亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

量子啟示的機器學習(QiML)是一個迅速發展的領域,由于其有潛力在經典計算框架內利用量子力學的原理,因此受到了全球研究者的關注。然而,當前的綜述文獻經常只是對QiML進行淺層次的探討,而更多地關注更為廣泛的量子機器學習(QML)領域。為了填補這一空白,這項綜述為QiML提供了一個整合的、全面的調研,探討了QiML的多種研究領域,包括張量網絡模擬、去量子化算法等,并展示了近期的進展、實際應用以及可能的未來研究方向。進一步地,通過分析該術語的各種先前解釋及其固有的模糊性,為QiML建立了一個具體的定義。隨著QiML的不斷發展,我們預期未來將從量子力學、量子計算和經典機器學習中汲取大量新的發展,進一步豐富該領域。這項調查旨在為研究者和實踐者提供指導,為他們提供對QiML當前狀況和未來方向的全面了解。

量子啟示的機器學習(QiML)領域已經取得了大量的增長,吸引了全球研究者的關注。作為量子機器學習(QML)的一個特定子集,QiML專注于在經典計算框架內開發受量子力學原理啟發的經典機器學習算法,這通常被稱為QML分類中的“經典-經典”象限,如圖1所示。QiML代表了一個多面的研究領域,其綜述旨在超越傳統的經典最先進的結果,或探索量子形式所提供的表現力。

為了在QML的背景下定位QiML,我們簡要地說明了后者。更廣泛地說,QML位于量子計算和機器學習的吸引人的交匯點。主導的研究領域關注“經典-量子”域,并探討使用量子硬件加速和增強機器學習策略。在此,經典機器學習中存在的兩大挑戰得到了回應。首先,很多領域中數據集的不斷增大和復雜化產生了計算挑戰,這些挑戰經典機器學習難以高效管理。其次,量子計算提供了解決目前用經典計算方法難以實現的復雜問題的潛力[1]。但是,目前在實際的量子硬件上評估QML算法受到一些因素的限制,例如量子位數有限、量子門中的高誤差率、維持量子狀態(失去相干性)的困難,以及與量子錯誤糾正相關的挑戰[2]。因此,QML的景觀主要受到理論考慮的影響,而噪聲中間規模量子(NISQ)設備的最近進展為全規模量子計算的潛力提供了一個初步的、經驗性的預覽[3]。因此,QML對機器學習領域的真正影響和范圍仍然是一個持續的研究話題。

QiML與QML研究并肩發展。經常被引用的研究領域包括張量網絡量子模擬和去量子化算法[4],[5]。然而,與QML相比,QiML中的發現通常都有數字證據支持,這得益于沒有量子硬件的要求,因此相對于其他QML子集,更容易進行定量評估。雖然QiML研究正在蓬勃發展,但當前的綜述文獻往往忽略了這一領域,更多的關注是放在整個QML上。通常,QiML只是被簡要提及或被淺層次地處理[5],[6],[7],[8],[9],[10]。QiML的實際應用案例、其應用以及與標準經典基準的比較分析通常都沒有被探索。這指出了對QiML作為一個獨立領域進行深入審查的迫切需求。為了回應這一文獻空白,我們的調查旨在為QiML的各個方面提供一個全面、綜合的討論。

我們的目標是提供一個關于QiML在實踐中如何被使用的可訪問和全面的概述,詳細描述其最近的進展,并使讀者了解該領域的進展。讀者應該注意,從量子力學的視角探索QiML方法,并基于啟示來源對方法進行分類將是有趣的,但這次調查是從應用的角度來看待這個領域的。這次調查的貢獻是提供了近年來QiML及其研究方向的進展概述,并確定了QiML研究的未來方向。具體來說,它們是:突出并分類現有的QiML方法; ? 為QiML建立一個具體的定義,考慮到其多方向的研究趨勢; ? 討論這些方法的實際應用,特別是確定當前已經應用QiML技術的任務; ? 討論QiML在實踐中的限制因素,以及; ? 探索和討論QiML研究的潛在未來方向。

付費5元查看完整內容

相關內容

人工智能(AI)的歷史見證了高質量數據對各種深度學習模型的重大影響,例如ImageNet對于AlexNet和ResNet。最近,AI社區的關注點已從設計更復雜的神經結構(即模型為中心的方法)轉移到了數據為中心的方法,這種方法重點在于更好地處理數據以增強神經模型的能力。圖學習,操作于無處不在的拓撲數據上,也在深度學習時代中起到了重要作用**。在這次綜述中,我們從數據為中心的角度全面回顧了圖學習方法,并旨在回答兩個關鍵問題**:(1)何時修改圖數據以及(2)如何修改圖數據以發掘各種圖模型的潛力。因此,我們提出了一個基于圖學習流程中的階段的新分類法,并強調了圖數據中不同數據結構的處理方法,即拓撲、特征和標簽。此外,我們分析了嵌入在圖數據中的一些潛在問題,并討論了如何以數據為中心的方式解決它們。最后,我們為數據為中心的圖學習提供了一些建議的未來方向。

//arxiv.org/abs/2310.04987

最近在非歐幾里得領域的進展引起了人工智能(AI)社區的大量關注。圖,作為典型的非歐幾里得數據,在現實世界中無處不在,并已在許多領域中得到廣泛應用,例如推薦、安全、生物信息學等。在過去的十年中,由于圖模型的創新,圖相關研究得到了推動,從圖核心[1][2]到圖嵌入[3][4],再到最新的圖神經網絡(GNNs)[5][6]。相反,關于圖數據的固有方面的研究較少,包括質量、多樣性、安全性等。 通常,AI的革命始終是由大量高質量數據的可用性引發的,隨后是強大的模型。一個顯著的例子是ImageNet[7]的成功,它為深度卷積神經網絡的發展做出了重要貢獻,例如AlexNet[8]和ResNet[9]。隨著數據的重要性得到越來越多的認可,最近,AI社區的關注點從以模型為中心的方法轉移到了以數據為中心的方法[10][11]。

新興的以數據為中心的AI強調產生適當的數據以提高給定模型的性能。“如何處理圖數據以發揮圖模型的全部潛力?”一個了解情況的答案可以幫助我們理解圖數據與圖模型之間的關系。然而,與圖像和表格數據等歐幾里得數據不同,圖的不規則性為以數據為中心的圖學習提出了幾個問題:首先,在什么時候我們應該修改圖數據以使圖模型受益?數據修改可能會在圖學習的不同階段發生。例如,我們可以在訓練之前啟發式地擾動邊,而在訓練期間我們也可以從節點表示中估計新的圖結構。其次,我們應該修改圖數據的哪一部分?圖數據涉及各種結構,包括邊、節點、特性和標簽,每一個都在圖表示學習中起到了重要作用。第三,如何防止圖模型受到有問題的圖數據的影響?由于手工定義的關系和特性,圖數據可能不可避免地引入噪聲和偏見,這使得模型變得不可靠。 本綜述系統地調研和分類了從數據中心的角度存在的圖學習方法。具體地說,為了回答第一個問題,我們將圖學習過程分為四個階段:準備、預處理、訓練和推斷,如圖1所示。我們討論了每個階段對圖數據的重要性。接下來,我們進一步從結構的角度對現有方法進行分類,以解決第二個問題。具體來說,我們考慮如何處理圖數據的拓撲、特征和標簽。最后,我們分析了現有圖數據中的潛在問題,包括脆弱性、不公平性、選擇偏見和異質性。并進一步討論如何從數據為中心的方式解決這些問題。

本文的貢獻可以總結如下

? 新的分類法。我們按圖學習流程中的各個階段對現有的數據中心圖學習方法進行分類,包括預處理、訓練和推理。對于每個階段,我們都介紹了其在數據中心圖學習中的目標和重要性。 ? 多角度觀察。我們強調如何處理圖數據中的不同數據結構,包括拓撲、特征和標簽,以發揮給定圖模型的潛力。 ? 全面的討論。我們分析了有問題的圖數據對圖模型的潛在影響,并討論了如何以數據為中心的方式緩解這些問題。此外,我們提出了四個可能的數據中心圖學習的未來方向,這可能有助于這個領域的發展。 組織. 本調查的其余部分組織如下:第2節概述了數據中心圖學習的背景,并描述了如何手動處理圖數據。第3-5節分別介紹了預處理、訓練和推理階段的數據中心圖學習方法。第6節介紹了圖數據的潛在問題,并討論了如何處理這些問題。最后,第7節對本文進行了總結,并提出了一些有前途的未來方向。

2. 預處理階段

在本節中,我們將討論圖數據預處理階段的數據中心方法。具體來說,我們將現有的方法分為兩類:基于修改的方法和基于分布的方法。第一類旨在通過修改圖數據實例來提高圖模型的性能。第二類則著重于幫助圖模型捕捉數據集的分布,同時保持圖實例不變。此外,我們還考慮了不同的數據結構,包括拓撲、特征和標簽。相關方法列示在表1中。

圖的簡化 (Graph Reduction)

隨著圖的規模的增大,其計算所消耗的時間和空間也會增加。因此,如何在不失去太多有用信息的前提下減少圖的節點或邊成為了一個有價值的問題。圖的簡化可以加速模型的訓練,減少過擬合,并允許在更簡單的硬件條件下對模型進行訓練。圖的簡化可以分為兩大類:邊的簡化和節點的簡化。邊的簡化指的是圖的稀疏化,而節點的簡化包括圖的粗糙化和圖的凝縮。

圖的增強 (Graph Augmentation)

在深度學習中,數據增強被認為是非常重要的。由于圖數據的稀缺性和稀疏性相當嚴重,因此一個好的增強方法的重要性更為明顯。與其他數據形式相比,直接操作圖結構的圖增強是最具特色的圖數據增強類型。在這里,我們將介紹一些脫離訓練的啟發式方法。它們可能很簡單,但證明是非常有效和受歡迎的。 特征增強 (Feature Augmentation)

通過創建或修改節點特征,特征增強可以使后續模型避免過擬合并提高其性能。 對于已經有特征的圖,我們可以做一些直觀的調整來加強它們,例如特征損壞 [143]-[145],特征洗牌,特征掩碼 [66], [87], [146],特征添加,特征重寫 [147], [148],特征傳播,特征混合 [149]等 [15]。 對于最初沒有特征的節點,有適當生成特征的方法。為了獲取結構信息,Perozzi 提出了基于 word2vec [150] 的 deepwalk [3],它從每個節點開始,多次隨機走動,最后使用所有路徑為節點通過 word2vec [150]c 生成節點嵌入。接著,node2vec [4] 來自 deepwalk [3],它為節點添加了一個隨機行走的概率。另一條與隨機行走無關的線是 SDNE [151]。他們通過編碼器-解碼器架構得到圖的結構。具體來說,他們將鄰接矩陣的每一列作為初始節點嵌入,這是編碼器的輸入。并計算模型在初始嵌入和解碼嵌入之間的損失。 在非標記圖中,特征增強是通過無監督學習實現的。例如,GREET [211] 將原始圖分割成兩個子圖,一個包含同質邊,另一個包含異質邊,然后通過兩個單獨的 GNN 得到子圖嵌入,再連接這些子圖嵌入來獲取節點特征。 總的來說,特征增強是多種多樣和任意的,特殊的特征增強可以根據特定問題的需要進行定制。 位置編碼 (Position Encoding)

眾所周知,信息傳遞神經網絡 (MPNNs) 的表達能力受到1-Weisfeiler-Lehman (WL) 測試的限制,不能區分同構圖 [212]。為了打破這個限制,一個受歡迎的方法是用一些位置信息來增強節點特征,這被稱為位置編碼。在本節中,我們將介紹兩種類型的位置編碼:絕對方法和相對方法。 標簽混合 (Label Mixing)

標簽混合旨在將帶有標簽或嵌入的兩個不同實例混合為一個新的實例,并使用這些混合的實例來訓練模型。這樣得到的模型更具泛化性,不容易過擬合。 Mixup 在圖分類和節點分類任務中都扮演著重要的角色。一方面,面對圖分類任務,我們可以采用各種方法來增強模型。一種方法 [174] 涉及混合多個預先存在的圖嵌入。或者,我們可以隨機選擇一個子圖,并用另一個圖中的相應子圖替代它,同時保留原始圖的嵌入,使模型更好地集中于數據的相關方面 [175], [176]。另一方面,一些工作 [177] 提議將鄰近節點的標簽或嵌入進行混合,用于節點分類任務。 圖的課程學習 (Graph Curriculum Learning) 課程學習 (CL) [215] 是一種模仿人類學習過程的訓練策略,主張模型從簡單樣本開始學習,然后逐漸過渡到復雜樣本。這種策略可以幫助模型更快地收斂,并提高模型的泛化能力。圖的課程學習 (Graph CL) [216] 是一種基于圖的課程學習方法,主要用于圖神經網絡的訓練和優化。大多數 CL 方法有兩個重要功能,難度測量器和訓練調度器。難度測量器可以評估訓練數據的難度,以給予學習優先權,而訓練調度器決定如何從簡單到困難地進行學習。根據這兩者是否自動設計,CL 方法可以分為兩類,即預定義的 CL 和自動的 CL。在本節中,我們將介紹預定義的 Graph CL。 圖采樣 (Graph Sampling) 圖采樣方法使用不同的策略對節點進行采樣,并在計算節點的表示時僅聚合部分節點的信息,這加速了模型的收斂并減少了內存開銷。在這部分中,我們將討論啟發式采樣方法,這些方法可以進一步劃分為兩個類別:隨機采樣和重要性采樣。 圖生成 (Graph Generation) 在現實世界中,某些圖數據集對于圖模型來說太小,無法有效地理解其分布。圖生成器 [219], [220] 可以通過生成額外的圖數據來幫助緩解這個問題。圖生成的方法可以分為兩種類型:自回歸 (autoregressive) 和一次性生成 (one-shot)。 3. 訓練階段 (TRAINING STAGE)

在本節中,我們介紹了訓練階段的圖數據修改方法,其中數據修改模塊和信息傳遞模塊合作以提高性能。具體而言,我們介紹了三種模型-數據協同的訓練范式,包括聯合訓練 (joint training)、自訓練 (self training) 和雙層訓練 (bi-level training)。相關方法可以在表格 1 (Table 1) 中查看。 4. 推斷階段 (INFERENCE STAGE)

推斷階段是指使用預訓練的圖模型進行下游任務的階段。在這個階段,我們重新定義下游任務為一個統一的模板,以與我們的預訓練模型對齊。這有助于彌合我們的預文本任務與下游任務之間的差距,實現高質量的知識轉移和多任務適應。此外,推斷數據是指在預訓練模型的推斷階段使用的圖數據。從數據中心的角度看,調整推斷數據作為提示可以幫助在不改變模型參數的情況下獲得期望的目標。在本節中,我們討論了在圖的背景下逐漸受到歡迎的提示學習方法。為了詳細說明,我們將現有的圖提示方法分為兩類:預提示 (pre-prompt) 和后提示 (post-prompt),這取決于任務特定的提示是在信息傳遞模塊之前還是之后操作,如圖 1 (Figure 1) 所示。 結論 (CONCLUSION)

在這篇綜述中,我們對數據中心的圖學習進行了全面的回顧。我們從兩個角度對現有方法進行分類:一個是學習階段,包括預處理、訓練和推斷;另一個是數據結構,包括拓撲、特征和標簽。通過這兩個視角,我們仔細解釋了何時修改圖數據以及如何修改圖數據,以釋放圖模型的潛力。此外,我們還介紹了圖數據的一些潛在問題,并討論了如何用數據中心的方法解決它們。最后,我們提出了該領域的幾個有前景的未來方向。總的來說,我們相信數據中心的人工智能是通向一般人工智能的可行路徑,并且數據中心的圖學習將在圖數據挖掘中發揮重要作用。

付費5元查看完整內容

自主智能體長期以來一直是學術界一個顯著的研究課題。在這個領域,以往的研究往往側重于在孤立環境中訓練智能體,使其具備有限的知識,這與人類的學習過程有很大不同,從而使得智能體難以做出類似人類決策的能力。最近,通過獲取大量的網絡知識,大型語言模型(LLMs)展現出在實現人類水平智能方面的非凡潛力。這引發了對基于LLMs的自主智能體研究的高潮。為了充分發揮LLMs的全部潛能,研究人員設計了多樣化的智能體架構,以適應不同的應用。在本文中,我們呈現了對這些研究的全面調查,從整體的角度對自主智能體領域進行了系統回顧。更具體地說,我們的關注重點在于基于LLMs的智能體構建,為此我們提出了一個統一的框架,涵蓋了大部分先前工作。此外,我們還總結了基于LLMs的人工智能智能體在社會科學、自然科學和工程領域中的各種應用。最后,我們討論了常用的基于LLMs的人工智能智能體評估策略。基于以前的研究,我們還提出了該領域面臨的若干挑戰和未來發展方向。為了跟蹤該領域的發展并不斷更新我們的調查,我們在//github.com/Paitesanshi/LLM-Agent-Survey上維護了一個相關參考文獻的存儲庫。

自主智能體長期以來被視為通向人工通用智能(AGI)的一條有前途的道路,能夠通過自主規劃和指令來完成任務。在早期的范式中,指導智能體行動的策略函數是通過啟發式方法構建的,隨后通過與環境的互動進行了改進。然而,出現了明顯的差距,這些函數往往無法在特別是在非受限的開放領域環境中復制人類水平的熟練程度。這種差異可以追溯到啟發式設計固有的潛在不準確性,以及訓練環境提供的受限知識所導致的。

近年來,大型語言模型(LLMs)取得了顯著的成功,表明它們具有實現類人智能的潛力。這種能力源于綜合的訓練數據集和大量的模型參數的利用。受到這種能力的推動,近年來出現了一個蓬勃發展的趨勢(見圖1,顯示了這一領域的增長趨勢),在這個趨勢中,LLMs被應用作為創建自主智能體的核心協調者。這種戰略性的應用旨在模擬類人決策過程,從而為更復雜和適應性更強的人工智能系統提供一條路徑。在基于LLM的自主智能體方向上,人們設計了許多有前途的模型,重點是增強LLMs的關鍵能力,比如記憶和規劃,使它們能夠模擬人類的行為并熟練地執行各種任務。然而,這些模型是獨立提出的,對它們進行全面的總結和比較的努力有限。為現有基于LLM的自主智能體作品進行全面的總結分析是至關重要的,這在發展對這一領域的綜合理解以及為未來的研究提供靈感方面具有重要意義。

在本文中,我們對基于LLM的自主智能體領域進行了全面的綜述。具體來說,我們根據構建、應用和評估這三個方面來組織我們的調查。對于智能體的構建,我們提出了一個由四個組件組成的統一框架,包括一個用于表示智能體屬性的配置模塊,一個用于存儲歷史信息的記憶模塊,一個用于規劃未來動作的規劃模塊,以及一個用于執行計劃決策的執行模塊。通過禁用一個或多個模塊,大部分先前的研究可以被視為這個框架的具體示例。在介紹典型的智能體模塊后,我們還總結了常用的微調策略,以增強智能體在不同應用場景下的適應性。除了構建智能體,我們還概述了自主智能體的潛在應用,探討了這些智能體如何提升社會科學、自然科學和工程領域。最后,我們討論了評估自主智能體的方法,重點關注主觀和客觀策略。總之,本調查提供了對基于LLM的自主智能體領域現有研究的系統回顧,并建立了清晰的分類。它關注智能體的構建、應用和評估三個方面。基于以前的研究,我們確定了該領域面臨的若干挑戰,并討論了未來的發展方向。我們認為該領域仍處于早期階段,因此我們維護一個存儲庫,以持續跟蹤該領域的研究,網址為

基于LLM的自主智能體構建

近期語言模型(LLMs)的進步展示了它們在完成廣泛任務方面的潛力。然而,僅僅基于LLMs,由于其架構的限制,實現一個有效的自主智能體是困難的。為了填補這一差距,先前的工作開發了許多模塊,以激發和增強LLMs的能力,用于構建自主智能體。在本節中,我們提出了一個統一的框架,以總結先前工作中提出的架構。具體而言,我們的框架的總體結構如圖2所示,由配置模塊、記憶模塊、規劃模塊和執行模塊組成。配置模塊的目的是識別智能體的角色。記憶和規劃模塊將智能體置于一個動態環境中,使其能夠回顧過去的行為并規劃未來的動作。執行模塊負責將智能體的決策轉化為具體的輸出。在這些模塊內部,配置模塊影響記憶和規劃模塊,而這三個模塊共同影響執行模塊。接下來,我們詳細介紹這些模塊。

基于LLM的自主智能體在各個領域的應用代表了我們解決問題、做決策和創新方式的范式轉變。這些智能體具備語言理解、推理和適應能力,通過提供前所未有的見解、輔助和解決方案,正在顛覆行業和學科。在本節中,我們將探討LLM-based自主智能體在社會科學、自然科學和工程領域的變革性影響(請參見圖3左側部分,以獲取整體概覽)。

付費5元查看完整內容

圖像恢復(IR)一直是低級視覺領域中不可或缺且具有挑戰性的任務,旨在提高由各種形式的退化所扭曲的圖像的主觀質量。近期,擴散模型在AIGC的視覺生成方面取得了顯著進展,從而引起了一個直觀的問題,“擴散模型是否可以提升圖像恢復”。為了回答這個問題,一些開創性的研究試圖將擴散模型整合到圖像恢復任務中,從而取得了比先前基于GAN的方法更好的表現。盡管如此,關于基于擴散模型的圖像恢復的全面而有啟發性的綜述仍然很少。在本文中,我們是第一個全面回顧近期基于擴散模型的圖像恢復方法的,涵蓋了學習范例、條件策略、框架設計、建模策略和評估。具體來說,我們首先簡要介紹擴散模型的背景,然后介紹兩種在圖像恢復中利用擴散模型的流行工作流。隨后,我們分類并強調使用擴散模型進行IR和盲/實際世界IR的創新設計,旨在激發未來的發展。為了徹底評估現有的方法,我們總結了常用的數據集、實施細節和評估指標。此外,我們為開源方法在三個任務中提供了客觀的比較,包括圖像超分辨率、去模糊和修復。最后,受到現有工作中的限制的啟發,我們為基于擴散模型的IR提出了五個潛在的并且具有挑戰性的未來研究方向,包括采樣效率、模型壓縮、扭曲模擬和估計、扭曲不變學習和框架設計。

資源庫將在 //github.com/lixinustc/Awesome-diffusion-model-for-image-processing/ 上發布。

圖像恢復(IR)一直是低層次視覺任務中的長期研究主題,在提高圖像的主觀質量方面發揮著不可替代的作用。流行的IR任務包括圖像超分辨率(SR)[1-10]、去模糊[11-17]、去噪[18-25]、修復[26-31]和壓縮偽影去除[32-38]等。一些IR任務的視覺示例顯示在圖1中。為了恢復扭曲的圖像,傳統的IR方法將恢復視為信號處理,并從空間或頻率的角度使用手工制作的算法減少偽影[18, 39-44]。隨著深度學習的發展,眾多IR工作為各種IR任務定制了一系列數據集,例如,用于SR的DIV2K [45]、Set5 [46]和Set14 [47],用于去雨的Rain800 [48]、Rain200 [?]、Raindrop [49]和DID-MDN [50],以及用于運動去模糊的REDS [51]和Gopro [52]等。利用這些數據集,大多數近期的工作[1-3, 7-11, 13, 16, 19, 21-23, 32-34, 53-55]專注于通過基于卷積神經網絡(CNNs)[56]或Transformer [57]的精心設計的骨干網絡來提高IR網絡針對復雜退化的表示能力。盡管這些工作在客觀質量(例如,PSNR和SSIM)上取得了卓越的進展,但恢復的圖像仍然受到不滿意的紋理生成的困擾,這阻礙了IR方法在實際場景中的應用。

得益于生成模型的發展[58-66],尤其是生成對抗網絡(GAN)[64],一些開創性的IR研究[5, 6, 67-70]指出,先前的像素級損失,例如MSE損失和L1損失容易受到模糊紋理的影響,并將GAN的對抗損失引入到IR網絡的優化中,從而增強其紋理生成能力。例如,SRGAN [5] 和DeblurGAN [12]分別使用像素級損失和對抗損失的組合來實現以感知為導向的SR網絡和去模糊網絡。在他們之后,改進基于GAN的IR的兩個主要方向是增強生成器(即恢復網絡)[5, 6, 71-73]和鑒別器[74-77]。特別是,ESRGAN [6]引入了強大的RRDB [6]作為基于GAN的SR任務的生成器。三種流行的鑒別器,包括像素級鑒別器(U-Net形狀)[74]、塊級鑒別器[75, 78-80]和圖像級鑒別器[76, 77](即VGG類似的架構)被設計來關注不同粒度級別的主觀質量(即從局部到全局)。盡管有上述進展,但大多數基于GAN的IR研究仍然面臨兩個不可避免但至關重要的問題:1) 基于GAN的IR的訓練容易受到模式腐敗和不穩定優化的影響;2) 大多數生成的圖像的紋理似乎是假的和與事實不符的。

近年來,擴散模型作為生成模型的一個新分支浮現出來,為視覺生成任務帶來了一系列的突破。擴散模型的原型可以追溯到工作[81],并由DDPM [82]、NCSN [83]和SDE [84]進一步發展。一般來說,擴散模型由前向/擴散過程和反向過程組成,其中前向過程逐漸增加像素級噪聲到圖像,直到它滿足高斯噪聲,而反向過程旨在通過估算得分的去噪[83]或噪聲預測[82]來重建圖像。與GANs相比,擴散模型產生高保真度和多樣化的生成結果,從而成功地替代了在一系列領域中的GANs,如視覺生成[82-86]和條件視覺生成[86-97]。隨著視覺-語言模型的進步,擴散模型已被擴展到跨模態生成,如StableDiffusion [98]和DALLE-2 [99]。這極大地推動了人工智能生成內容(AIGC)的發展。我們已經在圖2中根據時間線列出了基于擴散模型的代表性作品。

受到擴散模型優越的生成能力的啟發,許多研究探索了它們在圖像恢復任務中的應用,目標是促進紋理的恢復。根據訓練策略,這些工作大致可以分為兩類:1) 第一類[100–109]致力于通過有監督學習從零開始優化用于IR的擴散模型;2) 第二類(即零樣本類)[110–117]努力利用預訓練擴散模型中的生成先驗用于IR。典型地,基于有監督學習的方法需要收集大規模的扭曲/清晰的圖像對,而基于零樣本的方法主要依賴已知的退化模式。這些局限性阻礙了這些基于擴散模型的方法在真實世界場景中的應用,其中的扭曲通常是多種多樣和未知的。為了進一步解決上述問題,一些研究[118–123]已經擴展了擴散模型,通過結合真實世界的扭曲模擬、核估計、領域轉換和扭曲不變學習來處理盲目/真實世界的圖像恢復。

盡管擴散模型在圖像恢復方面已經顯示出顯著的效果,但相關的技術和基準測試顯示出相當的多樣性和復雜性,這使它們難以被追蹤和改進。此外,缺乏一個基于擴散模型的IR的綜合性審查進一步限制了其發展。在本文中,我們首次回顧并總結了基于擴散模型的圖像恢復方法的工作,旨在為圖像恢復社區提供一個結構良好且深入的知識庫,并促進其在該社區內的演變。

在這次綜述中,我們首先在第2部分介紹擴散模型的背景,重點介紹三種基本的建模方法,即NCSN [83]、DDPM [82]和SDE [84],并從優化策略、采樣效率、模型架構和條件策略的角度對擴散模型進行進一步的改進。基于這些初步信息,我們在第3部分從兩個不同的方向闡明了擴散模型在圖像恢復中的進展:1) 基于監督的擴散模型IR,和2) 基于零樣本的擴散模型IR。在第4部分,我們總結了在更實用和具有挑戰性的場景下基于擴散模型的IR,即盲目/真實世界的退化。這旨在進一步增強基于擴散模型的IR方法滿足實際應用需求的能力。為了促進合理和詳盡的比較,在第5部分,我們闡明了在不同的基于擴散模型的IR任務中常用的數據集和實驗設置。此外,還提供了不同任務之間基準的綜合比較。在第6部分,我們深入分析了基于擴散模型的IR的主要挑戰和潛在方向。本次審查的最終結論總結在第7部分。

基于擴散模型的圖像恢復方法

根據擴散模型(DMs)是否針對IR進行無需訓練,我們初步將基于DM的IR方法分類為兩大類,即監督型DM-based方法 [100, 105, 107, 108, 121, 191-194] 和零樣本型DM-based方法 [112, 114, 115, 195-200]。特別地,監督型DM-based IR方法需要從頭開始使用IR數據集的成對的扭曲/干凈圖像來訓練擴散模型。與之前直接將扭曲圖像作為輸入的基于GAN的方法 [201–209] 不同,基于DM的IR采用精心設計的條件機制在反向過程中將扭曲的圖像作為指導。盡管這種方法產生了有希望的紋理生成結果,但它遇到了兩個顯著的限制:1) 從零開始訓練擴散模型依賴于大量的成對訓練數據。2) 在現實世界中收集成對的扭曲/干凈圖像是具有挑戰性的。相反,零樣本型DM-based方法只需扭曲的圖像,無需重新訓練擴散模型,從而提供了一個吸引人的選擇。它不是從IR的訓練數據集中獲得恢復能力,而是從預訓練的擴散模型中挖掘并利用圖像恢復的結構和紋理先驗知識。這一核心思想源于直覺:預訓練的生成模型可以被視為使用大量真實世界數據集(如ImageNet [210] 和FFHQ [211])構建的結構和紋理倉庫。因此,零樣本型DM-based IR方法面臨的一個關鍵挑戰是:如何在保持數據結構的同時提取相應的感知先驗。在接下來的小節中,我們首先簡要回顧代表性的監督型DM-based IR方法:SR3 [100],以及零樣本型DM-based IR方法:ILVR [195]。然后,我們從條件策略、擴散建模和框架的角度對這兩種方法進行進一步分類,這些總結在表1和表2中。此外,擴散模型的整體分類在圖4中進行了說明。

擴散模型用于盲/真實世界的圖像恢復

盡管第3節中的方法在圖像恢復方面取得了巨大的突破,但其中大多數方法 [100, 101, 104, 112–114, 197, 218, 219] 都集中在解決合成扭曲問題上,它們通常在分布外(OOD)的真實世界/盲目退化條件下表現不佳。原因在于真實世界IR的固有挑戰:1) 未知的退化模式很難被識別。2) 在現實世界中收集扭曲/干凈的圖像對是微不足道的,甚至是不可用的。為了克服這一點,先前的工作 [241–248] 嘗試通過模擬真實世界的退化 [72, 241–244, 246] 和無監督學習 [245, 247, 248] 等方法來解決它。受此啟發,一些開創性的工作 [117, 118, 120, 123, 221] 開始探索如何利用擴散模型解決真實世界的退化問題。在本文中,我們將基于DM的盲/真實世界IR [108, 109, 118–121, 123, 220–222, 226] 分為四類,即扭曲模擬 [118, 226],核估計 [119, 120],域轉換 [122, 226],以及扭曲不變的擴散模型 [123, 222, 237]。

結論

本文為圖像恢復 (IR) 的最近受歡迎的擴散模型提供了一個全面的評述,深入探討了其顯著的生成能力以增強結構和紋理恢復。首先,我們闡述了擴散模型的定義和演變。隨后,我們從培訓策略和退化場景的角度提供了現有作品的系統分類。具體來說,我們將現有的工作分為三個主要流程:有監督的 DM-based IR、零鏡頭的 DM-based IR 和基于盲/真實世界的 DM-based IR。對于每一個流程,我們基于技術提供了細粒度的分類,并詳細描述了它們的優點和缺點。對于評估,我們總結了 DM-based IR 常用的數據集和評估指標。我們還在三個典型任務上,包括圖像SR、去模糊和修復,使用扭曲和感知度量比較了開源的 SOTA 方法。為了克服 DMbased IR 中的潛在挑戰,我們強調了未來有望探索的五個潛在方向。

付費5元查看完整內容

隨著ChatGPT等大型人工智能(AI)模型的廣泛應用,人工智能生成內容(AIGC)越來越受到關注,正引領著內容創建和知識表示的范式轉變。AIGC使用生成性大型AI算法,根據用戶提供的提示,以更快的速度和更低的成本輔助或替代人類創建大量的、高質量的、類似人類的內容。盡管AIGC最近取得了顯著的進步,但其安全性、隱私性、道德和法律挑戰仍需得到解決。本文深入調研了AIGC的工作原理、安全和隱私威脅、最先進的解決方案以及AIGC范式的未來挑戰。具體而言,我們首先探討了AIGC的啟用技術、通用架構,并討論其工作模式和關鍵特征。然后,我們調研了AIGC的安全和隱私威脅的分類,并強調了GPT和AIGC技術的道德和社會影響。此外,我們回顧了關于AIGC模型及其生成內容的可規范AIGC范式的最新AIGC水印方法。最后,我們確定了與AIGC相關的未來挑戰和開放的研究方向。

//www.zhuanzhi.ai/paper/b8bd2d1b3785e54627ad947b1997f5d9

1. 引言

人工智能生成內容(AIGC)指的是利用生成性AI算法來協助或替代人類,基于用戶的輸入或需求,以更快的速度和更低的成本創建豐富的個性化和高質量內容[1]-[3]。AIGC包含了廣泛的合成內容,包括文本(如詩歌),圖片(如藝術品),音頻(如音樂),視頻(如動畫),增強訓練樣本和交互式3D內容(如虛擬化身,資產和環境)。作為傳統內容創作范例,如專業生成內容(PGC)和用戶生成內容(UGC)的補充,充滿前景的AIGC范例允許以自動化和有效的方式生產大量的內容,且成本低[4],這對各種新興應用如元宇宙[5]和數字孿生[6]都非常有益。例如,在Roblox(一款交互式元宇宙游戲)中,AIGC可以為化身產生個性化皮膚和3D游戲場景,使用戶能在一個沉浸式的虛擬空間中玩耍,合作和社交。根據Gartner的數據[7],到2025年,生成性AI算法預計將生產約10%的所有數據。

從技術角度看,AIGC通常由兩個階段組成[3]:(i) 提取和理解用戶的意圖信息,以及 (ii) 根據提取的意圖生成所需的內容。2022年11月,OpenAI發布了ChatGPT,這是一個多功能的語言模型,能夠生成代碼,編寫故事,執行機器翻譯,進行語義分析等等。到2023年1月,每天有近1300萬用戶在與ChatGPT交互[8]。ChatGPT是生成預訓練Transformer(GPT)的一個變種,GPT是一個基于Transformer的大型語言模型(LLM),能夠理解人類語言并創造類似人類的文本(例如,故事和文章)[9],如圖1所示。隨著最近大型語言模型(如ChatGPT和其后繼者GPT-4)的進步,AIGC的能力得到了顯著加強,可以執行更復雜的任務(例如,多模態任務)并具有更高的準確性,這得益于LLM提供的更好的意圖提取[10]。由于技術進步和需求增加,AIGC已經引起了全球的關注,并在娛樂,廣告,藝術和教育等各種應用中展現出了巨大的潛力。包括OpenAI,Google,Microsoft,NVIDIA和百度在內的科技巨頭都已經宣布他們將探索AIGC,并開發了他們自己的AIGC產品。

在AIGC時代,更大的數據集是"燃料",更大的基礎模型是"引擎",而廣泛的計算能力則起到了"加速器"的作用。對于從GPT-3.5模型微調的ChatGPT,其訓練數據集包括近1萬億個詞,大約45TB大小[11],并且在預訓練GPT中整合了自我監督學習,強化學習和提示學習等多種AI技術。ChatGPT的訓練所需的計算能力大約是每天3640 PetaFLOPs,相當于每秒計算10萬億次,需要3640天才能完成[12]。在大數據,大模型和大計算能力的工程組合下,ChatGPT展示了強大的新功能和更高級模式的學習能力,并能根據用戶的多模態提示自動創作有價值的內容。除了大規模訓練數據和廣泛計算能力帶來的好處外,ChatGPT還整合了一系列新技術。例如,ChatGPT使用了思維鏈(CoT)提示[13],這使得預訓練的LLM能夠通過逐步推理來解釋其推理過程,在少示例和零示例學習設置中。此外,從人類反饋中的強化學習(RLHF)[14]被整合進來,通過訓練一個包含人類反饋的獎勵模型并通過強化學習對LLM進行微調,幫助ChatGPT更好地理解人類的偏好。更進一步的,在計算機視覺(CV)領域,由創業公司Stability AI開發的穩定擴散[15]和由OpenAI在2022年開發的DALL-E 2[16]已經成功地從復雜和多樣的文本描述中生成高分辨率和自然看起來的圖像。

A.動機 盡管AIGC的前景光明,但安全和隱私問題對其廣泛應用構成了重大障礙。在AIGC服務的生命周期中,可能會出現一些安全漏洞、隱私泄露、信任問題和道德問題,這些問題可能源自普遍的數據收集,智能模型/數據盜竊,到大量的網絡釣魚郵件的分發。

  • 安全漏洞。AIGC模型在生命周期的每個階段都面臨著安全威脅。例如,在模型訓練過程中,攻擊者可能使用有毒或敵對的樣本來降低模型性能[17],或發起后門攻擊以操縱模型結果[18];在模型部署后,攻擊者可能通過智能模型盜竊攻擊來竊取AIGC模型或其部分功能[19]。由于大型AIGC模型如ChatGPT采用的策略比通用模型更復雜,可能會出現更多的安全威脅(如越獄[20]和提示注入[21]),這些威脅可能是全新的。此外,生成型AI模型仍然面臨著關于透明度、魯棒性和偏見/歧視的技術限制。

  • 隱私侵權。AIGC模型的成功在很大程度上依賴于可能無可避免地包含用戶敏感和私人信息的大量訓練數據集。例如,ChatGPT在與用戶交互時,能夠記住與會話相關的項目以及用戶輸入、cookie和日志[22],[23]。這為在AIGC中的數據濫用和犯罪活動帶來了新的可能。根據最近的一項研究[24],對黑盒GPT-2模型,攻擊者可以使用提示注入和公共文本特征從AI記憶中恢復最多67%的訓練文本,包括個人名字、地址和電話號碼。2023年3月,由于對隱私合規的擔憂,意大利禁止使用ChatGPT[25]。

  • 信任問題。AIGC技術的快速發展使得創造和傳播虛假信息和假證據,如深度偽造內容和假新聞[26]變得越來越容易。這導致了新類型的犯罪活動的出現,如AI欺詐、誹謗、身份盜竊和冒充[27]。例如,ChatGPT可以產生誤導和不道德的回應,具有惡意意圖的個人可以利用其生成無瑕疵文本的能力進行欺詐,復制語音模式進行冒充,和開發惡意代碼進行黑客攻擊。這極大地增加了為由生成性AI模型產生的材料建立可追溯來源和規定的需求,以確保其問責制。

  • 道德影響。作為一把雙刃劍,AIGC技術也對人類社會產生了負面影響,并可能被濫用用于分發惡意軟件、勒索軟件和網絡釣魚郵件。例如,ChatGPT產生即時和令人信服的對話的能力可以使其更容易制作釣魚郵件,誘騙收件人點擊有害鏈接,下載惡意軟件,或者泄露機密信息[28]。此外,AIGC可以促進課堂上的作弊,藝術中的抄襲,和學術論文的欺詐,使得這樣的行為更容易被犯下,也更難被發現。

本文的其余部分按如下方式組織。在第二部分,我們介紹AIGC的工作原理。第三部分討論了AIGC中安全和隱私問題的分類,以及最新的對策。第四部分介紹了AIGC模型和內容的IP保護和規定。第五部分探討了未來的研究方向。最后,第六部分得出結論。本文的組織結構在圖2中展示。

2. AI生成內容:工作原理

在這一部分,我們首先介紹AIGC的發展路線圖和啟用技術。然后,我們討論內容創建范式以及知識表示和使用范式的范式轉變。之后,我們展示了AIGC的一般架構,工作模式,關鍵特性,應用,以及現代原型。

如圖3所示,人工智能生成內容即服務(AIGCaaS)的一般架構包括以下三層:(i)基礎設施層,(ii)AIGC引擎層,和(iii)AIGC服務層。

? 基礎層。隨著大型AI模型(如參數達1750B的GPT-3)的規模持續擴大,對廣泛的計算能力,強大的AI算法,和大量訓練數據的需求日益增長。對于ChatGPT,大計算能力,大數據,和大模型的組合釋放出了其在學習用戶提供的多模態提示并自動生成高質量內容方面的強大的突現能力。AI算法包括AI框架(如TensorFlow,Pytorch,和Keras),有監督/無監督學習算法,和生成AI模型(如transformer和擴散模型)。配備了強大的GPU,TPU,AI芯片和大量存儲的云服務器,使得基礎AIGC模型的高效訓練成為可能。所涉及的訓練數據可以是已標注的數據,或從互聯網收集的數據,可以是非結構化和多模態的。

? AIGC引擎層。多模態基礎模型(如GPT-4)在大量的多模態數據上進行預訓練,并能在不需要任務特定微調的情況下執行多種不同的任務[33]。此外,各種底層技術,如CoT提示,人類反饋的強化學習(RLHF),和多模態技術,都被集成到訓練和優化基礎模型中。多模態基礎模型作為AIGCaaS的引擎,為上層AIGC服務賦予了越來越強的實時學習能力。此外,多模態基礎模型可以通過與數十億用戶的實時和密集交互進行逐步的演化和優化,因為它允許從更多的私有數據(如用戶輸入和歷史對話)以及個人和機構的反饋中學習[38]。

? AIGC服務層。從能力的角度看,AIGC服務包括生成文本,音頻,圖像,視頻,代碼,3D內容,數字人,和多模態內容。從終端用戶的角度看,AIGC服務可以分為兩種類型:ToB(面向業務)和ToC(面向消費者)。雖然基礎模型為各種任務提供了一種一刀切的解決方案,但它可能在特定任務上的表現不如專用AI模型。① 對于ToB情況,一個機構或機構聯盟可以通過在包含標注業務數據的較小數據集上對基礎模型進行微調,訓練出一個專用AI模型來執行特定任務,如醫療診斷或財務分析。例如,一個機構聯盟可以通過聯邦學習和遷移學習技術使用本地業務數據共同訓練一個在基礎模型之上的專用AI模型[39]。此外,還可以結合兩種方法以獲得更好的結果。例如,可以使用一個專用AI模型進行特定任務,并將其輸出作為輸入提供給基礎模型,以生成更全面的響應。 ② 對于ToC情況,每個用戶都可以定制一個網絡分身[6](即智能手機或PC中的程序),并使用自然語言與之交流。網絡分身有自己的記憶存儲用戶的偏好,興趣和歷史行為,以及任務特定的專業知識。利用這些知識,網絡分身為用戶生成個性化的提示,從而提供高效和定制的AIGC服務。此外,它還實現了一個反饋環,用戶可以對AI提供的建議進行評價。網絡分身也可以通過構建一個連接的網絡并自由分享所學習的知識和技能,來協同完成更復雜的任務[6]。 對于ToB和ToC兩種情況,以倫理和保護隱私的方式處理個人和機構的私有數據都至關重要。此外,在提供AIGC服務時,保護基礎模型和專用AI模型的知識產權,以及AI生成內容的出處,也是非常重要的。

在未來,AIGC有可能完全取代簡單和非創新的人類工作,同時也加速了人機協作時代的到來。AIGC在內容生成方面有兩種主要模式:輔助生成和自主生成[5]。

? AI-Assisted Content Creation(需要人類干預)。在這種模式下,AI算法為創造內容的人類提供建議或幫助。然后,人類可以根據AI提出的建議編輯和改進內容,以提高最終產品的質量。然而,這種模式在內容創建上往往比較慢且成本更高。

? Autonomous Content Creation by AI(不需要人類干預)。在這種模式下,AI完全自主地創造內容,沒有任何人類的干預。AI機器人可以自主快速且低成本地創建大量內容,而產生的內容質量取決于生成的AI模型。

在此部分,我們將討論不同類型的AI生成內容以及其應用: 1)文本生成。大型語言模型(LLM)可以比人類作者更快、更有效地生成高質量的文本 [10]。這包括博客、新聞、代碼、文章、營銷副本和產品描述。此外,它使聊天機器人和虛擬助手能夠通過AI生成的文本以人類的方式與客戶和客戶進行溝通。 2)圖像生成。大型視覺模型(LVM)可以將草圖轉化為數字繪制的圖像,用于各種目的,包括創造視覺藝術、廣告圖片、游戲場景、駕駛模擬環境以及增加訓練樣本。 3)音頻生成。AI生成的音頻有著廣泛的應用,包括語音合成、音樂創作和聲音設計。如Amper Music這樣的音樂創作AI程序,允許用戶使用AI創建原創音樂。 4)視頻生成。AI生成的視頻可以廣泛用于虛擬現實、增強現實、營銷、廣告、娛樂和教育等各種領域。 5)3D內容生成。AIGC可以通過分析照片和視頻等真實世界的數據來創建逼真的3D模型,AI生成的3D模型可以用來創建動畫、游戲資產和產品設計。 6)數字人生成。AIGC可以生成具有高度逼真動作和表情的數字人,可用于游戲、虛擬現實和廣告等各種領域。 7)跨模態生成。AIGC中的跨模態內容生成指的是使用基礎AIGC模型在多種模態之間生成新內容 [3]。它包括文本到圖像、圖像到文本、文本到代碼、文本到視頻、文本到音頻等。 總的來說,AIGC讓生活變得更加便捷和高效,但也帶來了新的安全/隱私威脅、倫理問題以及潛在的偏見,這些將在下一節中展示。

付費5元查看完整內容

由于多種因素的影響,自動機器學習(AutoML)這些年一直在快速發展,數據科學家需要創建機器學習管道原型來決定如何進行解決,并為非專業人士提供解決方案。已經創建了一些AutoML框架,但它們受到能解決的問題類型、機器學習原語的數量、管道表示語言和嚴格數據描述的限制。這些限制大多是由相當大的工程量造成的。D3M項目旨在擴大AutoML的范圍,提供創建AutoML系統所需的工具,使其能夠解決超出大部分框架的問題類型,并為用戶提供工具,使機器學習工具不需要太多的專業知識。此外,該項目還致力于實現AutoML組件的標準化,以便對不同的框架進行公平的比較,并通過開源共享該項目期間創建的基礎設施來幫助研發界改善該領域。

本文在D3M上的工作主要集中在兩個方面:在D3M小組內創建標準化AutoML工具,以及創建具有不同目的的AutoML系統和框架。在這份報告中,將介紹對該項目的主要貢獻以及AutoML系統的演變。在該項目中,創建了評估AutoML系統的工具,開發了三個AutoML系統,開發了被多個系統廣泛使用的原型,設計了測試原型的自動化框架,并通過創建AutoKeras對AutoML研發界產生了巨大影響。

付費5元查看完整內容

近年來,針對工業生態系統的高級持續性威脅(APT)的復雜性急劇增加。這使得開發超越傳統解決方案的高級安全服務成為必須,輿論動力學(Opinion Dynamics)就是其中之一。這種新穎的方法提出了一個多智能體協作框架,允許跟蹤APT的整個生命周期。在本文中,我們介紹了TI&TO,這是一個攻擊者和防御者之間的雙人博弈,代表了一個現實的場景,雙方都在爭奪現代工業結構中的資源控制權。通過使用博弈論來驗證這種技術,我們證明,在大多數情況下,輿論動力學包括有效的第一項措施,以阻止和減少APT對基礎設施的影響。為了實現這一目標,攻擊者和防御者的模型都被標準化,并應用了一個公平的評分系統,后者用不同的策略和網絡配置運行了幾個模擬測試案例。

引言

世界各地的公司面對的網絡安全攻擊數量明顯增長,導致了巨大的經濟損失[2]。當涉及到關鍵的基礎設施(即核電站、電網、運輸和制造系統)時,這種情況變得更加嚴重,其工業控制系統必須在所有條件下保持工作。在這里,我們處理的是SCADA(監督控制和數據采集)系統,幾十年來一直在與外部網絡隔離的情況下工作;反過來,如今它們正越來越多地整合新技術,如物聯網(IoT)或云計算,在削減成本的同時外包各種服務。因此,需要做出更大的努力來跟上這種進步,以應對這些系統可能帶來的最新的攻擊載體和可利用的漏洞。

近年來最關鍵的問題之一是高級持續性威脅(APTs),這是一種復雜的攻擊,特別是針對目標基礎設施,由一個資源豐富的組織實施。它們的特點是利用零日漏洞(零時差攻擊),采用隱蔽技術,使威脅在受害者網絡中長期無法被發現。Stuxnet是第一個報道的這種性質的威脅[6],但許多其他的威脅在之后被發現,通常是在攻擊完全執行后的幾個月[7]。在網絡安全方面,只是提出了一些機制來從整體上解決這個問題,超越了傳統的機制(如防火墻、入侵防御系統(IPS)、入侵檢測系統(IDS)、防病毒),這些機制只代表了在第一階段對APT的準時保護[21]。

在這些新穎的機制中,輿論動力學(Opinion Dynamics)[15]包括一個多智能體協作系統,通過分布式異常關聯,使攻擊的整個生命周期都可以被追蹤。在本文中,我們提出了一個理論但現實的方案,以證明該方法在不同類型的攻擊模式下的有效性,使用結構可控性領域[8]和博弈論[14]支持的概念。為了這個目標,我們開發了TI&TO,這是一個雙人博弈,攻擊者和防御者為控制現代工業結構中的資源而競爭。兩個玩家都有自己的動作和相關的分數,分別根據APT和基于Opinion Dynamics的檢測系統的行為。這個博弈最終在不同的模擬中運行,旨在展示算法的能力,同時也建議將該技術與其他防御方案結合起來進行最佳配置。因此,我們可以把我們的貢獻總結為:

  • 正式定義TI&TO博弈,指定游戲板、每個玩家的目標和得分規則。
  • 設計一個攻擊者模型,以一組階段的形式,靈活地表示APT的各個階段,以表示攻擊者的行動,這些行動受制于一個確定的分數。
  • 設計一個基于使用意見動態和響應技術(即本地檢測、冗余鏈接、蜜罐)的防御者模型,以減少APT在網絡中的影響,這也意味著博弈中的相關得分。
  • 進行的實驗驗證了該算法,并推薦了返回最佳結果的防御者的配置。

本文的其余部分組織如下。第2節介紹了 "輿論動力學"的概念,并強調了應用博弈論來檢測網絡攻擊的建議。在第3節中,定義了博弈,包括規則以及攻擊和防御模型。然后,進行了幾次模擬,并在第4節進行了討論。最后,在第5節中提出了結論和未來的工作。

付費5元查看完整內容

近年來,機器學習(ML)算法一直是重要研究對象。算法可以被改進以獲得更好的泛化精度和效率的思想,在ML中開啟了許多子學科[66]。其中一個學科研究利用量子理論獲得學習算法的優勢并實現所謂的量子優勢的可能性[53]。實現量子優勢的方法之一是通過量子工具表示數據,例如使用哈密爾頓理論[30];通過從多個數據輸入和多個模型推斷[60],同時從大量數據中學習。通過使用最近在量子數值優化方面的進展,也可以實現量子優勢,這可能在類似梯度下降的計算中使用[7]。然而,對于過渡到量子計算領域的機器學習科學家來說,如果沒有額外的培訓或準備,甚至是理解和應用量子計算背后的一些概念,可能都是特別困難的。

我們寫這篇文章的目的是收集并連貫地介紹量子力學[39,40]中的一些最相關的基本概念及其背后必要的數學概念,還有一些ML概念,以方便讀者建立必要的聯系,同時確定一些應用、算法和其他圍繞這個被稱為量子機器學習新學科的領域

這篇綜述文章的結構如下。第2節介紹了關于量子力學、量子計算、ML的基本概念,以及關于范式的量子機器學習。第3節,我們留下了一些QML領域未來幾年將發展的應用;以及觀點和評論。第4節是結論

付費5元查看完整內容

在過去的十年中,許多深度學習模型在機器智能的各個領域得到了良好的訓練并取得了巨大的成功,特別是在計算機視覺和自然語言處理方面。為了更好地利用這些訓練有素的模型在域內或跨域遷移學習情況下的潛力,知識蒸餾(KD)和域自適應(DA)被提出并成為研究熱點。它們的目的都是利用原始的訓練數據從訓練有素的模型中傳遞有用的信息。然而,在許多情況下,由于隱私、版權或機密性,原始數據并不總是可用的。最近,無數據知識遷移范式引起了人們的關注,因為它處理的是從訓練有素的模型中提取有價值的知識,而不需要訪問訓練數據。它主要包括無數據知識蒸餾(DFKD)和無源數據領域適應(SFDA)。一方面,DFKD的目標是將原始數據的域內知識從一個繁瑣的教師網絡轉移到一個緊湊的學生網絡中,進行模型壓縮和高效推理。另一方面,SFDA的目標是重用存儲在經過良好訓練的源模型中的跨領域知識,并使其適應于目標領域。本文從知識蒸餾和無監督領域適應的角度對無數據知識遷移的研究進行了全面的綜述,以幫助讀者更好地了解目前的研究現狀和思路。本文將分別簡要回顧這兩個領域的應用和挑戰。在此基礎上,對未來的研究提出了一些看法。

圖1. 知識蒸餾(KD)和無監督領域自適應(UDA)綜述

隨著深度學習的復興,深度神經網絡(DNN)在人工智能的各個領域取得了顯著的進展,包括計算機視覺(CV)[1]和自然語言處理(NLP)[2]。特別是計算機視覺領域已經開發了大量深度卷積神經網絡的應用(如圖像分類[3]、目標檢測[4]、語義分割[5]等),極大地促進了深度學習的繁榮。從LeNet[6]、AlexNet[1]到ResNet[7]和DenseNet[8],深度神經網絡的顯著成功主要依賴于超參數化的架構和大規模標注的訓練數據。在實踐中,DNN的應用可能面臨兩個問題:1)笨重的模型不可能部署在存儲和計算能力有限的移動設備上,如自動駕駛汽車[9]和實時人臉識別系統[10]; 2) 由于標注成本過高,整個標注數據集無法用于訓練,例如用于語義分割的像素級標注。

圖2. 無數據知識蒸餾(DFKD)和無源領域適應(SFDA)概述

為了解決模型的深度部署問題,對[11]模型進行壓縮以降低存儲和計算成本,包括剪枝[12]、量化[13]和知識蒸餾[14]。知識蒸餾(Knowledge精餾,KD)[14]是一種流行的模型壓縮方法,它將有價值的信息從一個繁瑣的教師網絡傳輸到一個緊湊的學生網絡中。作為如圖1(a)所示的通用師生知識傳遞框架,它可以與其他模型壓縮方法相結合,無需進行任何具體設計[15],[16]。學生網絡以訓練數據為輸入,模擬訓練良好的教師網絡,與人類的學習方案非常相似。大多數的蒸餾方法都是從教師網絡的中間特征圖或預測中提取和傳遞知識。在模型壓縮方面,近年來知識蒸餾技術的快速發展對半監督學習[17]、[18]、增量學習[19]、[20]、隱私保護[21]、[22]等產生了巨大的影響。

圖3. 2016 - 2021年無數據知識遷移工作發展

除了繁瑣的網絡架構外,大規模數據集的高成本標注也限制了深度學習的應用。例如,手動注釋cityscape[23]圖像進行語義分割需要大約90分鐘。解決這個問題的一種直觀的方法是,利用來自相關領域(源領域)的特定知識來研究被考慮的目標領域,這是受到人類研究能力的啟發。領域自適應[24]是一種很有前途的遷移學習范式,如圖1(b)所示。它旨在將知識從源領域轉移到目標領域,避免了勞動密集型的數據注釋。根據目標域數據的標注率,可以將域自適應進一步分為無監督域自適應、半監督域自適應和弱監督域自適應。實際上,只有UDA方法完全避免了標注的代價,本文主要考慮的是UDA的設置。

綜上所述,知識蒸餾和領域自適應是將有價值的知識從訓練良好的深度神經網絡遷移到域內或跨域網絡的兩個主要研究課題。上述方法都是基于數據驅動的,并依賴于原始數據或源數據可訪問的前提下進行蒸餾或域適應。然而,由于隱私或版權的原因,在很多實際案例中,原始的訓練數據是不可用的。例如,一些知名社區[26]-[29]發布了大量的預訓練的深度學習模型[4]、[5]、[7]、[25]。但并不是所有的訓練數據都可以用于壓縮或使其適應新的領域。此外,醫療或面部數據是公共或第三方機構無法訪問的,因為它涉及到患者或用戶的隱私。因此,如何利用訓練良好的模型(沒有訓練數據)進行知識遷移成為一個新的研究課題。將其概括為圖2所示的“無數據知識遷移(Data-Free Knowledge Transfer, DFKT)”。特別地,該方法還涉及兩個主要的研究領域:(1)沒有訓練數據的知識蒸餾方法稱為無數據知識蒸餾(data - free knowledge精餾,DFKD);(2)沒有源數據的域適應方法稱為無源數據域適應(source -free domain adaptation, SFDA)。DFKD的目標是將訓練數據集的原始信息提取并轉換為一個緊湊的學生模型,SFDA的目標是通過目標數據查詢和探索跨領域的知識。換句話說,DFKD在兩個模型之間傳遞域內知識,而SFDA通過體系結構共享模型傳遞跨域知識。

近年來,無數據知識轉移范式在深度學習的各個領域引起了人們的關注,特別是計算機視覺(包括圖像分類[30]-[32]、目標檢測[33]-[35]和超分辨率[36])。無數據知識轉移的時間軸如圖3所示。我們分別描述了DFKD和SFDA在上游和下游的發展。Lopes等人[37]在2016年首次提出了DNN的無數據知識蒸餾。它利用網絡激活的摘要來重建其訓練集。隨著生成式對抗網絡的興起,2019年以來,一些生成式DFKD方法如雨后春筍般涌現,試圖合成替代樣本進行知識轉移。還有一些研究是在[37]的基礎上,利用激活狀態總結[41]或批歸一化統計量(BNS)[32]、[42]從噪聲中恢復出原始圖像數據。此外,2021年還發布了兩個知識蒸餾綜述[43]、[44]。SFDA方面,Chidlovskii等人[45]在這方面做了開拓性的工作。2018年至2020年,研究人員主要關注分類[30]、[46]、[47]的無源域自適應。SFDA的語義分割算法[48]、[49]和目標檢測算法[33]、[35]從2020年開始研發。毫無疑問,未來將會有更多關于DFKT的研究發表。

雖然傳統的數據驅動的知識遷移一直是計算機視覺領域的一個長期挑戰,在模型壓縮和數據標注的成本降低方面取得了很大的成功,但大多數工作都忽視了數據隱私和商業版權問題,這些問題越來越受到關注。一些研究人員對傳統的數據驅動知識蒸餾[43]、[44]、[50]和領域適應[24]、[51]-[53]進行了全面、詳細的綜述,其中DFKD或SFDA只是冰山一角。然而,隨著DFKT的不斷成熟,相關的研究也越來越多,這使得研究和產業界都難以跟上新進展的步伐。有鑒于此,我們迫切需要對現有的工作進行調研,這對社區是有益的。在本綜述中,我們重點在一個統一的無數據知識遷移框架下,對現有的DFKD和SFDA方法進行分類和分析。我們分別討論了無數據知識蒸餾和無源領域自適應,并從數據重構算法和知識遷移策略兩個方面對它們進行了連接和比較。為了便于理解,我們根據DFKD和SFDA的實現對它們進行了分層分類,如圖4所示,并展示了我們調研的組織結構。總之,我們的貢獻有三方面:

  • 我們對無數據知識遷移進行了系統的概述,包括分類、定義、兩類方法的DFKD和SFDA以及各種應用。據我們所知,這是第一次對DFKT進行調研。

  • 從領域內和跨領域知識遷移的角度,提出了一種新的分類方法,將無數據的知識提煉和無源的領域適應結合起來。

  • 全面總結了每種方法的優勢或面臨的挑戰,并分析了一些有前景的研究方向。

付費5元查看完整內容

在過去的十年里,人們對人工智能和機器學習的興趣有了相當大的增長。從最廣泛的意義上說,這些領域旨在“學習一些有用的東西”,了解生物體所處的環境。如何處理收集到的信息導致了算法的發展——如何處理高維數據和處理不確定性。在機器學習和相關領域的早期研究階段,類似的技術在相對孤立的研究社區中被發現。雖然不是所有的技術都有概率論的自然描述,但許多都有,它是圖模型的框架(圖和概率論的結合),使從統計物理、統計、機器學習和信息理論的想法的理解和轉移。在這種程度上,現在有理由期待機器學習研究人員熟悉統計建模技術的基礎知識。這本書集中在信息處理和機器學習的概率方面。當然,沒有人說這種方法是正確的,也沒有人說這是唯一有用的方法。事實上,有人可能會反駁說,這是沒有必要的,因為“生物有機體不使用概率論”。無論情況是否如此,不可否認的是,圖模型和概率框架幫助機器學習領域出現了新算法和模型的爆炸式增長。我們還應該清楚,貝葉斯觀點并不是描述機器學習和信息處理的唯一方法。貝葉斯和概率技術在需要考慮不確定性的領域中發揮了自己的作用。

//www0.cs.ucl.ac.uk/staff/d.barber/brml/

本書結構

本書第一部分的目的之一是鼓勵計算機科學專業的學生進入這一領域。許多現代學生面臨的一個特別困難是有限的正規微積分和線性代數訓練,這意味著連續和高維分布的細節可能會讓他們離開。在以概率作為推理系統的一種形式開始時,我們希望向讀者展示他們可能更熟悉的邏輯推理和動態規劃的想法如何在概率環境中有自然的相似之處。特別是,計算機科學的學生熟悉的概念,算法為核心。然而,在機器學習中更常見的做法是將模型視為核心,而如何實現則是次要的。從這個角度來看,理解如何將一個數學模型轉換成一段計算機代碼是核心。

第二部分介紹了理解連續分布所需的統計背景,以及如何從概率框架來看待學習。第三部分討論機器學習的主題。當然,當一些讀者看到他們最喜歡的統計話題被列在機器學習下面時,他們會感到驚訝。統計學和機器學習之間的一個不同觀點是,我們最終希望構建什么樣的系統(能夠完成“人類/生物信息處理任務的機器),而不是某些技術。因此,我認為這本書的這一部分對機器學習者來說是有用的。第四部分討論了明確考慮時間的動態模型。特別是卡爾曼濾波器被視為圖模型的一種形式,這有助于強調模型是什么,而不是像工程文獻中更傳統的那樣把它作為一個“過濾器”。第五部分簡要介紹了近似推理技術,包括隨機(蒙特卡羅)和確定性(變分)技術。

付費5元查看完整內容
北京阿比特科技有限公司