍事單位或一個組織由其人員和物資組成。經過組織和訓練的人員配備了適當的物資,代表、擁有或產生能力。當兩個軍事單位相互作戰時,他們會啟動自己的能力,以造成敵人的物資和人員的退化。為了定義能力需求并計劃如何作為軍事單位或系統來實施,需要解決的問題是:在與敵人的互動過程中,能力將如何演變,而敵人的能力卻鮮為人知?圖1說明了在敵人能力的作用下,自己的軍事作戰和維持能力的動態互動。我們的能力削弱了敵方的人員和物資,對敵方的能力產生了影響;而敵方的能力削弱了我們的人員和物資,對我們的能力產生了影響。外部資源,也就是供應和維持能力,維持著被削弱的人員和物資。如因果循環圖所示,敵方的能力可以與我方的能力對稱地表示。第3節的進一步建模集中在我們自己的能力上,由圖1中的虛線表示,以便更純粹地表示。

對我們自己的能力的定義說明,由人員和物資提供,表明了復雜的結構和與能力有關的功能和元素之間的相互作用。此外,真正的軍事單位,通常由較小的編隊組成,有幾種能力,由大量不同的物資和人員組成,并與環境互動。

現有的能力模型

  • 軍事能力是外交政策的工具
  • 作為軍事單位戰斗力的能力
  • 作為執行任務效果和功能的能力
  • 作為武器系統或平臺的能力
  • 作為系統的能力

軍事背景下能力規劃的概念模型架構描述

架構被定義為 "一個系統在其環境中的基本概念或屬性,體現在其元素、關系以及設計和進化的原則中"。因此,架構描述是一種表達架構的工作產品。架構框架是在一些應用領域或社區應用架構描述的基礎。架構框架為網絡系統的復雜性管理提供了結構化的方法,使利益相關者之間能夠進行溝通,并支持未來和現有系統的系統分析和設計。企業架構的Zachman框架是這類通用框架的一個例子。DoDAF、MODAF和NAF是用于國防系統分析和定義的架構框架,特別是用于指揮、控制、通信、計算機、情報、監視和偵察系統(C4ISR)。這些架構框架由觀點組成,定義了代表特定系統關注點的一組架構視圖的規則。架構視圖由一個或多個模型組成。架構框架基礎的元模型定義了不同視點中元素之間的關系。DoDAF元模型DM2有一個概念數據模型圖(DIV-1),用來向管理者和執行者傳達架構描述的高層數據構造的概念。MODAF元模型詳細定義了每個架構視圖的數據模型。

利益相關者需要適當的支持,以促進他們彼此之間以及與規劃專家團體的溝通,從而從CBP方法中獲益。軍事專家的作用不是參與復雜的工具和方法,而是為規劃過程提供重要的領域專業知識。架構框架是一個很好的工具,可以定義當前的防御系統,確定能力需求,并描述系統解決方案。不幸的是,架構框架和相關元模型的精確但復雜的機制與復雜的符號并不一定能以明顯的方式解釋能力觀點和要素之間的關系。因此,架構觀點和典型的CBP流程并沒有明顯的聯系。因此,參與能力規劃的軍事專家和決策者很少能夠加深理解,或者在沒有專門掌握這些工具和方法的人員的情況下,通過應用架構框架確定解決方案。需要對能力進行更簡單的定義,與流程兼容。

能力模型框架

圖2提出了一個高層次的數據模型,它代表了能力定義問題的抽象。數據模型描述了能力模型類型及其關系,作為能力和防御系統建模的框架。符號的選擇是為了保持信息量,但對更多的人來說是可讀的,因此它不遵循任何特定的方法,但與SODA的認知圖譜有一些共同點。

能力的現實世界實例在圖的左邊,而概念模型類型在右邊。該模型的第一個版本已經被Koivisto和Tuukkanen應用于一個基于研發的自下而上的過程和概念性的未來系統,即認知無線電。原始模型描述,系統模型定義了物資、戰斗力和功能能力。實際上,這是一種雙向的關系:在所需能力和所需資源的驅動下建立系統模型,然后用系統模型來預測特定環境和實例中的結果。

防御系統和能力——上下文模型

防御系統由系統、系統要素及其相互作用組成,其突發屬性由系統、系統要素和它們的相互作用界定。圖3中的模型代表了系統層次結構中的防御系統層次。防御系統可以被看作是SoS,但我們應用一般的系統術語來保持模型的可擴展性,并為防御系統層次結構的較低層次提供合適的術語。在國防系統層次結構的任何一級,系統代表一個由系統元素組成的軍事單位:人員和物資。

圖3 國防系統在其背景下的概念系統模型。防御系統,即利益系統(SOI),被環境和其他行為者的系統所包圍。這些系統包括相互作用的系統要素人員(P)和物資(M)。子系統和系統元素之間的聯系是示范性的。

能力模型類型和術語——高級數據模型

除了系統元素和它們的組織之外,還要定義功能和相應的輸出,以獲得更全面的系統定義。我們將能力定義為執行任務的效果或功能,是一種功能能力。在CBP過程中,功能能力定義了一些當前或計劃中的軍事單位或由物資和人員組成的系統的能力潛力。最終,能力發展過程必須以現實世界的軍事單位來定義系統的實施。力量要素的概念定義了最終的系統結構,也就是要生產的現實世界的軍事單位的組織。在我們的數據模型中,功能能力被安排在SOI內部,以代表系統的涌現屬性。當這種潛力或涌現被計劃為引起某種效果時,系統,具體來說是其功能能力,在計劃過程中被分配到一個任務中。此外,當軍事單位執行任務時,效果就會產生。高層數據模型的作用,如圖4,是將關鍵的術語及其關系可視化。

圖 4 基于能力的規劃中術語及其關系的高級數據模型表示

基于能力的規劃元素——UML類圖

圖5中的類圖將圖3所示的概念系統模型中確定的國防系統規劃要素與圖4中的能力模型類型結合起來。由于我們關注的是國防系統,國家權力和軍事力量的要素被認為是其環境的一部分,不在圖中。然而,我們建議,國家權力也可以通過效應來表示。

圖 5 基于能力的規劃元素的統一建模語言 (UML) 類圖表示

付費5元查看完整內容

強化學習在最近的學術和商業研究項目中的應用已經產生了能夠達到或超過人類性能水平的強大系統。本論文的目的是確定通過強化學習訓練的智能體是否能夠在小型戰斗場景中實現最佳性能。在一組計算實驗中,訓練是在一個簡單的總體層面上進行的,模擬能夠實現確定性和隨機性的戰斗模型,神經網絡的性能被驗證為質量和武力經濟性戰術原則。總的來說,神經網絡能夠學習到理想的行為,其中作戰模型和強化學習算法對性能的影響最為顯著。此外,在集結是最佳戰術的情況下,訓練時間和學習率被確定為最重要的訓練超參數。然而,當武力的經濟性是理想的時候,折扣系數是唯一有重大影響的超參數。綜上所述,本論文得出結論,強化學習為發展戰斗模擬中的智能行為提供了一種有前途的手段,它可以應用于訓練或分析領域。建議未來的研究對更大、更復雜的訓練場景進行研究,以充分了解強化學習的能力和局限性。

付費5元查看完整內容
北京阿比特科技有限公司